JPH02213173A - Condensing-type solar cell - Google Patents

Condensing-type solar cell

Info

Publication number
JPH02213173A
JPH02213173A JP8934189A JP3418989A JPH02213173A JP H02213173 A JPH02213173 A JP H02213173A JP 8934189 A JP8934189 A JP 8934189A JP 3418989 A JP3418989 A JP 3418989A JP H02213173 A JPH02213173 A JP H02213173A
Authority
JP
Japan
Prior art keywords
light
semiconductor piece
semiconductor
solar cell
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8934189A
Other languages
Japanese (ja)
Inventor
Masao Aiga
相賀 正夫
Mikio Deguchi
幹雄 出口
Hajime Sasaki
肇 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8934189A priority Critical patent/JPH02213173A/en
Publication of JPH02213173A publication Critical patent/JPH02213173A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable incidence of light on both the surface and back sides of a semiconductor piece for generation of electricity and thereby to obtain a cell of a simple structure being approximate to a flat plate by a method wherein a light falling outside a region wherein the semiconductor piece exists is reflected by a reflecting film and further made to fall on the back of the semiconductor piece. CONSTITUTION:A condensing-type solar cell which condenses optically a light falling on a prescribed light irradiation plane and converts it into an electric energy is provided with a semiconductor piece 1 whereon a semiconductor junction which can receive the light from both the surface facing the light irradiation side and the back thereof and generate electricity is formed, and with a reflecting film 14 which is positioned on the back side of said semiconductor piece 1 and disposed with a gap from the semiconductor piece 1, and the reflecting film 14 is so disposed as to reflect the light entering from a region B of the light irradiation plane wherein the semiconductor piece 1 is not present and to make it fall on the back of the semiconductor piece 1. For instance, the reflecting film 14, which is a thin film of aluminum or the like, is formed on an indent 13 provided in the surface of a substrate 12 formed of a transparent material and shaped in a flat plate, on the opposite side of the main surface thereof whereon the semiconductor piece 1 is bonded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、太陽電池の活性部分すなわち発電作用を行な
う半導体片の表面積よりも゛大きな面積に照射する太陽
光を集光し、電気エネルギに変換する集光型太陽電池に
関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention focuses sunlight irradiated onto an area larger than the surface area of the active part of a solar cell, that is, a semiconductor piece that performs power generation, and converts it into electrical energy. This invention relates to a concentrating solar cell that converts light.

[従来の技術] 従来の集光型太陽電池は、第9図および第10図に示す
ような立体的な構造を存している(たとえばrProc
eedings  of  17thIEEE  Ph
otovoltaic  5pecialists  
Conf、、May  1984、Or Iando、
p814〜p819J )。
[Prior Art] A conventional concentrating solar cell has a three-dimensional structure as shown in FIGS. 9 and 10 (for example, rProc
eedings of 17thIEEE Ph
otovoltaic 5specialists
Conf,, May 1984, Or Iando,
p814-p819J).

太陽電池の活性部分、すなわち発電作用を行なう部分を
構成する半導体片1は、支持板2上に接着されて支持さ
れている。この半導体片1は、第11図(a)にその構
造の概略を示すように、P型シリコン層8とN型シリコ
ン層9を接合した半導体P−N接合の上下面に導電膜1
0a、10bが形成されたものである。導電膜10a、
10bのうち太陽光が入射する側の導電膜10aは、透
明の導電膜からなっている。第119 (a)のように
、P型シリコン層8の側の面から太陽光が入射すると、
導電膜10a、10bの間に電圧が生じ、この間に負荷
をつなぐと電流が流れる。これは次のような現象による
ものである。まずP型シリコン層8に光が当たると表面
で電子−正孔の対が作られ、それぞれがP型シリコン層
8とN型2932層9の接合部に拡散していく。接合部
に到達した電子と正孔は、そこの電解によって電子はN
uシリコン層9側に、正孔がP型シリコン層8側に加速
される。その結果電極である導電膜10bに電子が、導
電膜10aに正孔が溜まり、起電力を示すことになる。
A semiconductor piece 1 constituting the active part of the solar cell, that is, the part that performs power generation function, is adhered and supported on a support plate 2. As shown in FIG. 11(a), this semiconductor piece 1 has a conductive film on the upper and lower surfaces of a semiconductor P-N junction where a P-type silicon layer 8 and an N-type silicon layer 9 are joined.
0a and 10b are formed. conductive film 10a,
The conductive film 10a of the conductive film 10b on the side where sunlight is incident is made of a transparent conductive film. 119 As shown in (a), when sunlight enters from the side of the P-type silicon layer 8,
A voltage is generated between the conductive films 10a and 10b, and when a load is connected between them, a current flows. This is due to the following phenomenon. First, when light hits the P-type silicon layer 8, electron-hole pairs are created on the surface, and each diffuses to the junction between the P-type silicon layer 8 and the N-type 2932 layer 9. Electrons and holes that reach the junction become N due to the electrolysis there.
On the u silicon layer 9 side, holes are accelerated toward the p-type silicon layer 8 side. As a result, electrons are accumulated in the conductive film 10b serving as an electrode, and holes are accumulated in the conductive film 10a, resulting in an electromotive force.

第9図に示すプラスチックからなるフレネルレンズ3は
、肉厚を大きく変化させることなく平板状で凸レンズと
同様に平行光線の集光を可能にしたもので、これにより
太陽光を半導体片1上に定められた倍率となるように集
光する。フレネルレンズ3と支持板2は、支柱4によっ
てその距離を一定に保たれ、かつ一体として結合されて
いる。
The Fresnel lens 3 made of plastic shown in FIG. 9 has a flat plate shape and is capable of condensing parallel light rays in the same way as a convex lens without significantly changing the wall thickness, thereby directing sunlight onto the semiconductor chip 1. Focuses the light to a specified magnification. The distance between the Fresnel lens 3 and the support plate 2 is kept constant by a support 4, and they are connected as one body.

以上の各要素が結合し一体となって、1つの集光型太陽
電池ユニット5を構成する。フレネルレンズ3に入射し
た光は、半導体片1の面上に集光される。こ場合の集光
倍率はフレネルレンズ3の焦点距離と支柱4の長さで決
まる。逆に言えば、フレネルレンズ3の面積と半導体片
1の面積の比が集光倍率となるように支柱4の長さが決
められる。このような集光型太陽電池ユニット5は、第
10図に示すように複数個平面上に集積結合されて構造
物7を構成し、太陽追尾装置6に設置される。この太陽
追尾装置t6の調節を手動で行なう場合は、手動レバー
6aが用いられる。
Each of the above elements is combined and integrated to constitute one concentrating solar cell unit 5. The light incident on the Fresnel lens 3 is focused on the surface of the semiconductor piece 1. The condensing magnification in this case is determined by the focal length of the Fresnel lens 3 and the length of the pillar 4. In other words, the length of the pillar 4 is determined so that the ratio of the area of the Fresnel lens 3 to the area of the semiconductor piece 1 corresponds to the light condensing magnification. As shown in FIG. 10, a plurality of such concentrating solar cell units 5 are integrated and combined on a plane to form a structure 7, which is installed in the solar tracking device 6. When adjusting the sun tracking device t6 manually, a manual lever 6a is used.

[発明が解決しようとする課題] 従来の集光型太陽電池は、半導体片1の裏側である導電
膜10bの面を支持板2上に接着固定し、表面の導電膜
10aの側のみから太陽光を入射させて発電を行なう。
[Problems to be Solved by the Invention] In the conventional concentrating solar cell, the surface of the conductive film 10b, which is the back side of the semiconductor piece 1, is adhesively fixed on the support plate 2, and sunlight is exposed only from the surface conductive film 10a side. Electricity is generated by inputting light.

したがって、入射した光を効率良く電気エネルギに変換
するためには、フレネルレンズ3によって集光した光が
すべて半導体片1の表面に入射するように、フレネルレ
ンズ3と半導体片1の位置関係を定めなければならない
Therefore, in order to efficiently convert incident light into electrical energy, the positional relationship between the Fresnel lens 3 and the semiconductor piece 1 must be determined so that all the light focused by the Fresnel lens 3 is incident on the surface of the semiconductor piece 1. There must be.

その結果、所定の集光倍率を得るためにフレネルレンズ
3と半導体片1の距離すなわち支柱4の長さが長くなっ
て、集光型太陽電池ユニット5全体として三次元的に拡
がった大きなものとなる。これを複数個平面状に集積し
て構造体7とすると、重く厚いものとなり、また風圧等
の影響も受けやすい形状となって好ましくない。
As a result, in order to obtain a predetermined light condensing magnification, the distance between the Fresnel lens 3 and the semiconductor piece 1, that is, the length of the support column 4, becomes longer, and the entire concentrating solar cell unit 5 becomes a large one that expands three-dimensionally. Become. If a plurality of these structures are integrated into a planar structure to form the structure 7, the structure 7 will be heavy and thick, and the shape will be susceptible to wind pressure, etc., which is not preferable.

以上のことから、従来の集光型太陽電池の構造は、太陽
追尾装置6が堅牢な装置でなければならず、装置全体と
して高価なものになるという問題がある。
From the above, the structure of the conventional concentrating solar cell has the problem that the solar tracking device 6 must be a robust device, making the device as a whole expensive.

本発明は上記問題点を解消するため、半導体片1の表面
および裏面の両側から光を入射して発電を行なうことを
可能にすることによって、より平板状に近いシンプルな
構造の集光型太陽電池を得ることを目的とする。
In order to solve the above-mentioned problems, the present invention provides a concentrating solar panel with a simple structure similar to a flat plate by making it possible to generate electricity by inputting light from both the front and back surfaces of the semiconductor chip 1. The purpose is to obtain batteries.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため本発明の集光型太陽電池は、所
定の光照射面に入射した光を光学的に集光させて電気エ
ネルギに変換する集光型太陽電池であって、前記光照射
面上に固定され、光照射側に面する表面およびその裏面
の両側から光を受けて発電を行なうことのできる半導体
接合が形成された半導体片と、この半導体片の裏面側に
位置し、前記半導体片から間隔をおいて配置された反射
膜とを備えたものである。そして前記反射膜は、前記光
照射面のうち前記半導体片が存在しない領域から入射し
た光を反射して前記半導体片の裏面に入射させるように
配されたことを特徴とする。
In order to solve the above problems, the concentrating solar cell of the present invention is a concentrating solar cell that optically condenses light incident on a predetermined light irradiation surface and converts it into electrical energy, A semiconductor piece is fixed on a surface and has a semiconductor junction formed thereon that can generate power by receiving light from both the front surface facing the light irradiation side and the back surface thereof, and the and a reflective film spaced apart from the semiconductor piece. The reflective film is characterized in that it is arranged so as to reflect light incident from a region of the light irradiation surface where the semiconductor piece is not present, and to make the light incident on the back surface of the semiconductor piece.

[作用] 本発明によれば、活性部分である半導体片が存在する領
域の外側に入射した光を透明材料の傾斜面に被着した金
属薄膜によって反射させ、さらに半導体片の裏面に入射
させることにより、半導体片の太陽光に面した表面とそ
の裏面の両側から光を入射させる。それによって半導体
片の表面の面積の数倍の面積に入射する光を集光し、電
気エネルギに変換することを可能とするものである。
[Function] According to the present invention, light incident on the outside of the region where the semiconductor piece, which is the active part, is present is reflected by the metal thin film deposited on the inclined surface of the transparent material, and is further made incident on the back surface of the semiconductor piece. This allows light to enter from both the surface of the semiconductor chip facing sunlight and the back surface thereof. This makes it possible to focus incident light on an area several times the surface area of the semiconductor piece and convert it into electrical energy.

[実施例] 以下本発明の一実施例を第1図および第2図に基づいて
説明する。本実施例の集光型太陽電池は次のような構成
を有する。たとえば単結晶SiからなるP−N接合太陽
電池片(以下「半導体片」と呼ぶ)1が厚さ約100μ
m程度にラッピングされて、ガラスなどの透明材料から
なる平板状の支持体12の一主面に、エポキシ樹脂など
の透明な接着材料で接着される。本実施例に用いる半導
体片1は、第11図(b)にその断面を示すように、そ
の構成は同図(a)に示す従来のものとほぼ同じである
が、裏面側から入射する光をも電気エネルギに変換でき
るように、導電11![10cも導電膜10aと同様に
透明の導電膜で形成されている。このような構成により
、導電膜10aを透過してP型シリコン層8に入射した
光のみでなく、導mal 10 cを透過してN型シリ
コン層9に入射した光によっても、電子−正孔の対とP
−N接合部における電界が発生し、導電膜10a、10
c間に起電力を生じる。その結果、従来のものに比べて
半導体片1の受光面積が2倍になるため、同じ強度の光
が照射した場合には受光量も2倍になることになる。ま
た第11図(a)に示す従来の半導体片1を、上下対称
に導電膜10bにおいて2枚接合することによっても、
表側と裏側の両方から受光できるものとなり、本実施例
に使用することができる。また支持体12の半導体片1
が接着された主面と反対側の面に設けられた窪み13に
は、たとえば真空蒸着によって形成された銀またはアル
ミニウムなどの薄膜である反射!114が形成される。
[Example] An example of the present invention will be described below with reference to FIGS. 1 and 2. The concentrating solar cell of this example has the following configuration. For example, a P-N junction solar cell piece (hereinafter referred to as a "semiconductor piece") 1 made of single crystal Si has a thickness of about 100 μm.
m, and is bonded to one main surface of a flat support 12 made of a transparent material such as glass using a transparent adhesive material such as epoxy resin. As shown in the cross section of FIG. 11(b), the semiconductor chip 1 used in this example has almost the same structure as the conventional one shown in FIG. Conductivity 11! [10c is also formed of a transparent conductive film like the conductive film 10a. With this configuration, electrons and holes are generated not only by the light that has passed through the conductive film 10a and entered the P-type silicon layer 8, but also by the light that has passed through the conductive film 10c and entered the N-type silicon layer 9. pair and P
An electric field is generated at the -N junction, and the conductive films 10a, 10
An electromotive force is generated between c. As a result, the light-receiving area of the semiconductor piece 1 is doubled compared to the conventional one, so that when the same intensity of light is irradiated, the amount of light received is also doubled. Furthermore, by joining two conventional semiconductor pieces 1 shown in FIG. 11(a) vertically symmetrically at the conductive film 10b,
It can receive light from both the front side and the back side, and can be used in this embodiment. In addition, the semiconductor piece 1 of the support body 12
In the recess 13 provided on the surface opposite to the main surface to which the reflection film is bonded, a thin film of silver or aluminum formed by vacuum evaporation, for example, is applied. 114 is formed.

太陽光は、図中に実線の矢印で示すように、半導体片1
が接着された支持体2の主面から入射し、領域Aから入
射した光は半導体片1に入射して、活性部分で吸収され
発電に寄与する。また、半導体片1が存在しない領域で
ある領域Bを透過した光は、反射膜14で反射して再び
半導体片1に入射し発電に寄与する。領域Aでは半導体
片1と反射膜14は距離gだけ離れた互いに平行な面を
なしている。領域Bでは支持体12は角度θと深さdで
特徴づけられる窪み13を有しており、領域Bで入射し
た光は領域Aに対してθだけ傾斜した反射膜14で反射
され、半導体片1の裏面へ入射する。この断面が図にお
ける紙面に垂直な方向に長く延長された場合には、領域
Aの長さをa、領域Bの長さをbとすると、集光倍率R
は次の式で表わされる。
As shown by the solid arrow in the figure, sunlight hits the semiconductor piece 1.
The light enters from the main surface of the support 2 to which is adhered, and the light that enters from the area A enters the semiconductor piece 1, is absorbed by the active part, and contributes to power generation. Further, the light transmitted through the region B, which is the region where the semiconductor chip 1 is not present, is reflected by the reflective film 14 and enters the semiconductor chip 1 again, contributing to power generation. In region A, the semiconductor piece 1 and the reflective film 14 form parallel surfaces separated by a distance g. In area B, the support 12 has a recess 13 characterized by an angle θ and a depth d, and the light incident in area B is reflected by a reflective film 14 that is inclined by θ with respect to area A, and the semiconductor chip The light is incident on the back surface of 1. If this cross section is extended long in the direction perpendicular to the plane of the paper in the figure, then if the length of area A is a and the length of area B is b, then the condensing magnification R
is expressed by the following formula.

R−1+     2      ・・・(1)1+t
an2θ・tanθ 旦−tanθ ・・・ (2) 一=tan2θ ・・・ (3) 上記式(1)において、θ−10°の場合はR42、9
,θ−20°の場合はR″F2. 5.  θ−30°
の場合はR−2,0となる。第1図はθ−30°の場合
の寸法を例として描いたもので、ガラスの厚みgを4m
mとするとdは2mm、Aは6.93rnm、bは3.
46rnmとなる。第2図はこの例の場合の各領域を平
面的に表わしたもので、領域Aは一辺6.93mmの正
方形、領域Bは6.93X3.46mrn2の長方形、
領域Cは一辺3.46mmの正方形となる。領域Cを含
む対角線上の断面、すなわち第2図に示す2つの2点を
含む断面においては、θに相当する傾斜角を33.9’
 、dに相当する窪みの深さを3.3mmとした形状と
なる。すなわち図中の2点では窪みの深さは3.3mm
となり、Cの面はAの面に対して33.9°の角度を持
つことになって、領域Cで反射された光の大部分は半導
体片1の裏面に入射する。したがって第2図のような平
面の構成を用いると、トータルな集光倍率すなわち領域
Aの面積に対する全領域の面積の比は4つの領域Bと4
つの領域Cとを併せておよそ4倍となる。
R-1+ 2 ... (1) 1+t
an2θ・tanθ tan-tanθ (2) 1=tan2θ (3) In the above formula (1), when θ-10°, R42, 9
, for θ-20°, R″F2. 5. θ-30°
In this case, it becomes R-2.0. Figure 1 is an example of the dimensions when the angle is θ-30°, and the glass thickness g is 4 m.
If m, then d is 2mm, A is 6.93rnm, and b is 3.
It becomes 46rnm. Figure 2 is a two-dimensional representation of each area in this example, where area A is a square with sides of 6.93 mm, area B is a rectangle of 6.93 x 3.46 mrn2,
Area C is a square with sides of 3.46 mm. In the diagonal cross section that includes area C, that is, the cross section that includes the two points shown in FIG. 2, the inclination angle corresponding to θ is 33.9'.
, d has a depth of 3.3 mm. In other words, the depth of the depression at two points in the figure is 3.3 mm.
Therefore, the surface of C has an angle of 33.9° with respect to the surface of A, and most of the light reflected at region C is incident on the back surface of semiconductor piece 1. Therefore, using the planar configuration shown in Figure 2, the total condensing magnification, that is, the ratio of the area of all regions to the area of region A, is
The area C is approximately 4 times larger in total.

第3図は第2図と同じ平面構成をより多くの周期につい
て描いたもので、太線で描いたものを1つの単位として
平面をすべて覆うことができる。
FIG. 3 depicts the same planar configuration as in FIG. 2 for more periods, and can cover the entire plane by using the thick line as one unit.

本実施例の構成によればおよそ4倍の集光倍率が得られ
るため、単結晶Si、GaAs、1nPなどからなる比
較的高価でかつ薄い(厚さ10Am〜200tIm)半
導体片を用いる場合に好適である。第4図に示すのは、
a、bの寸法は第3図に示すものと同じであるが、領域
Aの左右に領域すを存するものが横方向には連続的に、
縦方向には千鳥状に拡がった場合を示す。この場合の集
光倍率は2倍になる。また第5図は第1図の断面が紙面
に垂直な方向に長く延びている構造で、θの選び方によ
って、式(1)に従って集光倍率が変化する。
According to the configuration of this embodiment, a light condensing magnification of about 4 times can be obtained, so it is suitable when using a relatively expensive and thin (10 Am to 200 tIm thick) semiconductor piece made of single crystal Si, GaAs, 1nP, etc. It is. Figure 4 shows:
The dimensions of a and b are the same as those shown in Fig. 3, but the areas on the left and right sides of area A are continuous in the horizontal direction.
In the vertical direction, the case is shown in which it spreads in a staggered manner. In this case, the light collection magnification is doubled. Furthermore, FIG. 5 shows a structure in which the cross section of FIG. 1 extends long in the direction perpendicular to the plane of the paper, and depending on the selection of θ, the condensing magnification changes according to equation (1).

また支持体12の厚みgや窪み13の深さd、領域Aと
領域Bの幅も式(2)5式(3)に従って変化する。
Further, the thickness g of the support 12, the depth d of the depression 13, and the widths of the regions A and B also change according to equations (2), 5, and (3).

以上のような本本実施例の構造は、支持体12上に半導
体片1を直接被着形成することが可能なアモルファスシ
リコンを用いた太陽電池に特に適している。また、どの
ような太陽電池であっても、裏面からの光の入射が可能
でありさえすれば、第3図〜第5図のいずれの構成も適
用することが可能であることは言うまでもない。
The structure of this embodiment as described above is particularly suitable for a solar cell using amorphous silicon in which the semiconductor piece 1 can be directly deposited on the support 12. Moreover, it goes without saying that any of the configurations shown in FIGS. 3 to 5 can be applied to any solar cell as long as light can be incident from the back surface.

また支持体12をプラスチックで構成してもよいし、ま
たガラスとプラスチックの組合わせで構成することも可
能である。すなわち、たとえば第3図に示すように、支
持体12として平板ガラス12aと透明プラスチック部
材12bを透明接着剤で貼り合わせたものとし、透明プ
ラスチック部材12bに窪み13を形成して、その窪み
13に反射[14を蒸着したものを用いることができ、
ガラスよりも比重の小さいプラスチックの割合を増すこ
とによって軽量化を図ることができる。
Further, the support body 12 may be made of plastic, or may be made of a combination of glass and plastic. That is, as shown in FIG. 3, for example, a flat glass 12a and a transparent plastic member 12b are bonded together as a support 12 with a transparent adhesive, a recess 13 is formed in the transparent plastic member 12b, and a recess 13 is formed in the recess 13. Reflection [14] can be used.
Weight reduction can be achieved by increasing the proportion of plastic, which has a lower specific gravity than glass.

また領域Bに入射した光を半導体片1に向けて反射させ
る反射膜14は、必ずしも第1図に示すような平面であ
る必要はなく、第7図に一例を示すような曲面によって
構成することも可能である。
Further, the reflective film 14 that reflects the light incident on the region B toward the semiconductor chip 1 does not necessarily have to be a flat surface as shown in FIG. 1, but may be a curved surface as shown in FIG. 7 as an example. is also possible.

なお、上記各実施例においてはいずれも、半導体片1と
反射膜13の間に支持体12を介在させたが、この間は
空間であってもよく、この場合半導体片1と反射膜13
を所定の相対的位置関係に保つ何らかの他の支持手段を
備えていればよい。
In each of the above embodiments, the support 12 is interposed between the semiconductor piece 1 and the reflective film 13, but there may be a space between the semiconductor piece 1 and the reflective film 13.
It is only necessary to provide some other support means for maintaining the two in a predetermined relative positional relationship.

上記各実施例における集光型太陽電池を装置化した構造
体の概略は、第8図に示すようなものになる。すなわち
、平板状の支持体12の上面に半導体片1が多数(図で
は6X6)縦横に整列して固定されたものを、太陽追尾
装置6に据え付ける。
The structure in which the concentrating solar cell in each of the above embodiments is formed into a device is schematically shown in FIG. That is, a large number of semiconductor pieces 1 (6×6 in the figure) are fixed to the upper surface of a flat plate-like support 12 in a matrix arranged vertically and horizontally, and then installed in the solar tracking device 6.

この太陽追尾袋W6は支持体12および半導体片1の表
面を入射する太陽光に対して垂直に保つためものであり
、手動レバー6aにより手動で調節することもできる。
This solar tracking bag W6 is for keeping the surfaces of the support 12 and the semiconductor chip 1 perpendicular to the incident sunlight, and can be adjusted manually using the manual lever 6a.

なお、同図では半導体片1を露出したものを示している
が、実際には半導体片1の表面を保護するために、すべ
ての半導体片1の表面を1枚のガラス板で覆い、透明接
着剤で接着したものを用いている。
Although the figure shows the semiconductor chip 1 exposed, in reality, in order to protect the surface of the semiconductor chip 1, the surface of all the semiconductor chips 1 is covered with one glass plate and transparent adhesive is applied. I am using something that is glued with an adhesive.

また上記各実施例では、いずれも半導体片1を固定した
支持体12の主面に平行光が入射した場合について示し
ているが、平行光でなくても本発明の考え方が適用でき
ることは言うまでもない。
Further, in each of the above embodiments, cases are shown in which parallel light is incident on the main surface of the support 12 to which the semiconductor chip 1 is fixed, but it goes without saying that the concept of the present invention can be applied even if the light is not parallel. .

たとえば太陽光線をフレネルレンズで集光した光を、支
持体12の主面上において半導体片1が存在する領域よ
り広い範囲に入射させた場合に適用することも可能であ
る。この場合、半導体片1が存在しない領域から入射し
た光を半導体片1の裏面に向けて反射するように、支持
体12の裏面の窪み13の形状を設定して反射膜14を
形成すれば、同一焦点距離のフレネルレンズ3であって
も、フレネルレンズ3と半導体片1が第9図の従来例よ
りも短い距離で同じ集光倍率を得ることができる。
For example, it is also possible to apply the present invention to a case in which the light obtained by concentrating sunlight with a Fresnel lens is made incident on a wider area on the main surface of the support body 12 than the area where the semiconductor chip 1 is present. In this case, if the shape of the recess 13 on the back surface of the support body 12 is set so that the light incident from the area where the semiconductor chip 1 is not present is reflected toward the back surface of the semiconductor chip 1, and the reflective film 14 is formed, Even if the Fresnel lens 3 has the same focal length, the same light condensing magnification can be obtained at a shorter distance between the Fresnel lens 3 and the semiconductor piece 1 than in the conventional example shown in FIG.

[発明の効果] 以上述べたように本発明によれば、表面および裏面の両
側から入射した光を受けて発電を行なう半導体片を透明
な平板の一生面上に固定し、前記半導体片が存在しない
領域から入射した光を、前記平板の裏面に設けた窪みに
形成された反射膜で反射させ、さらに前記半導体片の裏
面に入射させて発電を行なわせることができる。そのた
め、半導体片の表面から入射した光と合わせて、半導体
片の表面のみから集光させる場合の数倍の集光倍率を有
する集光型太陽電池を得ることができる。
[Effects of the Invention] As described above, according to the present invention, a semiconductor piece that generates power by receiving light incident from both the front and back sides is fixed on the entire surface of a transparent flat plate, and the semiconductor piece is Light incident from the non-contact area can be reflected by a reflective film formed in a recess provided on the back surface of the flat plate, and further made incident on the back surface of the semiconductor piece to generate power. Therefore, in combination with the light incident from the surface of the semiconductor piece, it is possible to obtain a concentrating solar cell that has a light collection magnification several times that of the case where the light is collected only from the surface of the semiconductor piece.

また、たとえばフレネルレンズによって集光させる集光
型太陽電池に本発明を適用すれば、同一焦点距離のフレ
ネルレンズを用いて同一の集光倍率を得る場合、フレネ
ルレンズと半導体片との距離をより小さくすることがで
きる。したがって集光型太陽電池ユニットを平面上に集
積結合した構造体が比較的薄くなり、軽量化を図ること
ができるとともに風圧の影響を小さくすることができる
Furthermore, if the present invention is applied to a concentrating solar cell that condenses light using a Fresnel lens, for example, when obtaining the same light condensing magnification using a Fresnel lens with the same focal length, the distance between the Fresnel lens and the semiconductor piece can be increased. Can be made smaller. Therefore, the structure in which the concentrating solar cell units are integrated and connected on a plane becomes relatively thin, making it possible to reduce the weight and to reduce the influence of wind pressure.

その結果太陽追尾装置に要求される強度も緩和されるこ
とになる。
As a result, the strength required for the solar tracking device will also be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における集光型太陽電池を示
す断面図、第2図は同実施例の各領域を平面的に示す図
、第3図は同実施例の各領域の平面構成をより多くの周
期について示す図、第4図および第5図は第1図の断面
を有する場合の各領域の平面構成の変形例を示す図、第
6図は本発明の他の実施例の集光型太陽電池を示す断面
図、第7図は本発明のさらに他の実施例の集光型太陽電
池を示す断面図、第8図は本発明の集光型太陽電池を太
陽追尾装置に搭載した様子の概略を示す斜視図である。 また第9図は従来の集光型太陽電池の構成を示す断面図
、第10図は従来の集光型太陽電池の9個のユニットで
構成した構造物を太陽光追尾装置に搭載した様子の概略
を示す斜視図、第11図(a)は従来例における半導体
片1の構造の概略を示す断面図、第11図(b)は本発
明の各実施例で用いる半導体片1の構造の概略を示す断
面図である。 図において、1は半導体片、14は反射膜である。 なお各図において、同一の番号は同一または相当の要素
を示す。
FIG. 1 is a sectional view showing a concentrating solar cell according to an embodiment of the present invention, FIG. 2 is a plan view showing each region of the same embodiment, and FIG. 3 is a plan view of each region of the same embodiment. 4 and 5 are diagrams showing a modification of the planar configuration of each region when the cross section is as shown in FIG. 1. FIG. 6 is another embodiment of the present invention. FIG. 7 is a sectional view showing a concentrating solar cell according to another embodiment of the present invention, and FIG. 8 is a cross-sectional view showing a concentrating solar cell according to another embodiment of the present invention. FIG. Furthermore, Fig. 9 is a cross-sectional view showing the configuration of a conventional concentrating solar cell, and Fig. 10 is a diagram showing how a structure composed of nine units of a conventional concentrating solar cell is mounted on a sunlight tracking device. FIG. 11(a) is a schematic perspective view showing the structure of the semiconductor chip 1 in a conventional example, and FIG. 11(b) is a schematic perspective view of the structure of the semiconductor chip 1 used in each embodiment of the present invention. FIG. In the figure, 1 is a semiconductor piece, and 14 is a reflective film. Note that in each figure, the same numbers indicate the same or equivalent elements.

Claims (1)

【特許請求の範囲】 所定の光照射面に入射した光を光学的に集光させて電気
エネルギに変換する集光型太陽電池であって、 前記光照射面上に固定され、光照射側に面する表面およ
びその裏面の両側から光を受けて発電を行なうことので
きる半導体接合が形成された半導体片と、 この半導体片の裏面側に位置し、前記半導体片から間隔
をおいて配置された反射膜と、 を備え、 前記反射膜は、前記光照射面のうち前記半導体片が存在
しない領域から入射した光を反射して前記半導体片の裏
面に入射させるように配されたことを特徴とする、 集光型太陽電池。
[Scope of Claims] A concentrating solar cell that optically condenses light incident on a predetermined light irradiation surface and converts it into electrical energy, the solar cell being fixed on the light irradiation surface and arranged on the light irradiation side. a semiconductor piece on which a semiconductor junction is formed that can generate electricity by receiving light from both the facing surface and the back surface; a reflective film; the reflective film is arranged so as to reflect light incident from a region of the light irradiation surface where the semiconductor piece is not present and make it enter the back surface of the semiconductor piece. Concentrating solar cells.
JP8934189A 1989-02-13 1989-02-13 Condensing-type solar cell Pending JPH02213173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8934189A JPH02213173A (en) 1989-02-13 1989-02-13 Condensing-type solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8934189A JPH02213173A (en) 1989-02-13 1989-02-13 Condensing-type solar cell

Publications (1)

Publication Number Publication Date
JPH02213173A true JPH02213173A (en) 1990-08-24

Family

ID=12407243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8934189A Pending JPH02213173A (en) 1989-02-13 1989-02-13 Condensing-type solar cell

Country Status (1)

Country Link
JP (1) JPH02213173A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028513A1 (en) * 1998-11-10 2000-05-18 Citizen Watch Co., Ltd. Electronic device with solar cell
JP2002523904A (en) * 1998-08-19 2002-07-30 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photosensitive optoelectronic devices
KR100894525B1 (en) * 2007-05-22 2009-04-22 심포니에너지주식회사 Solar Cell Module System
WO2009113643A1 (en) * 2008-03-12 2009-09-17 京セラ株式会社 Solar cell module and method of manufacturing the same
JP2009289832A (en) * 2008-05-27 2009-12-10 Hitachi Maxell Ltd Solar cell module
JP2010212280A (en) * 2009-03-06 2010-09-24 Sumitomo Electric Ind Ltd Light guide structure for solar cell, solar cell unit and solar cell module
JP2010258034A (en) * 2009-04-21 2010-11-11 Toyota Motor Corp Solar cell module
JP2011003834A (en) * 2009-06-22 2011-01-06 Toyota Motor Corp Solar cell module
WO2011055446A1 (en) * 2009-11-06 2011-05-12 トヨタ自動車株式会社 Solar cell module
JP2013513938A (en) * 2009-12-14 2013-04-22 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Reflective element for photovoltaic modules with double-sided cells
US8519258B2 (en) 1998-08-19 2013-08-27 The Trustees Of Princeton University Organic photosensitive optoelectronic devices with transparent electrodes
JP2013243298A (en) * 2012-05-22 2013-12-05 Dainippon Printing Co Ltd Solar cell module

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205160A (en) * 1998-08-19 2011-10-13 Trustees Of Princeton Univ Organic photosensitive optoelectronic device
JP2002523904A (en) * 1998-08-19 2002-07-30 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photosensitive optoelectronic devices
JP2010192931A (en) * 1998-08-19 2010-09-02 Trustees Of Princeton Univ Organic photosensitive photoelectric device
JP2014170953A (en) * 1998-08-19 2014-09-18 Trustees Of Princeton Univ Organic photosensitive photoelectric device
JP2014158047A (en) * 1998-08-19 2014-08-28 Trustees Of Princeton Univ Organic photosensitive optoelectronic device
US8519258B2 (en) 1998-08-19 2013-08-27 The Trustees Of Princeton University Organic photosensitive optoelectronic devices with transparent electrodes
JP2011205156A (en) * 1998-08-19 2011-10-13 Trustees Of Princeton Univ Organic photosensitive optoelectronic device
WO2000028513A1 (en) * 1998-11-10 2000-05-18 Citizen Watch Co., Ltd. Electronic device with solar cell
KR100894525B1 (en) * 2007-05-22 2009-04-22 심포니에너지주식회사 Solar Cell Module System
WO2009113643A1 (en) * 2008-03-12 2009-09-17 京セラ株式会社 Solar cell module and method of manufacturing the same
US8389850B2 (en) 2008-03-12 2013-03-05 Kyocera Corporation Solar cell module and method of manufacturing the same
JP2009289832A (en) * 2008-05-27 2009-12-10 Hitachi Maxell Ltd Solar cell module
JP2010212280A (en) * 2009-03-06 2010-09-24 Sumitomo Electric Ind Ltd Light guide structure for solar cell, solar cell unit and solar cell module
JP2010258034A (en) * 2009-04-21 2010-11-11 Toyota Motor Corp Solar cell module
JP2011003834A (en) * 2009-06-22 2011-01-06 Toyota Motor Corp Solar cell module
WO2011055446A1 (en) * 2009-11-06 2011-05-12 トヨタ自動車株式会社 Solar cell module
JP5218670B2 (en) * 2009-11-06 2013-06-26 トヨタ自動車株式会社 Solar cell module
JP2013513938A (en) * 2009-12-14 2013-04-22 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Reflective element for photovoltaic modules with double-sided cells
JP2013243298A (en) * 2012-05-22 2013-12-05 Dainippon Printing Co Ltd Solar cell module

Similar Documents

Publication Publication Date Title
US4162928A (en) Solar cell module
US6008449A (en) Reflective concentrating solar cell assembly
JP3174549B2 (en) Photovoltaic power generation device, photovoltaic power generation module, and method of installing photovoltaic power generation system
US20080251113A1 (en) Single mirror solar concentrator with efficient electrical and thermal management
US9464783B2 (en) Concentrated photovoltaic panel
US9595627B2 (en) Photovoltaic panel
US20100024868A1 (en) Solar radiation collector
JP2002513210A (en) Solar cell module having reflector between solar cells
JPH02213173A (en) Condensing-type solar cell
WO2009008996A2 (en) Design and fabrication of a local concentrator system
JP2000323740A (en) Condensing photovoltaic power-generation device
KR101981447B1 (en) Solar photovoltaic power generator
JPH0851231A (en) Solar battery
KR20130007076A (en) Concentrating solar cell
US20110079271A1 (en) Spectrum-splitting and wavelength-shifting photovoltaic energy converting system suitable for direct and diffuse solar irradiation
KR20190096370A (en) Solar energy condenser
JP3048553B2 (en) Concentrating photovoltaic power generation device with diffraction surface and concentrating photovoltaic power generation module
JP7306359B2 (en) Photoelectric conversion device for photovoltaic power generation
US20190353882A1 (en) Solar concentrator apparatus and solar collector array
JP2000091614A (en) Solar battery module and solar battery array
JPH0637344A (en) Light-condensing type solar cell module
JP2008311408A (en) Condensing solar cell module
JP2001210854A (en) Solar cell module
JPS62266879A (en) Solar energy conversion panel
US10199527B2 (en) Solar concentrator and illumination apparatus