JPH02210258A - Method for measuring material of cold rolled steel sheet and measuring instrument of speed of ultrasonic wave propagated in cold rolled steel plate - Google Patents

Method for measuring material of cold rolled steel sheet and measuring instrument of speed of ultrasonic wave propagated in cold rolled steel plate

Info

Publication number
JPH02210258A
JPH02210258A JP1029755A JP2975589A JPH02210258A JP H02210258 A JPH02210258 A JP H02210258A JP 1029755 A JP1029755 A JP 1029755A JP 2975589 A JP2975589 A JP 2975589A JP H02210258 A JPH02210258 A JP H02210258A
Authority
JP
Japan
Prior art keywords
wave
sho
ultrasonic
thin steel
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1029755A
Other languages
Japanese (ja)
Other versions
JPH0687054B2 (en
Inventor
Katsuhiro Kawashima
川島 捷宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1029755A priority Critical patent/JPH0687054B2/en
Publication of JPH02210258A publication Critical patent/JPH02210258A/en
Publication of JPH0687054B2 publication Critical patent/JPH0687054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To utilize an electromagnetic ultrasonic wave method with eliminates the need for an acoustic coupling medium by making two acoustic speed measuring instruments for SHO plate ultrasonic waves cross each other in the middle of an electromagnetic ultrasonic probe for detection and arranging an electromagnetic ultrasonic probe for a standing wave there. CONSTITUTION:The required press moldability of the cold rolled steel sheet used for the body of an automobile or the outer package of a home electric product is measured. For the purpose, the ratios K1 and K2 of the speeds of a transversal ultrasonic wave which is propagated inside in the thickness direction while vibrating in parallel and at right angles to a rolling direction and the speed of a longitudinal ultrasonic wave which is propagated in the thickness direction and the ratio K3 of the speed of an SHO plate wave ultrasonic wave which is propagated at 45 deg. to the rolling direction and the speed of an SHO plate wave ultrasonic wave which is propagated in parallel or at right angles to the rolling direction are measured. Then the two acoustic speed measuring instrument consisting of electromagnetic ultrasonic probes T1 and T2 for SHO plate wave generation and 1st and 2nd electromagnetic ultrasonic probes R1 and R'1, and R2 and R'2 for SHO plate wave detection are held and crossed at 45 deg. and the electromagnetic ultrasonic probe 50 for the standing wave is arranged at the intersection to measure the ratios K1 - K3 at the same time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は冷延薄鋼板の材料特性を迅速且つ非破壊的に
測定するための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for rapidly and non-destructively measuring the material properties of cold-rolled thin steel sheets.

〔従来の技術〕[Conventional technology]

冷延薄鋼板は自動車の車体や家庭電気製品の外装に用い
られるため高いプレス成形性が要求される。冷延薄鋼板
は多結晶体でありそのプレス成形性はいわゆる集合組織
によってほとんど決定づけられる。
Cold-rolled thin steel sheets are used for car bodies and the exteriors of household electrical appliances, so they require high press formability. Cold-rolled thin steel sheets are polycrystalline, and their press formability is mostly determined by the so-called texture.

従来はプレス成形性はX線極点図法あるいはランクフォ
ード値(r値)によって推定されていた。
Conventionally, press formability has been estimated by the X-ray pole figure method or the Lankford value (r value).

しかしxkIAs点図法では冷延薄鋼板より試験片を切
り取ってこれにX線を照射して測定しなければならない
ため時間がかかり、また試験片を切り取らねばならない
ため破壊的測定法であるといえる。
However, the xkIAs dot projection method requires time to cut a test piece from a cold-rolled thin steel plate and irradiate it with X-rays for measurement, and can be said to be a destructive measurement method because the test piece must be cut out.

ランクフォード値を測定する方法では引張試験片のサイ
ズの変化の精密な測定が必要なため時間がかかり、また
試験片を冷延薄鋼板より切り取って測定しなければなら
ないためこれも破壊的測定法であるといえる。
The method of measuring the Lankford value requires precise measurement of changes in the size of the tensile test piece, which is time-consuming, and it is also a destructive measurement method because the test piece must be cut from a cold-rolled thin steel plate. You can say that.

このような引張試験によるランクフォード値の測定では
多大の時間と労力を要するため簡便法も提案された(C
,八、5tickels and Moulcl、”T
he use ofYoung s modulus 
 for predicting  the plas
ticstrain  ratio of  low 
carbon  5teel  5heets”。
Because measuring the Lankford value using such a tensile test requires a great deal of time and effort, a simplified method was also proposed (C
, 8, 5tickels and Moulcl, “T
he use of young's modulus
for predicting the plus
ticstrain ratio of low
carbon 5teel 5heets”.

Metallurgical  Transactio
n Vol、1.pp1303−1312(1970)
)。この簡便法では固有振動法により測定したヤング率
とランクフォード値との間の経験的な相関関係を利用す
るため簡便ではあるが、この方法でも試験片を冷延薄鋼
板より切り取って測定しなければならないためこれも破
壊的測定法である。
Metallurgical Transaction
n Vol, 1. pp1303-1312 (1970)
). This simple method uses the empirical correlation between the Young's modulus measured by the natural vibration method and the Lankford value, so it is simple, but even with this method, the test piece must be cut from a cold-rolled thin steel sheet and measured. This is also a destructive measurement method.

そこで試験片を切り取る必要がなく冷延薄鋼板の自然の
サイズのままで非破壊的に測定する方法として超音波の
音速を測定する方法が提案された。
Therefore, a method of measuring the sound velocity of ultrasonic waves was proposed as a non-destructive method of measuring the natural size of cold-rolled thin steel sheets without the need to cut out the test pieces.

特開昭57−66355 (“鋼板の集合組織ないしは
その集合組織に依存する材料特性をオンラインにて判定
する方法°°)ではSモードならびにAモードの板波超
音波の音速を測定しその測定値を適当に演算してランク
フォード値を求める方法が提案されている。
In JP-A No. 57-66355 (“On-line method for determining the texture of a steel plate or material properties dependent on the texture °°”), the sound velocity of S-mode and A-mode plate wave ultrasonic waves was measured and the measured values were A method has been proposed to calculate the Lankford value appropriately.

しかしながらこの方法では音速の絶対値を利用するため
薄鋼板の厚さを別に測定しなければならず、その厚さ測
定誤差に基づく誤差を排除することはできない。またこ
の方法では板波超音波を発受信するにあたって水、油、
その他の液体等の音響結合媒質を必要としており、この
ためどうしても薄鋼板を汚す等の問題を避けることはで
きない。
However, in this method, since the absolute value of the sound velocity is used, the thickness of the thin steel plate must be measured separately, and errors due to errors in the thickness measurement cannot be eliminated. In addition, in this method, water, oil,
Another acoustic coupling medium such as a liquid is required, and therefore problems such as staining the thin steel plate cannot be avoided.

音速の絶対値を利用することによる誤差を排除するため
に、音速の比を利用する方法も提案されている(平尾他
“超音波による冷延鋼板集合組織の非破壊評価″゛、日
本機械学界会論文講演抜粋、308A、論文陥、87−
1211八、昭和63年3月30日第65期通常総合講
演会において講演。ならびに肥旧rao、et al、
ど旧trasonic monitoring oft
exture in cold−rolled 5te
el 5heets”、Journalof Acou
stical 5ociety of America
、Vol、84(2)。
In order to eliminate the error caused by using the absolute value of sound speed, a method using the ratio of sound speeds has also been proposed (Hirao et al. "Non-destructive evaluation of texture of cold-rolled steel sheets by ultrasonic waves", Japan Society of Mechanical Engineers). Excerpt from conference paper lecture, 308A, paper detail, 87-
12118, gave a lecture at the 65th Ordinary General Lecture Meeting on March 30, 1986. and Hikyu rao, et al.
old trasonic monitoring of
exture in cold-rolled 5te
el 5heets”, Journalof Acou
5ociety of America
, Vol. 84(2).

pp667−672(1988))。そこでは薄鋼板の
厚さ方向に伝播する縦波と2種類の横波、ならびに薄鋼
板の圧延面内を伝播し偏波方向も圧延面内にあるS H
Oモード板波等の音速を測定し、これらの音速の比より
引張試験をすることなくランクフォード値を推定したり
、集合組織を表わす方位分布関数の係数−,。O,w、
□。、 Lao (これらの係数の意味については後に
説明する)を算出しこれにより材料特性を推定する方法
を提案している。
pp667-672 (1988)). There, there are two types of transverse waves: a longitudinal wave that propagates in the thickness direction of the thin steel plate, and S H that propagates within the rolling plane of the thin steel plate and whose polarization direction is also within the rolling plane.
Measure the sound speed of O-mode plate waves, etc., and estimate the Lankford value from the ratio of these sound speeds without performing a tensile test. O,w,
□. , Lao (the meanings of these coefficients will be explained later) and have proposed a method for estimating material properties.

しかしながらこの方法でも前述の方法と同様に音響結合
媒質を必要としており薄鋼板を汚す等の問題を避けるこ
とはできない。またSHOモード板波の音速を測定する
にあたって、探触子を薄鋼板の圧延方向からそれに直角
の方向まで5°ずつ回転させつつ測定しなければならず
、このため測定数が多くなって時間がかかるという問題
を有している。またこうして得られた測定値をフーリエ
解析しなければならない等の手順が必要という問題も有
している。
However, like the above-mentioned method, this method also requires an acoustic coupling medium and cannot avoid problems such as staining the thin steel plate. In addition, when measuring the sound velocity of SHO mode plate waves, the probe must be rotated 5 degrees from the rolling direction of the thin steel plate to the direction perpendicular to it, which increases the number of measurements and takes time. This problem arises. Another problem is that procedures such as Fourier analysis of the measured values thus obtained are required.

〔発明が解決すべき課題〕[Problem to be solved by the invention]

本発明は上記問題点に鑑み音響結合媒質を必要としない
電磁超音波法を利用する完全に非破壊的で且つ薄鋼板を
汚すことのない冷延薄鋼板の極点図、ヤング率、ランク
フォード値の測定方法及び装置を提供することを目的と
する。
In view of the above problems, the present invention utilizes an electromagnetic ultrasonic method that does not require an acoustic coupling medium, and is completely non-destructive and does not stain the thin steel sheet. The purpose of this invention is to provide a method and device for measuring.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は冷延薄鋼板の内部を圧延方向と平行な方向に振
動しつつ厚さ方向に伝播する横波超音波の速度と厚さ方
向に伝播する縦波超音波の速度との比の値Kt、ならび
に該冷延薄鋼板の内部を圧延方向と直角をなす方向に振
動しつつ厚さ方向に伝播する横波超音波の速度と厚さ方
向に伝播する該縦波超音波の速度との比の値K l 、
ならびに該冷延薄鋼板の内部を圧延方向と45°をなす
方向に伝播するS HO板波超音波の速度と圧延方向と
平行な方向あるいは直角をなす方向に伝播するSHO板
波超音波の速度との比の値に3、ならびに鉄単結晶の既
知の3個の弾性係数の値C0□。
The present invention provides a value Kt of the ratio between the velocity of a transverse ultrasonic wave that propagates in the thickness direction while vibrating inside a cold rolled thin steel sheet in a direction parallel to the rolling direction and the velocity of a longitudinal ultrasonic wave that propagates in the thickness direction. , and the ratio of the speed of the transverse ultrasonic wave that propagates in the thickness direction while vibrating inside the cold rolled thin steel sheet in a direction perpendicular to the rolling direction and the speed of the longitudinal ultrasonic wave that propagates in the thickness direction. value K l ,
Also, the speed of the SHO plate wave ultrasonic wave propagating inside the cold rolled thin steel sheet in a direction at 45° to the rolling direction, and the speed of the SHO plate wave ultrasonic wave propagating in a direction parallel to or perpendicular to the rolling direction. 3, as well as the value of the three known elastic modulus of iron single crystal C0□.

”+2 + C012、C044から冷延薄鋼板の極点
図、ヤング率、ランクフォード値を得るための冷延薄鋼
板の材質の測定方法であり、更にまたSHO板波発生用
電磁超音波探触子と、第1のSHO板波検出用電磁超音
波探触子と、第2のSHO板波検出用電磁超音波探触子
を直線上に配置したものを一組とするSHO板波超音波
の音速測定装置2組を前記第1゜2のSHO板波検出用
電磁超音波探触子の中間にて45°の角度を保持して交
差させ、前記交差点に1個の定在波用電磁超音波探触子
を配置したことを特徴とする冷延薄鋼板中を伝播する超
音波速度の測定装置である。
"+2 + A method for measuring the material of a cold-rolled thin steel sheet to obtain the pole figure, Young's modulus, and Lankford value of the cold-rolled thin steel sheet from C012 and C044, and also an electromagnetic ultrasonic probe for generating SHO plate waves. and a SHO plate wave ultrasound probe in which a first SHO plate wave detection electromagnetic ultrasound probe and a second SHO plate wave detection electromagnetic ultrasound probe are arranged in a straight line. Two sets of sound velocity measuring devices are crossed at the middle of the 1st and 2nd SHO plate wave detection electromagnetic ultrasonic probes while maintaining an angle of 45°, and one standing wave electromagnetic ultrasonic probe is placed at the intersection. This is an apparatus for measuring the speed of ultrasonic waves propagating in a cold-rolled thin steel sheet, characterized by having a sonic probe arranged therein.

〔作 用〕[For production]

まず理論的背景を述べる。冷延薄鋼板は多くの微細な鉄
単結晶(立方晶)から成る多結晶体であるが巨視的に見
た場合は異方性を有する連続体とみてさしつかえない。
First, I will explain the theoretical background. A cold-rolled thin steel sheet is a polycrystalline body consisting of many fine iron single crystals (cubic crystals), but when viewed macroscopically, it can be regarded as a continuum with anisotropy.

連続体とみなされた薄鋼板は近似的には3枚の互いに直
交する面(1,圧延面(xy面)、2.圧延面と垂直で
圧延方向と平行な面(XZ面)、3.圧延面と垂直で圧
延方向に垂直な面(yz面))に関して面対称な物理的
性質を有すると考えられている。ただしXは圧延方向で
あり薄鋼板の長手方向に相当する。yはこれに直角な方
向であり薄鋼板の中方向に相当する。ZはXとyの両方
に垂直な方向であり薄鋼板の面に垂直な方向に相当する
。このような場合は薄鋼板の弾性係数行列は9個の異な
る弾性係数を有しそれは次のように表わせることは既に
知られている。
A thin steel plate regarded as a continuous body has approximately three mutually orthogonal planes (1. rolling plane (xy plane); 2. plane perpendicular to the rolling plane and parallel to the rolling direction (XZ plane); 3. It is considered to have physical properties that are plane symmetrical with respect to a plane (yz plane) perpendicular to the rolling surface and perpendicular to the rolling direction. However, X is the rolling direction and corresponds to the longitudinal direction of the thin steel sheet. y is a direction perpendicular to this and corresponds to the middle direction of the thin steel plate. Z is a direction perpendicular to both X and y, and corresponds to a direction perpendicular to the surface of the thin steel plate. In such a case, it is already known that the elastic coefficient matrix of the thin steel plate has nine different elastic coefficients, which can be expressed as follows.

Z、□による級数展開で表わせることも知られている。It is also known that it can be expressed by series expansion using Z and □.

H(ξ、ψ、φ)= ここではC1jは薄鋼板の9個の異なる弾性係数を表わ
す。
H(ξ, ψ, φ)= where C1j represents nine different elastic moduli of the thin steel plate.

一方多結晶体を構成する多くの単結晶のうちで薄鋼板に
たいしである一定の方向(θ、ψ、φ)を有するものの
割合は結晶方位分布関数W(ξ。
On the other hand, among the many single crystals that make up a polycrystalline body, the proportion of single crystals that have a certain direction (θ, ψ, φ) relative to the thin steel sheet is determined by the crystal orientation distribution function W(ξ).

ψ、φ)(以後C0DFと称する)で表わせることは知
られている(R,J、Roe、”Descriptio
n of crystalliteorientati
on in polycrystalline mat
erials”。
ψ, φ) (hereinafter referred to as C0DF) is known to be expressed as (R, J, Roe, “Descriptio
n of crystallite orientati
on in polycrystalline mat
erials”.

Journal of Applied Physic
s、Vol、36.pp2024−2031(1965
)) 、但しξ= cos θである。W(ξ、ψ。
Journal of Applied Physics
s, Vol, 36. pp2024-2031 (1965
)), where ξ= cos θ. W(ξ, ψ.

φ)は次のように一般化されたルジャンドル関数ここで
θ、ψ、φは単結晶と薄鋼板との関係を表わすために用
いられるオイラー角である。またξ=cos θである
。またW(ξ、ψ、φ)は薄鋼板にたいしである一定の
方向(θ、ψ、φ)を有する単結晶の量の割合を表わす
関数であり結晶方位分布関数と呼ばれる。W L wr
 mはC0DF係数である。
φ) is a generalized Legendre function as follows, where θ, ψ, and φ are Euler angles used to express the relationship between the single crystal and the thin steel plate. Also, ξ=cos θ. Further, W (ξ, ψ, φ) is a function representing the proportion of single crystals having a certain direction (θ, ψ, φ) in the thin steel sheet, and is called a crystal orientation distribution function. W L wr
m is a C0DF coefficient.

このうち−、。。、−4□。、−44゜が多結晶体の弾
性的性質と関連していることが知られている。
Of these... . , -4□. , -44° is known to be related to the elastic properties of polycrystalline materials.

さて冷延薄鋼板の場合は既述のように9個の異なる弾性
係数Cijを有するがこれらは6個の独立な変数、すな
わち鉄単結晶の3個の弾性係数C’ll+CO1□+C
012、C044と3個のCODF係数賀、。。5−4
□。
Now, in the case of a cold-rolled thin steel sheet, as mentioned above, there are nine different elastic coefficients Cij, but these are determined by six independent variables, namely the three elastic coefficients of iron single crystal C'll+CO1□+C
012, C044 and three CODF coefficients. . 5-4
□.

、−44゜によって次式のように表わされることが知ら
れている(C,M、5ayers+’UItrason
ic velocities 1nanisotrop
ic polycrystalline aggreg
ates 。
, -44° is known to be expressed as follows (C, M, 5ayers + 'UItrason
ic velocities 1nanisotrop
ic polycrystalline aggreg
ates.

Journal of Physics 15、pp2157 2167(i982))。Journal of Physics 15, pp2157 2167 (i982)).

ただし、 G =00゜ C’+z  2C012、C044である。however, G =00° C'+z 2C012, C044.

5/2)”” 1゜。] 5/2) ’ ” 1゜。] 70)”” −44゜] 5/2) ’ ” −4,。] 5/2)”” W4!。] 70)”” −44゜] また匈、。O+ W4□。、−44゜の値を次式に代入
することにより近似的な極点図を作れることも知られて
いる。
5/2)”” 1°. ] 5/2) '" 1°.] 70) "" -44°] 5/2) '" -4,. ] 5/2)”” W4! . ] 70)”” -44°] Also,. O+ W4□. It is also known that an approximate pole figure can be created by substituting the values of , -44° into the following equation.

4πq(ζ、η)=1+4πP ((3/8.I’2)
 (35ζ4−30ζ”+3)L。。
4πq(ζ, η)=1+4πP ((3/8.I'2)
(35ζ4-30ζ”+3)L.

+(9/2) (5) ’ ” (1−ζ”) [1−
(7/6) (1−ζ”)]ti4□。cos2η+ 
(3/8) (35ν″(1−3g) 2H44゜co
s4η)       (4)ただし  P−−4π/
3  (111)  極点図P=2π    (100
)  極点図P=−π/2   (110)  極点図
η、ξは極点図を描くための球面と薄鋼板との関係を示
す角度である。
+(9/2) (5) ' ” (1-ζ”) [1-
(7/6) (1-ζ”)]ti4□.cos2η+
(3/8) (35ν'' (1-3g) 2H44゜co
s4η) (4) However, P−−4π/
3 (111) Pole figure P=2π (100
) Pole figure P=-π/2 (110) Pole figure η and ξ are angles indicating the relationship between the spherical surface and the thin steel plate for drawing the pole figure.

本発明において使用する各種のモードの超音波を第1図
に示す。太い矢印は超音波の伝播方向を示し、細い矢印
は超音波の振動方向を示す。これらの矢印は薄鋼板の外
側に描かれているがこれは便宜上であり実際の超音波は
全て薄鋼板内を伝播するものであることは言うまでもな
い。■!、は板厚方向に伝播する縦波の音速、■2Xは
圧延方向に偏向し板厚方向に伝播する横波の音速、■8
.は圧延方向と直角の方向に偏向し板厚方向に伝播する
横波の音速を表わす。V 5Ho(0’ )は圧延方向
と直角の方向に偏向し圧延面内を圧延方向に伝播するS
HOモード板波の音速、vsg。(90°)は圧延方向
に偏向し圧延面内を圧延方向と直角の方法に伝播するS
HOモード板波の音速、VSHO(45°)は圧延面内
を圧延方向と45°の方向に伝播するSHOモード板波
の音速を表わす。それぞれ次式で表わされることは既に
知られている。
FIG. 1 shows various modes of ultrasonic waves used in the present invention. Thick arrows indicate the propagation direction of the ultrasound waves, and thin arrows indicate the vibration direction of the ultrasound waves. Although these arrows are drawn on the outside of the thin steel plate, this is for convenience, and it goes without saying that all actual ultrasonic waves propagate within the thin steel plate. ■! , is the sound velocity of a longitudinal wave propagating in the plate thickness direction, ■2X is the sound velocity of a transverse wave deflected in the rolling direction and propagating in the plate thickness direction, ■8
.. represents the sound speed of a transverse wave that is deflected in a direction perpendicular to the rolling direction and propagates in the thickness direction. V5Ho(0') is S which is deflected in the direction perpendicular to the rolling direction and propagates in the rolling direction within the rolling surface.
Sound speed of HO mode plate wave, vsg. (90°) is S deflected in the rolling direction and propagated within the rolling plane in a direction perpendicular to the rolling direction.
The sound speed of the HO mode plate wave, VSHO (45°), represents the sound speed of the SHO mode plate wave propagating within the rolling surface in a direction 45° to the rolling direction. It is already known that each is expressed by the following formula.

9 ■z% = Cxz              
(5)ρV、−=C44(6) ρV、、” =css              (
7)ρV 11.” =ρVsoo”(0°)=C−6
(8)ρVyX””ρV3MO”(90°)=CI、6
     (9)β ρVs+o”(45’)=Cba(1+     )2
(10)−C&&  ) /c、。
9 ■z% = Cxz
(5) ρV, -=C44 (6) ρV,," = css (
7) ρV 11. "=ρVsoo"(0°)=C-6
(8) ρVyX""ρV3MO" (90°) = CI, 6
(9) β ρVs+o''(45')=Cba(1+)2
(10)-C&& ) /c,.

ρ:薄鋼板の密度 これらのうちVi、1o(45°)は最近発見されたち
のである(R,B、Thompson et al、+
”Re1atfve anisotropyof  p
lane waves  and  guided m
odes  in  thinorthorhombi
c plates’、Llltraonics 25.
pp133−137(1987)) 、 VsHo(0
″’ ) =Vsoo(90’ )であるので実際には
どちらか一方のみを使用すればよい。
ρ: Density of thin steel plate Among these, Vi, 1o (45°) was recently discovered (R, B, Thompson et al, +
”Re1atfve anisotropyof p
lane waves and guided m
odes in thinorthorhombi
c plates', Llltraonics 25.
pp133-137 (1987)), VsHo(0
″′)=Vsoo(90′), so in reality, only one of them needs to be used.

今後は説明の便宜上VS)10(0°)の方を使用する
ことにする。
From now on, for convenience of explanation, VS) 10 (0°) will be used.

上述の(1) −(10)式はこれまでに知られている
ものである。発明者はこれらの式を理論的に検討し、そ
の結果、これまで知られていなかった新たな方程式を見
いだし、それを利用した新方法を発明したものである。
The above equations (1) to (10) are known so far. The inventor theoretically studied these equations, discovered a new equation that was unknown until now, and invented a new method using it.

次にこれを説明する。This will be explained next.

まずV!y(!l:V、の音速比をに1 とすると(3
)。
First of all, V! If the sound speed ratio of y(!l:V) is 1, then (3
).

(5)、(6)式より次式が得られる。The following equation is obtained from equations (5) and (6).

(11) −(13)式中の鉄単結晶の3個の弾性係数
C0□、Co1□+C012、C044に既知の値を代
入すると式(11) 、 (12)はW4゜。とW4!
。に関する2元連立1次方程式となるためこれを解くこ
とができる。このようにして得られたW4゜。とW4□
。とを式(13)に代入すると非常に複雑な式が出来る
が結局この式もW44゜に関する1次方程式となり解く
ことができることを発明者は見いだしたわけである。
By substituting known values for the three elastic coefficients C0□, Co1□+C012, and C044 of the iron single crystal in equations (11)-(13), equations (11) and (12) yield W4°. and W4!
. This can be solved because it becomes a two-dimensional simultaneous linear equation for . W4° obtained in this way. and W4□
. By substituting .

結局それぞれの解は次ぎのようになる。In the end, each solution is as follows.

(14) 、 (15)式は既に知られていたが((:
、 M、 5ayersand  D、R,八l1en
+”The  1nfluence  of  5tr
ess  on  theprincipal pol
arization directions of u
ltrasonicshear waves in t
extured 5teel plates’、Jou
rnalof Physics D 17.pp139
9−1413(1984))、(16)式は発明者によ
って初めて見いだされたものである。
Equations (14) and (15) were already known ((:
, M, 5ayersand D,R, 8l1en
+”The 1nfluence of 5tr
ess on the principal pol
arization directions of u
ltrasonicshear waves in t
Extured 5teel plates', Jou
rnalof Physics D 17. pp139
9-1413 (1984)), formula (16) was first discovered by the inventor.

(14) 、 (15) 、 (16)式によれば既に
知られている鉄単結晶の3個の弾性係数の値(C’ l
I= 237GPa 。
According to equations (14), (15), and (16), the three already known elastic modulus values (C' l
I=237GPa.

C’+2=141GPa 、 C’na=116GPa
)を利用すれば音速比に、、に、、K3を測定するのみ
でW4゜。、W4□。。
C'+2=141GPa, C'na=116GPa
), the sound speed ratio becomes W4° by simply measuring K3. , W4□. .

−44゜を全て計算により得ることができる。−4゜。-44° can all be obtained by calculation. -4°.

。 −4□。、W44゜が得られればこれを(3)式に代入
することにより薄鋼板の9個の弾性係数Cf jを得る
ことが出来る。
. -4□. , W44° are obtained, nine elastic moduli Cf j of the thin steel plate can be obtained by substituting them into equation (3).

また圧延方向と角度αをなす方向の圧延面内における薄
鋼板のヤング率E(α)は次式で表わせることはよく知
られている。
Further, it is well known that the Young's modulus E(α) of a thin steel sheet in a rolling plane in a direction forming an angle α with the rolling direction can be expressed by the following equation.

1 /E(cx ) =SzzSin’ cx +S目
CO3’ tx +C5bb’+2S+z)sin”α
cos”cxただし5z=(C2□CIj  CzsC
z3)S(I7) Szz−(CIIC33Cl5CI 3)SSI2= 
 (Cl:+Czs  ClzC3ff)SS6a=1
/C66 S = 1 / (Cl ICt□Css + 2C+
 zczzc+ 3C+ +Czz”−C2□CIj”
   Cコ3CI2”)(17)式に上記の方法で得ら
れた薄鋼板の9個の弾性係数Ci jを代入するとヤン
グ率E(α)を計算により得ることが出来るわけである
1 /E(cx) =SzzSin' cx +Sth CO3' tx +C5bb'+2S+z) sin"α
cos”cx but 5z=(C2□CIj CzsC
z3)S(I7) Szz-(CIIC33Cl5CI3)SSI2=
(Cl:+Czs ClzC3ff) SS6a=1
/C66 S = 1 / (Cl ICt□Css + 2C+
zczzc+ 3C+ +Czz"-C2□CIj"
By substituting the nine elastic coefficients Ci j of the thin steel plate obtained by the above method into the equation (17), the Young's modulus E(α) can be obtained by calculation.

次ぎに音速比に、、に、、K3を測定する方法について
説明する。まずに、とに2を測定する方法について説明
する。
Next, a method for measuring the sound speed ratio, , , , K3 will be explained. First, a method for measuring Toni 2 will be explained.

厚さが1鵬前後あるいはそれ以下の薄鋼板の中を厚さ方
向に伝播する超音波の音速V 2m + V fX r
V zyを測定するのに電磁超音波を利用した定在波法
(“厚み共振法”°とも呼ばれる)が適していることは
既に知られている(S、A、Filimonov、B、
A。
The sound speed of an ultrasonic wave propagating in the thickness direction in a thin steel plate with a thickness of about 1 mm or less V 2 m + V fX r
It is already known that the standing wave method (also called "thickness resonance method") using electromagnetic ultrasound is suitable for measuring V zy (S, A, Filimonov, B,
A.

Budenkov、and N、A、Glukhov、
”Ultrasonic contact−Iess 
resonance testing method”
、5oviet journalof Noncles
tructive Te5tir+g、No、1.pp
102−104(1971))。
Budenkov, and N.A., Glukhov.
”Ultrasonic contact-Iess
resonance testing method”
, 5oviet journal of Nocles
tructive Te5tir+g, No, 1. pp
102-104 (1971)).

第2図にこの定在波法のための電磁超音波探触子の一例
を示す。第2図(a)は正面から見た断面図である。こ
の電磁超音波探触子は回転対称構造を有する。第2図(
b)は上から見たものでありこの電磁超音波探触子によ
って生ずる渦電流、電磁力等を示している。第2図(a
)に示す偏平な円形コイル14に高周波電流を流すと薄
鋼板16中には渦電流Iφが誘起する。一方永久磁石1
2によって薄鋼板16中に磁界18が生じている。磁界
18は薄鋼板16の表面に垂直な成分Bzと、薄鋼板1
6の表面に平行且つ放射状に分布する成分Brを有して
いる。IφとBzの相互作用により薄鋼板16の表面に
平行且つ放射状に分布する電磁力Frが生じる。またI
φとBrの相互作用により薄鋼板16の表面に垂直な電
磁力Fzが生じる。電磁力Frは圧延方向に平行な成分
Fxと圧延方向に垂直な成分Fyに分けることが出来る
。Fzにより板厚方向に伝播する縦波■2□が発生し、
Fxにより圧延方向に偏向し板厚方向に伝播する横波V
。が発生し、Fyにより圧延方向と直角の方向に偏向し
板厚方向に伝播する横波V zyが発生する。
Figure 2 shows an example of an electromagnetic ultrasonic probe for this standing wave method. FIG. 2(a) is a sectional view seen from the front. This electromagnetic ultrasound probe has a rotationally symmetrical structure. Figure 2 (
b) is a view from above and shows the eddy current, electromagnetic force, etc. generated by this electromagnetic ultrasonic probe. Figure 2 (a
) When a high frequency current is passed through the flat circular coil 14 shown in ), an eddy current Iφ is induced in the thin steel plate 16. On the other hand, permanent magnet 1
2, a magnetic field 18 is generated in the thin steel plate 16. The magnetic field 18 has a component Bz perpendicular to the surface of the thin steel plate 16 and a component Bz perpendicular to the surface of the thin steel plate 1
It has a component Br distributed radially and parallel to the surface of 6. The interaction between Iφ and Bz generates an electromagnetic force Fr that is distributed parallel and radially to the surface of the thin steel plate 16. Also I
An electromagnetic force Fz perpendicular to the surface of the thin steel plate 16 is generated due to the interaction between φ and Br. The electromagnetic force Fr can be divided into a component Fx parallel to the rolling direction and a component Fy perpendicular to the rolling direction. Fz generates a longitudinal wave ■2□ that propagates in the thickness direction,
Transverse wave V deflected in the rolling direction by Fx and propagated in the plate thickness direction
. is generated, and a transverse wave V zy is generated which is deflected by Fy in a direction perpendicular to the rolling direction and propagates in the plate thickness direction.

こうして発生した超音波は逆の物理的過程で検出される
。さてコイルに流す高周波電流の周波数が次式を満足す
る場合に薄鋼板の中にその厚さ方向に定在波が生じるこ
とは知られている。
The ultrasonic waves thus generated are detected by the opposite physical process. It is known that standing waves are generated in the thickness direction of a thin steel plate when the frequency of the high-frequency current flowing through the coil satisfies the following equation.

コイルに流す高周波電流の周波数を掃引しながら上記の
ような過程に従って超音波を発生させ且つ検出し、検出
された超音波が極大となるときの周波数を記録すること
により(18)式で表わされる周波数を得ることができ
る。
By sweeping the frequency of the high-frequency current flowing through the coil, generating and detecting an ultrasonic wave according to the process described above, and recording the frequency at which the detected ultrasonic wave reaches its maximum, it is expressed by equation (18). frequency can be obtained.

音速に、、に、は(18)式を利用することにより次ぎ
のように求められる。
The sound speed, , and can be obtained as follows by using equation (18).

Vzx        (ldlm) 1  xtlI
       n  1  zzm(19) 、 (2
0)式によれば音速比は周波数の比に変換されており、
薄鋼板の厚さdは消去され測定する必要のないことがわ
かる。広い薄鋼板の厚さdを測定するにはX線等による
測定が必要であるため、これが不要であるのは実用上非
常に好ましいことである。
Vzx (ldlm) 1 xtlI
n 1 zzm (19) , (2
According to equation 0), the sound speed ratio is converted to a frequency ratio,
It can be seen that the thickness d of the thin steel plate is erased and does not need to be measured. In order to measure the thickness d of a wide thin steel plate, measurement using X-rays or the like is required, so it is very preferable from a practical point of view that this is not necessary.

次ぎに音速比に3を測定する方法について説明する。S
HOモードの板波を発生、検出するための電磁超音波探
触子の一例を第3図に示すがこれについてもよく知られ
ている。すなわち偏平角形コイル24に高周波数パルス
電流を流すと薄鋼板中に渦電流が誘起する。一方周期的
に並び永久磁石20により薄鋼板中に周期的に分布する
磁界が生じている。渦電流とこの磁界の相互作用により
周期的に分布する力が生じこれによりSHO板波が発生
する。SHO板波の検出は発生の逆の過程によりおこな
われる。これを用いてS HO板波の音速を測定する装
置についても種々考えられるが、第4図にその一例を示
すような装置が考えられる。
Next, a method for measuring the sound speed ratio of 3 will be explained. S
An example of an electromagnetic ultrasonic probe for generating and detecting a plate wave in the HO mode is shown in FIG. 3, and is also well known. That is, when a high frequency pulse current is passed through the rectangular coil 24, an eddy current is induced in the thin steel plate. On the other hand, the periodically arranged permanent magnets 20 generate a periodically distributed magnetic field in the thin steel plate. The interaction of eddy currents and this magnetic field creates a periodically distributed force that generates SHO plate waves. Detection of SHO plate waves is performed by the reverse process of generation. Various devices can be considered for measuring the sound velocity of the SHO plate wave using this, and one example of such a device is shown in FIG.

すなわち同一構造の探触子を3個使用する。発生用探触
子は1個でこれをTI、検出用探触子は2個でこれらを
R1,R2とする。Tl 、R1。
That is, three probes with the same structure are used. There is one generation probe, which is called TI, and two detection probes, which are called R1 and R2. Tl, R1.

R2はこの順番に並べられて剛体ケースに収められ、そ
れらの間隔は一定に保たれている。T1により発生した
SHO板波は伝播していきR1によたまず検出され次に
時間を後にR2により検出される。R1とR2の間隔を
DとするとSHO板波の音速は次ぎのように表わせる。
R2 are arranged in this order and housed in a rigid case, and the spacing between them is kept constant. The SHO plate wave generated by T1 propagates and is first detected by R1 and then detected by R2 after some time. If the distance between R1 and R2 is D, the sound speed of the SHO plate wave can be expressed as follows.

SHO板波の進行方向が圧延方向に一致している場合 ■、□。(0°)=D/L、       (21)S
HO板波の進行方向が圧延方向と45°をなす場合 V !IHO(45°) −D/145(22)但し、
tO,t4sはSHO板波の進行方向が圧延方向とそれ
ぞれ0° 、45°をなす場合に距離りを伝播するに要
する時間である。
■, □ when the traveling direction of the SHO plate waves coincides with the rolling direction. (0°)=D/L, (21)S
When the traveling direction of the HO plate wave is at 45° with the rolling direction, V! IHO (45°) -D/145 (22) However,
tO and t4s are the times required to propagate the distance when the traveling direction of the SHO plate wave forms an angle of 0° and 45° with the rolling direction, respectively.

音速比に3は(21) 、 (22)式を利用すること
によりもとめられる。
The sound speed ratio of 3 can be obtained by using equations (21) and (22).

K 3 = Vs、lo (45°)/Vsuo(0°
) = to/ tas  (23)すなわち音速比に
、は伝播時間の逆比に変換されており、また伝播距離り
は消去され測定する必要のないことがわかる。これが不
要であるのは実用上非常に好ましいことである。
K 3 = Vs,lo (45°)/Vsuo(0°
) = to/tas (23) In other words, the sound speed ratio is converted to the inverse ratio of the propagation time, and it can be seen that the propagation distance is eliminated and does not need to be measured. The fact that this is not necessary is very preferable from a practical point of view.

さてこのようにして音速比に+  、Kz  、に*が
測定できることがわかったが、さらにこれらを同時に測
定できれば、測定の迅速化が計られ実用上好ましいこと
である。このための装置の一例を第5図に示す。すなわ
ち第4図に示すものと同等のものを2組(Tl 、 I
?1 、 R2ならびにTI’  、R1’  、R2
’ )準備しこれらが互いに45°をなすように固定す
る。さらにその交点に第2図(a)に示すものと同じ定
在波用探触子50を固定する。このように第5図に示す
探触子セットにより音速比に1Kz  、に’rが同時
に測定できるため実用上非常に好ましいことである。
Now, it has been found that it is possible to measure +, Kz, and * in the sound speed ratio in this way, but if these can be measured simultaneously, the measurement can be made faster, which is practically preferable. An example of a device for this purpose is shown in FIG. In other words, two sets (Tl, I
? 1, R2 and TI', R1', R2
') Prepare and fix them so that they form a 45° angle to each other. Further, a standing wave probe 50 similar to that shown in FIG. 2(a) is fixed at the intersection. In this way, the probe set shown in FIG. 5 allows the sound speed ratio to be measured at the same time as 1 Kz and 'r, which is very preferable in practice.

このようにして得られた音速比に1 、Kz  、に3
と既知の鉄単結晶の弾性係数C’z + C’+z 、
 C04aにより薄鋼板の9個の弾性係数Ci j・、
ならびにヤング率を得ることができ、近似的な極点図も
描けることは既に説明したとおりである。
The sound speed ratio obtained in this way is 1, Kz is 3
and the known elastic modulus of iron single crystal C'z + C'+z,
Nine elastic modulus Ci j・, of thin steel plate by C04a
As already explained, Young's modulus can also be obtained, and an approximate pole figure can also be drawn.

〔実施例] 一枚の薄鋼板について実際に測定したところに、 =0
.5292. K2 =0.5409. K、 =0.
9643が得られた。これらの測定値と既知の鉄単結晶
の弾性係数の値Co+ + =237GPa 、 C”
1t=141GPa 、 C044=116GPaを(
14) 、 (15) 、 (16)弐に代入すると、
Lo。
[Example] When actually measured on one thin steel plate, =0
.. 5292. K2 =0.5409. K, =0.
9643 were obtained. These measured values and the known value of the elastic modulus of iron single crystal Co++ = 237 GPa, C''
1t=141GPa, C044=116GPa (
Substituting into 14), (15), and (16), we get
Lo.

=−3,94xlO−3、Lio=−1,36xlO−
3、W44゜=−1,83X10−3が得られた。これ
らの値を(4)式に代入することにより得られた超音波
極点図を第6図(a)に示す。また比較のためにX線回
折法により得られた極点図を第6図(b)に示す。
=-3,94xlO-3, Lio=-1,36xlO-
3.W44°=-1,83X10-3 was obtained. The ultrasonic pole figure obtained by substituting these values into equation (4) is shown in FIG. 6(a). For comparison, a pole figure obtained by X-ray diffraction is shown in FIG. 6(b).

両者は細部まで一致していないが、大体において良く一
致していることがわかる。すなわち本発明の超音波法に
より非破壊的に、且つ迅速に極点図を描け、これにより
集合Mi織を推定できることがわかる。
It can be seen that although the two do not match in detail, they generally match well. That is, it can be seen that the ultrasonic method of the present invention allows polar figures to be drawn non-destructively and quickly, thereby making it possible to estimate the aggregated Mi weave.

第7図には本発明の超音波法により測定された異なる7
枚の薄鋼板のヤング率の圧延面内における平均値(π=
 [E(0’ ) + 2 E(45°)十E (90
’ ) ]/4)と引張試験によって測定されたランク
フォード値(r値)の圧延面内における平均値(T= 
[r (0°) + 2 r (45°)+r(90°
)]/4)との関係を示している。■の値が大であるほ
ど高いプレス成形性を有することがわかっているため本
発明の超音波法によりプレス成形性を非破壊的に測定で
きることがわかる。
Figure 7 shows different 7 types measured by the ultrasonic method of the present invention.
Average value of Young's modulus of two thin steel sheets in the rolling plane (π=
[E (0') + 2 E (45°) 10 E (90
)]/4) and the average value (T=
[r (0°) + 2 r (45°) + r (90°
)]/4). Since it is known that the larger the value of (2), the higher the press formability, it is understood that the press formability can be measured non-destructively by the ultrasonic method of the present invention.

また第8図には本発明の超音波法により測定されたヤン
グ率の圧延面内におる異方性 (ΔE=[E(0°)−2B(45°) +−E (9
0’ ) ]/4)と引張試験によって測定されたラン
クフォード値(r値)の圧延面内における異方性(Δr
=[r(0°) −2r(45°) +r (90’ 
) ]/4)との関係を示している。Δrの値が大であ
るほどプレス成形の際に生ずるいわゆる“耳゛が発生し
やすいことがわかっているため本発明の超音波法により
”耳゛°の発生を非破壊的に予測できることがわかる。
FIG. 8 also shows the anisotropy of Young's modulus within the rolling plane measured by the ultrasonic method of the present invention (ΔE=[E(0°)−2B(45°)+−E(9
0' ) ]/4) and the anisotropy (Δr
= [r (0°) -2r (45°) +r (90'
) ]/4). It is known that the larger the value of Δr, the more likely it is that so-called "ears" will occur during press molding, so it can be seen that the ultrasonic method of the present invention can non-destructively predict the occurrence of "ears". .

第7.8図によれば本発明の超音波法によりランクフォ
ード値の圧延面内における平均値ならびにランクフォー
ド値の圧延面内における異方性を非破壊的に、且つ迅速
に推定できることがわかる。
According to Fig. 7.8, it can be seen that the average value of the Lankford value within the rolling plane and the anisotropy of the Lankford value within the rolling plane can be estimated nondestructively and quickly by the ultrasonic method of the present invention. .

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明では音響結合媒質を必要としな
い電磁超音波法を利用するため完全に非破壊的な測定で
あり、且つ薄鋼板を汚すことがな(、また音速の絶対値
ではなく音速比を利用するため測定誤差が小さい。さら
に単に3個の線型代数方程式を解(たけで讐、。。、智
、□。、W、4゜が算出でき、これらから極点図を描い
たり、引張試験をすることなくランクフォード値を推定
できるわけである。このように材料特性を非破壊的に、
且つ迅速に測定することができるため薄鋼板の品質管理
、品質保証が有利に達成できるものである。
As mentioned above, the present invention uses an electromagnetic ultrasonic method that does not require an acoustic coupling medium, so it is a completely non-destructive measurement and does not contaminate the thin steel plate (also, it does not measure the absolute value of the sound velocity). Since the sound speed ratio is used, the measurement error is small.Furthermore, it is possible to simply solve three linear algebraic equations (Takede,..., Satoshi, □., W, 4°, and draw a pole figure from these. The Lankford value can be estimated without performing a tensile test.In this way, material properties can be determined non-destructively.
In addition, since it can be measured quickly, quality control and quality assurance of thin steel sheets can be advantageously achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において使用する各種のモードの超音波
の伝播方向と振動方向を示す図、第2図は薄鋼板の厚さ
方向に伝播する縦波超音波と2種の横波超音波を発生・
検出するための定在波用電磁超音波探触子を示す図、 第3図はSHOモードの板波超音波を発生・検出するた
めの電磁超音波探触子を示す図、第4図は第3図に示す
電磁超音波探触子を3個使用してSHOモードの板波超
音波の音速を測定する方法を示す図、 第5図は音速比Kl、に2.に3を同時に測定する方法
を示す図、 第6図は本発明の超音波法により得られた極点図とX線
極点図との比較を示す図、 第7図は本発明の超音波法により得られたヤング率の圧
延面内における平均値(T)とr値の圧延面内における
平均値(丁)との関係を示す図、第8図は本発明の超音
波法により得られたヤング率の圧延面内における異方性
(ΔE)とr値の圧延面内における異方性(Δr)との
関係を示す図である。 (Q) (b) 定在波用電磁超音波探触子の一例 基2関 18・・・磁界 本発明において使用する各種のモードの超音波ニ===
=)超音波の伝播方向 超音波の振動方向 Z・・・鋼板面に垂直な方向 SHO板波検出用電磁超音波探触子の一例其3図 24・・・偏平角形コイル SHO板波超音波の音速測定装置の一例第4図 T 音速比に+ 、に2 r K3を同時1こ測定するため
の装置の一例第5図 50・・・定在波用探触子 25[ 「 旧 (b) (Q) 妙 図 基 図 手続補正書(自発) 平成1年S月/g日 特許庁長官 吉 1)文 毅 殿 1、事件の表示 平成1年特許願第29755号 2、発明の名称 冷延薄鋼板の材質の測定法及び冷延薄鋼板中を伝播する
超音波速度の測定装置 3、補正をする者 事件との関係   特許出願人 4、代理人 住所 〒105東京都港区虎ノ門−丁目8番10号5、
補正の対象 (1)明細書の「発明の詳細な説明」の欄(2)明細書
の「図面の簡単な説明」の欄6、補正の内容 (1)明細書中、 ■ 第10頁第4行 「Σ 」をrΣ jと補正する。 1富0 ■ 第24頁第7行〜第8行 「によたまず」を「によりまずjと補正する。 ■ 第26頁第1行 [Ci=’Jを’CtjJと補正する。 ■ 第26頁第10行 ’ −3,94X10−3 JをF −3,94x 1
0−”Jと補正する。 ■ 第26真第10行 ’ −1,36X10−3 Jをr −1,36X10
−’J ト補正する。 ■ 第26頁第11行 ’ −1,83X10−3 Jをr −1,83X 1
O−1Jと補正する。 ■ 第27頁第6行 「丁」を「T1と補正する。 ■ 第27頁第7行 「丁の」をT7の」と補正する。 (2)明細書中、 ■ 第29頁第16行 r (T”) 、を「(〒)1と補正する。
Fig. 1 shows the propagation direction and vibration direction of various modes of ultrasonic waves used in the present invention, and Fig. 2 shows longitudinal ultrasonic waves propagating in the thickness direction of a thin steel plate and two types of transverse ultrasonic waves. occurrence·
Figure 3 is a diagram showing an electromagnetic ultrasound probe for standing waves for detection, Figure 3 is a diagram showing an electromagnetic ultrasound probe for generating and detecting plate wave ultrasound in SHO mode, Figure 4 is a diagram showing an electromagnetic ultrasound probe for generating and detecting plate wave ultrasound in SHO mode. Figure 3 shows a method of measuring the sound speed of SHO mode plate wave ultrasound using three electromagnetic ultrasound probes; Figure 5 shows the sound speed ratio Kl, 2. Figure 6 is a diagram showing a comparison between a pole figure obtained by the ultrasonic method of the present invention and an X-ray pole figure, and Figure 7 is a diagram showing a method for simultaneously measuring Figure 8 shows the relationship between the obtained average value of Young's modulus (T) within the rolling plane and the average value of r value (T) within the rolling plane. FIG. 2 is a diagram showing the relationship between the anisotropy (ΔE) of the ratio in the rolling plane and the anisotropy (Δr) of the r value in the rolling plane. (Q) (b) An example of an electromagnetic ultrasonic probe for standing waves Base 2 Seki 18...Magnetic field Ultrasonic waves of various modes used in the present invention ===
=) Ultrasonic propagation direction Ultrasonic vibration direction Z...Direction perpendicular to the steel plate surface Example of electromagnetic ultrasonic probe for SHO plate wave detection Part 3 Figure 24... Oblate rectangular coil SHO plate wave ultrasound An example of a device for measuring the speed of sound in Fig. 4 T An example of a device for simultaneously measuring the sound speed ratio +, 2 r K3 Fig. 5 50...Standing wave probe 25 ) (Q) Myozu Kizu Procedural Amendment (Spontaneous) Yoshi, Commissioner of the Patent Office, S/g, 1999 1) Moon Takeshi 1, Indication of the case 1999 Patent Application No. 29755 2, Name of the invention Method for measuring the material quality of rolled thin steel sheets and a device for measuring the speed of ultrasonic waves propagating in cold rolled thin steel sheets 3, Relationship with the case of the person making the amendment Patent applicant 4 Address of attorney: 105 Toranomon-chome, Minato-ku, Tokyo No. 8, No. 10, No. 5,
Target of amendment (1) "Detailed description of the invention" column of the specification (2) "Brief explanation of the drawings" column 6 of the specification, contents of the amendment (1) In the description, ■ Page 10 Correct the 4th line "Σ" to rΣ j. 1 wealth 0 ■ Page 24, lines 7 to 8, “Yotamaz” is corrected to “j”. ■ Page 26, line 1 [Ci=’J is corrected to ‘CtjJ.’ ■ No. Page 26, line 10' -3,94X10-3 J to F -3,94x 1
Correct as 0-”J. ■ 26th true 10th line' -1,36X10-3 J to r -1,36X10
-'J Correct. ■ Page 26, line 11' -1,83X10-3 r J -1,83X 1
Corrected as O-1J. ■ Correct "cho" in line 6 of page 27 to "T1." Correct "cho" in line 7 of page 27 to "T7." (2) In the specification, ■ Page 29, line 16 r (T”) is amended to “(〒)1.”

Claims (1)

【特許請求の範囲】 1、冷延薄鋼板の内部を圧延方向と平行な方向に振動し
つつ厚さ方向に伝播する横波超音波の速度V_z_xと
厚さ方向に伝播する縦波超音波の速度V_z_zとの比
の値K_2、ならびに該冷延薄鋼板の内部を圧延方向と
直角をなす方向に振動しつつ厚さ方向に伝播する横波超
音波の速度V_z_yと厚さ方向に伝播する該縦波超音
波の速度V_z_zとの比の値K_1、ならびに該冷延
薄鋼板の内部を圧延方向と45゜をなす方向に伝播する
SHO板波超音波の速度V_S_H_O(45゜)と圧
延方向と平行な方向あるいは直角をなす方向に伝播する
SHO板波超音波の速度V_S_H_O(0゜)あるい
はV_S_H_O(90゜)との比の値K_3を測定し
該K_1、K_2及びK_3の値ならびに鉄単結晶の既
知の3個の弾性係数の値C^0_1_1、C^0_1_
2、C^0_4_4からCODF係数W_4_0_0、
W_4_2_0、W_4_4_0を算出し、冷延薄鋼板
の極点図又はヤング率又はランクフォード値を得ること
を特徴とする冷延薄鋼板の材質の測定法。 2、K_1、K_2及びK_3の値を電磁超音波をもち
いて測定する請求項1記載の冷延薄鋼板の材質の測定法
。 3、SHO板波発生用電磁超音波探触子と第1のSHO
板波検出用電磁超音波探触子と第2のSHO板波検出用
電磁超音波探触子を直線上に配置したものを一組とする
SHO板波超音波の音速測定装置2組を前記第1、2の
SHO板波検出用電磁超音波探触子の中間にて45゜の
角度を保持して交差させ、前記交差点に1個の定在波用
電磁超音波探触子を配置したことを特徴とする冷延薄鋼
板中を伝播する超音波速度の測定装置。
[Claims] 1. Velocity V_z_x of transverse ultrasonic waves propagating in the thickness direction while vibrating in a direction parallel to the rolling direction inside a cold-rolled thin steel plate and velocity of longitudinal ultrasonic waves propagating in the thickness direction The value K_2 of the ratio to V_z_z, the velocity V_z_y of the transverse ultrasonic wave propagating in the thickness direction while vibrating inside the cold rolled thin steel sheet in a direction perpendicular to the rolling direction, and the longitudinal wave propagating in the thickness direction. The ratio K_1 to the ultrasonic velocity V_z_z, and the velocity V_S_H_O (45°) of the SHO plate wave ultrasonic wave propagating inside the cold-rolled thin steel sheet in a direction perpendicular to the rolling direction and parallel to the rolling direction. The value of the ratio K_3 to the velocity V_S_H_O (0°) or V_S_H_O (90°) of the SHO plate wave ultrasonic wave propagating in the direction or perpendicular direction is measured, and the values of K_1, K_2, and K_3 and the known values of the iron single crystal are measured. The three elastic coefficient values C^0_1_1, C^0_1_
2. CODF coefficient W_4_0_0 from C^0_4_4,
A method for measuring the material quality of a cold-rolled thin steel sheet, comprising calculating W_4_2_0 and W_4_4_0 to obtain the pole figure, Young's modulus, or Lankford value of the cold-rolled thin steel sheet. 2. The method for measuring the material quality of a cold rolled thin steel sheet according to claim 1, wherein the values of K_1, K_2 and K_3 are measured using electromagnetic ultrasonic waves. 3. SHO plate wave generation electromagnetic ultrasonic probe and first SHO
Two sets of SHO plate wave ultrasonic sound velocity measuring devices are used, each set including a plate wave detection electromagnetic ultrasonic probe and a second SHO plate wave detection electromagnetic ultrasonic probe arranged in a straight line. The first and second SHO plate wave detection electromagnetic ultrasonic probes were intersected at an angle of 45° between them, and one standing wave electromagnetic ultrasonic probe was placed at the intersection. A device for measuring the speed of ultrasonic waves propagating in a cold-rolled thin steel sheet, characterized in that:
JP1029755A 1989-02-10 1989-02-10 Method for measuring material of cold-rolled steel sheet and measuring device for ultrasonic velocity propagating in cold-rolled steel sheet Expired - Lifetime JPH0687054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1029755A JPH0687054B2 (en) 1989-02-10 1989-02-10 Method for measuring material of cold-rolled steel sheet and measuring device for ultrasonic velocity propagating in cold-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1029755A JPH0687054B2 (en) 1989-02-10 1989-02-10 Method for measuring material of cold-rolled steel sheet and measuring device for ultrasonic velocity propagating in cold-rolled steel sheet

Publications (2)

Publication Number Publication Date
JPH02210258A true JPH02210258A (en) 1990-08-21
JPH0687054B2 JPH0687054B2 (en) 1994-11-02

Family

ID=12284900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1029755A Expired - Lifetime JPH0687054B2 (en) 1989-02-10 1989-02-10 Method for measuring material of cold-rolled steel sheet and measuring device for ultrasonic velocity propagating in cold-rolled steel sheet

Country Status (1)

Country Link
JP (1) JPH0687054B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587714A (en) * 1991-03-27 1993-04-06 Nippon Steel Corp Method and device for measuring quality of cold rolling thin steel plate
US5467655A (en) * 1991-03-27 1995-11-21 Nippon Steel Corporation Method for measuring properties of cold rolled thin steel sheet and apparatus therefor
US7617709B2 (en) 2004-10-14 2009-11-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Apparatus for controlling materials quality in rolling, forging, or leveling process
CN103792291A (en) * 2012-10-31 2014-05-14 波音公司 Apparatus and method for measuring in-plane elastic constants for laminate plate

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MRS BULLETIN=1988 *
PHIL TRANS R SOC LOND A320=1986 *
ULTRASONICS=1985 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587714A (en) * 1991-03-27 1993-04-06 Nippon Steel Corp Method and device for measuring quality of cold rolling thin steel plate
US5467655A (en) * 1991-03-27 1995-11-21 Nippon Steel Corporation Method for measuring properties of cold rolled thin steel sheet and apparatus therefor
US7617709B2 (en) 2004-10-14 2009-11-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Apparatus for controlling materials quality in rolling, forging, or leveling process
CN103792291A (en) * 2012-10-31 2014-05-14 波音公司 Apparatus and method for measuring in-plane elastic constants for laminate plate
JP2014092543A (en) * 2012-10-31 2014-05-19 Boeing Co Apparatus and method for measuring in-plane elastic constants for laminate

Also Published As

Publication number Publication date
JPH0687054B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
Hirao et al. Electromagnetic acoustic transducers
Stobbe Acoustoelasticity in 7075-T651 Aluminum and Dependence of Third Order Elastic Constants on Fatigue Damage.
Kawashima Nondestructive characterization of texture and plastic strain ratio of metal sheets with electromagnetic acoustic transducers
Cegla Energy concentration at the center of large aspect ratio rectangular waveguides at high frequencies
Clark et al. Acousto-elastic measurement of stress and stress intensity factors around crack tips
Degtyar et al. Stress effect on boundary conditions and elastic wave propagation through an interface between anisotropic media
US5467655A (en) Method for measuring properties of cold rolled thin steel sheet and apparatus therefor
Castaings et al. Air-coupled measurement of plane wave, ultrasonic plate transmission for characterising anisotropic, viscoelastic materials
Ben et al. Ultrasonic based structural damage detection using combined finite element and model Lamb wave propagation parameters in composite materials
Levy et al. Ultrasonic attenuation in magnetic single crystals
Kube et al. Stress-dependent ultrasonic scattering in polycrystalline materials
Allen et al. Ultrasonic SH wave velocity in textured aluminium plates
JPH02210258A (en) Method for measuring material of cold rolled steel sheet and measuring instrument of speed of ultrasonic wave propagated in cold rolled steel plate
Wooh et al. Wave propagation in composite materials with fibre waviness
Kato et al. Estimation of the stress distribution in metal using nonlinear acoustoelasticity
Hirao et al. Characterization of formability in cold-rolled steel sheets using electromagnetic acoustic tranducers
Jiang et al. Numerical and experimental investigations on quasistatic pulse generation of ultrasonic guided waves in fiber reinforced composite pipes
Dorfi et al. Ultrasonic stress measurements based on the generalized acoustic ratio technique
Bray et al. Ultrasonic studies of anisotropy in cold-worked layer of used rail
Achenbach Flaw characterization by ultrasonic scattering methods
Pagnotta Probabilistic impact-echo method for nondestructive detection of defects around steel reinforcing bars in reinforced concrete
Mukdadi et al. Off-axis propagation of ultrasonic guided waves in thin orthotropic layers: Theoretical analysis and dynamic holographic imaging measurement
JPH0557542B2 (en)
Curtis et al. Texture studies of austenitic weld metal using elastic surface waves
Wang et al. Directivity of quasi-SH0 modes in cubic anisotropic media

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 15