JPH02208587A - Identifying apparatus - Google Patents

Identifying apparatus

Info

Publication number
JPH02208587A
JPH02208587A JP1030704A JP3070489A JPH02208587A JP H02208587 A JPH02208587 A JP H02208587A JP 1030704 A JP1030704 A JP 1030704A JP 3070489 A JP3070489 A JP 3070489A JP H02208587 A JPH02208587 A JP H02208587A
Authority
JP
Japan
Prior art keywords
signal
frequency
interrogator
data
frequencies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1030704A
Other languages
Japanese (ja)
Other versions
JP2624815B2 (en
Inventor
Tomozo Ota
智三 太田
Hiroshi Nakano
洋 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1030704A priority Critical patent/JP2624815B2/en
Publication of JPH02208587A publication Critical patent/JPH02208587A/en
Application granted granted Critical
Publication of JP2624815B2 publication Critical patent/JP2624815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to exclude radiowave interference between interrogators by setting frequencies so that the difference between the transmitting frequencies of the interrogators is smaller than the value which is obtained by subtracting one half of the bandwidth of a BPF from the data-signal carrier frequency of a responder. CONSTITUTION:When a transmitting frequency F1 is transmitted from an interrogator Q1, a responder A1 modulates the signal with a data frequency fm and transmits the signal. The interrogator Q1 synchronously detects the modulated reflected wave and a source signal from a signal generator 1 in a mixer 5. Then, the detected signal of the frequency fm is made to pass through a BPF 6 having the characteristics of a central frequency fm and a bandwidth 2Bm and taken out of a demodulated signal output terminal 7. At this time, a signal frequency F2 from a neighboring interrogator Q2 is readily mixed into the interrogator Q1, and the frequencies F1 and F2 are mixed in the mixer 5. Thus an interference wave ¦F1 - F2¦ is generated by the beat. In order to remove the wave, the frequencies are set so that ¦F1 - F2¦ < fm - Bm is obtained. This is possible by decreasing the difference between F1 and F2 or by making the data frequency fm higher.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は複数対の質問器と応答器とを同時に用いて、フ
ァクトリ−オートメーションやセキュリティシステム等
に有効に利用される識別システムの周波数及び復調信号
帯域幅の設定に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention uses multiple pairs of interrogators and transponders at the same time to improve the frequency and demodulation of identification systems that are effectively used in factory automation, security systems, etc. This is related to setting the signal bandwidth.

〈従来の技術〉 近時、構内無線設備の一つとして、移動体識別システム
が認可され、−殻内に使用されつつある。
<Prior Art> Recently, a mobile object identification system has been approved as one type of in-premises wireless equipment and is being used inside the home.

本システムは、基本的に質問器と応答器からなり、質問
器から送出された信号(電波)は、応答器で受けられ、
応答器内のデータ(識別ナンバー等)で、該信号を変調
し、送シ出す。質問器ではこの変調された信号を受け、
通常、同期検波により上記変調信号を復調し、応答器の
データを取り出す構成となっている。
This system basically consists of an interrogator and a transponder, and the signal (radio wave) sent from the interrogator is received by the transponder.
The signal is modulated using the data (identification number, etc.) in the transponder and sent out. The interrogator receives this modulated signal,
Usually, the modulated signal is demodulated by synchronous detection and data from the transponder is extracted.

このシステムは移動体の識別機能を有するため、ファク
トリ−オートメーション、セキュリティシステムやパー
ソナル識別システム等として幅広い利用範囲が期待され
る。
Since this system has a mobile object identification function, it is expected to be used in a wide range of applications such as factory automation, security systems, and personal identification systems.

第4図は一般的に利用されている移動体識別装置の基本
構成図である。Qは質問器で、1は瞬時周波数F+(温
度ドリフト等も含む)なる信号発生器、2はカプラ、3
はサーキュレータ、4はアンテナ、5はミキサ(復調器
)、6は信号検出用バンドパスフィルタ、7は復調信号
の出力端子である。図では省略したが、同期検波器は2
系統用いる場合がある。
FIG. 4 is a basic configuration diagram of a commonly used mobile object identification device. Q is an interrogator, 1 is a signal generator with an instantaneous frequency F+ (including temperature drift, etc.), 2 is a coupler, 3
4 is a circulator, 4 is an antenna, 5 is a mixer (demodulator), 6 is a bandpass filter for signal detection, and 7 is an output terminal for a demodulated signal. Although omitted in the figure, the synchronous detector has two
System may be used.

一方、Aは応答器で、8はアンテナ、9は分波器、10
は変調器、11は復調器、12はCPUやメモリからな
る信号処理部である。
On the other hand, A is a transponder, 8 is an antenna, 9 is a duplexer, 10
1 is a modulator, 11 is a demodulator, and 12 is a signal processing unit including a CPU and memory.

次にこの動作について説明する。Next, this operation will be explained.

質問器Qよシ周波数F1なる信号が発生器1より発生し
、サーキュレータ3を通って、アンテナ4より送出され
る(実線)。該信号は応答器Aに至シ、該応答器A内の
アンテナ8で受信された信号は分波器9を通過し、変調
器10に入る。
A signal of interrogator Q and frequency F1 is generated by a generator 1, passes through a circulator 3, and is sent out from an antenna 4 (solid line). The signal reaches transponder A, and the signal received by antenna 8 in transponder A passes through demultiplexer 9 and enters modulator 10.

一方、信号処理部12からは、例えばメモリに蓄えられ
たデータ(瞬時周波数fmとする)が変調器10に作用
し、該変調器10では、入力された信号(周波数F+)
が変調を受け、変調された信号(破線で示す)は、再び
分波器9を通り、アンテナ8よシ送出される。変調器1
0としては、一般にAM、又はPM変調器等が利用され
る。
On the other hand, from the signal processing unit 12, data stored in a memory (instantaneous frequency fm) acts on the modulator 10, and in the modulator 10, the input signal (frequency F+) is applied to the modulator 10.
is modulated, and the modulated signal (indicated by a broken line) passes through the duplexer 9 again and is sent out to the antenna 8. Modulator 1
0, an AM or PM modulator is generally used.

質問器Qでは、受信された変調波と、信号発生器1の源
信号とがミキサ5で混合され、その結果、データ(周波
数fm)が検波される。該復調信号は、バンドパスフィ
ルタ(中心周波数fm、帯域幅2Bm ) 6を通って
、復調信号出力端子7より抽出される。
In the interrogator Q, the received modulated wave and the source signal from the signal generator 1 are mixed by a mixer 5, and as a result, data (frequency fm) is detected. The demodulated signal passes through a bandpass filter (center frequency fm, bandwidth 2Bm) 6 and is extracted from a demodulated signal output terminal 7.

信号発生器1の周波数許容範囲は、例えば、マイクロ波
を利用するシステムでは極めて緩く規制されている〔例
: 2434.25MHzから2465.75MHz 
 まで〕ため、通常、信号発生器1は誘電体共振器によ
る安定化程度で、非常に簡単に形成される。
For example, the frequency tolerance range of the signal generator 1 is extremely loosely regulated in systems that utilize microwaves [e.g., 2434.25 MHz to 2465.75 MHz].
] Therefore, the signal generator 1 is normally formed very simply, with only stabilization using a dielectric resonator.

ところで、質問器Qが1ケ、又は他の質問器との設置間
隔が十分にはなれ質問器間の干渉が全く問題にならない
利用形態においては、当システムは何ら問題点を生じな
かった。
By the way, this system did not cause any problems when there was only one interrogator Q or when the interrogators were installed at a sufficient distance from each other so that interference between the interrogators was not a problem at all.

〈発明が解決しようとする課題〉 前述の移動体識別システムにおいて、質問器が複数ケ使
われた場合、質問器間の電波干渉として、しばしば非常
に大きな問題が生じる。
<Problems to be Solved by the Invention> In the mobile object identification system described above, when a plurality of interrogators are used, a very serious problem often arises due to radio wave interference between the interrogators.

この問題について説明する。Let me explain this problem.

第1図は、質問器Qが複数ケ使用された状態を示す。今
注目する質問器Qlは応答器A1と対向し、データ伝送
が行われているものとする。
FIG. 1 shows a state in which a plurality of interrogators Q are used. It is assumed that the interrogator Ql of interest now faces the transponder A1 and data transmission is being performed.

質問器Q1からは、信号周波数Flが送信され、応答器
A1では、該信号に対し、データ周波数fmで変調を与
え送り出す。CF、fmは温度ドリフト等を含んだ瞬時
周波数の値とする〕 質問器Q1において、応答器A1で変調された信号(反
射波)は、信号発生器1からの源信号とミキサ5にて同
期検波される。6は検波信号を取り出すだめのバンドパ
スフィルタで、第2図の如く、中心周波数fm、帯域幅
2Bmなる特性をもつ。
A signal frequency Fl is transmitted from the interrogator Q1, and the transponder A1 modulates the signal at a data frequency fm and sends it out. CF and fm are instantaneous frequency values including temperature drift, etc.] In the interrogator Q1, the signal (reflected wave) modulated by the transponder A1 is synchronized with the source signal from the signal generator 1 by the mixer 5. Detected. Reference numeral 6 denotes a bandpass filter for extracting the detected signal, and as shown in FIG. 2, it has the characteristics of a center frequency fm and a bandwidth of 2Bm.

その結果、ミキサ5よシの周波数fmなる検波器号は該
フィルタ蚤を通過し、復調信号出力端子7よシ取り出さ
れる。
As a result, the detector signal of frequency fm from the mixer 5 passes through the filter flea and is extracted from the demodulated signal output terminal 7.

第3図は、端子7よシ得られるデータ信号のスペクトル
を示す。即ち復調されたデータ(実線)は、中心周波数
fmの両サイドにサイドバンド信号を伴う(実線)。
FIG. 3 shows the spectrum of the data signal obtained from terminal 7. That is, the demodulated data (solid line) is accompanied by sideband signals on both sides of the center frequency fm (solid line).

該復調データは、帯域幅2Bmで帯域制限されているた
め、通過信号のみが取り出され、他の信号成分は除去さ
れる。この帯域幅は、データ(キャリア周波数fm)の
変調スピードにより決定される0 ところで、質問器Q1のアンテナより送出される信号レ
ベルは、通常数mW〜300mW(0〜+24dBm)
程度になる。
Since the demodulated data is band-limited with a bandwidth of 2 Bm, only the passing signal is extracted and other signal components are removed. This bandwidth is determined by the modulation speed of the data (carrier frequency fm). By the way, the signal level sent from the antenna of the interrogator Q1 is usually several mW to 300 mW (0 to +24 dBm).
It will be about.

一方、該信号が、応答器Alで変調され、反射され、質
問器Q1に入力される信号レベルは、数10dBm (
例えば−30〜−90dBm)程度と極めて小さい。こ
のような小さな変調信号が、同期検波によシ復調されて
いる。
On the other hand, the signal level at which the signal is modulated and reflected by the transponder Al and input to the interrogator Q1 is several tens of dBm (
For example, it is extremely small, about -30 to -90 dBm). Such a small modulated signal is demodulated by synchronous detection.

ところで、質問器が質問器Q1以外に複数個同時に使用
された場合を考えてみる。
By the way, let us consider a case where a plurality of interrogators other than interrogator Q1 are used at the same time.

第1図にて、隣接した質問器をQ2とし、その送信信号
周波数をF2とする。
In FIG. 1, the adjacent interrogator is Q2 and its transmission signal frequency is F2.

一般にこの種の装置が室内で使われた場合、電波は室内
の障害物で複雑な反射を伴い、予測できない電波伝搬特
性を示す。
Generally, when this type of device is used indoors, radio waves are subject to complex reflections from indoor obstacles and exhibit unpredictable radio wave propagation characteristics.

即ち隣接した質問器Q2からの信号は、容易に質問器Q
lに混入する。質問器Q+ に質問器Q2の信号が混入
した場合、質問器Ql内のミキサ5では、周波数F1と
F2なる信号成分が混合され、ミキサ5からはそのビー
トが発生する。
That is, the signal from the adjacent interrogator Q2 is easily transmitted to the interrogator Q2.
mix into l. When the signal from the interrogator Q2 is mixed into the interrogator Q+, the mixer 5 in the interrogator Ql mixes the signal components of frequencies F1 and F2, and the mixer 5 generates the beat.

今、質問器Q1とQ2の送信周波数の差ΔF=IFI−
F21がfm−Bm<ΔF<fm十Bmに入った場合、
質問器Q1の復調信号比カフから得られる信号は、第3
図の如く、正規のデータ復調信号(実線)の他に、Fl
 とF2のビートによる妨害波F+ −F2  (破線
)が発生する。この妨害波成分は、しばしば復調データ
信号よシ十分大きなレベルとなり質問器Q、は正常な動
作が行われなくなる。
Now, the difference between the transmission frequencies of interrogators Q1 and Q2 ΔF=IFI−
If F21 falls into fm-Bm<ΔF<fm+Bm,
The signal obtained from the demodulated signal ratio cuff of interrogator Q1 is
As shown in the figure, in addition to the regular data demodulated signal (solid line), Fl
An interference wave F+ -F2 (dashed line) is generated due to the beat of F2. This interference wave component often reaches a sufficiently high level as compared to the demodulated data signal, and the interrogator Q cannot operate normally.

この種の現象は、質問器の送信出力と受信入力との信号
レベル差が大きく、又、複数個の質問器が室内で同時に
使われるケースの多い当システム特有の問題である。特
にこれらのシステムがファクトリ−オートメーション設
備として製造ラインに利用され、室内にて質問器が複数
個接近して設置された場合、重大な問題を生じることに
なる。
This type of phenomenon is a problem peculiar to this system, in which there is a large signal level difference between the transmitting output and receiving input of the interrogator, and there are many cases in which a plurality of interrogators are used indoors at the same time. Particularly when these systems are used as factory automation equipment on a production line and multiple interrogators are installed close to each other in a room, serious problems arise.

く課題を解決するための手段〉 各質問器内蔵の信号発生器の発振周波数Fの差ΔFとバ
ンドパスフィルタの帯域幅2Bm と、応答器の変調デ
ータ周波数fmとの間にΔF<fm −Bmの関係が成
立するようにする。
Means for Solving the Problem> The difference ΔF between the oscillation frequencies F of the signal generator built into each interrogator, the bandwidth 2Bm of the bandpass filter, and the modulation data frequency fm of the transponder is ΔF<fm −Bm. Make sure that the relationship holds true.

上記関係を成立させるために、例えば各質問器内蔵の信
号発生器に高安定位相同期発振器を用いるとよい。
In order to establish the above relationship, it is preferable to use, for example, a highly stable phase-locked oscillator in the signal generator built into each interrogator.

ドバスフィルタの帯域幅の下限以下となシ、該ビートは
バンドパスフィルタでカットされ復調信号出力端子から
はビートが出力されなくなる。
If the bandwidth is below the lower limit of the bandpass filter, the beat is cut by the bandpass filter and no beat is output from the demodulated signal output terminal.

〈実施例〉 本発明の基本構成は、第4図と変わらないが、本発明を
実現するための質問器の送信周波数、データ信号検出用
バンドパスフィルタの帯域幅、応答器のデータ信号搬送
周波数の拘束条件と、それを充す送信源(信号源)の構
築手段について説明する。
<Example> The basic configuration of the present invention is the same as that shown in FIG. 4, but the transmission frequency of the interrogator, the bandwidth of the bandpass filter for data signal detection, and the data signal carrier frequency of the transponder to realize the present invention are as follows. The following describes the constraint conditions and means of constructing a transmission source (signal source) that satisfies them.

今、第4図及び第1図のシステム例において、前述と同
様に質問器Qの送信周波数をFl  、バンドパスフィ
ルタ6の帯域幅を2Bm、応答器Aの信号処理部12よ
り送出されるデータ信号の搬送波をfm(該搬送波に与
えられたデータ速度を2Bm)とする。
Now, in the system examples shown in FIGS. 4 and 1, the transmission frequency of the interrogator Q is Fl, the bandwidth of the bandpass filter 6 is 2Bm, and the data sent from the signal processing unit 12 of the transponder A is set as above. Let the carrier wave of the signal be fm (the data rate given to the carrier wave is 2Bm).

一例として、Flは2,450MHz 、2Bmは20
KH2,fmは100KH2程度に選ばれる。このと量
器間の送信信号周波数の差、即ち、lF+−Filなる
ビート成分を第3図における復調信号帯域幅2Bmの外
にもっていけばよい。よりよい施策は、FIF21をf
m−Bmより低くなるよう設定すれこれを実現するには
、質問器側でFl とF2との差を小さくするか、又は
、応答器側でデータ信号速度が一定ならば、データ信号
の搬送周波数fmをより高くすることによシ可能となる
As an example, Fl is 2,450MHz, 2Bm is 20
KH2, fm is selected to be about 100KH2. The difference in the transmission signal frequency between this and the quantizer, that is, the beat component 1F+-Fil, can be taken outside the demodulation signal bandwidth 2Bm in FIG. A better measure would be to implement FIF21.
m-Bm. To achieve this, either reduce the difference between Fl and F2 on the interrogator side, or, if the data signal speed is constant on the transponder side, change the carrier frequency of the data signal. This can be achieved by increasing fm.

これらは当然、コスト、ハードの簡易性等を考慮し、い
ずれか又は、両者のバランスをみながら、最適値を選定
することになる。
Of course, the optimum value for these should be selected by considering cost, simplicity of hardware, etc., and balancing either or both of them.

応答器A内でfmを極端に高くすることは、信号処理部
12のCPU及びメモリの動作や、変調器10の応答ス
ピードの点で問題もあり、むしろ、質問器の信号発生器
1の周波数安定度を高める方が得策である。
Increasing fm extremely high in the transponder A poses problems in terms of the operation of the CPU and memory of the signal processing section 12 and the response speed of the modulator 10, and rather increases the frequency of the signal generator 1 of the interrogator. It is better to increase stability.

周波数の安定化された発振器1としては、水晶発振器を
基準にし、これで制御する位相周期発振器の採用が最も
適切である。
As the frequency-stabilized oscillator 1, it is most appropriate to employ a phase periodic oscillator that is controlled using a crystal oscillator as a reference.

位相同期発振器構成の一例を第5図に示す。第5図で、
13は発振源となるトランジスタ及びト等による安定性
も含め、90KHz以内となるよう周波数安定度を制限
すればよい。
An example of a phase-locked oscillator configuration is shown in FIG. In Figure 5,
13, the frequency stability may be limited to within 90 KHz, including the stability due to the transistor serving as the oscillation source, etc.

16は位相比較器、17は発振周波数の基準となろ水晶
発振器、18は信号出力端子である。
16 is a phase comparator, 17 is a crystal oscillator serving as a reference for the oscillation frequency, and 18 is a signal output terminal.

この発振動作は、よく知られておシ、発振器13の周波
数がプリスケーラ14で分割され、該出力信号は位相比
較器16にて基準水晶発振器17の信号と位相比較され
る。位相比較器16の出力は、ループフィルタ15を通
り、発振器13に帰還される。この動作において、発振
器13の発振周波数の安定度は基準水晶発振器17の安
定度にほぼ等しくなる。発振周波数が2,450MHz
程度のこの種の発振器は、安価に形成され現実的である
This oscillation operation is well known; the frequency of the oscillator 13 is divided by the prescaler 14, and the output signal is phase-compared with the signal of the reference crystal oscillator 17 by the phase comparator 16. The output of the phase comparator 16 passes through the loop filter 15 and is fed back to the oscillator 13. In this operation, the stability of the oscillation frequency of the oscillator 13 is approximately equal to the stability of the reference crystal oscillator 17. Oscillation frequency is 2,450MHz
This type of oscillator is inexpensive to construct and practical.

水晶発振器に依存する発振器13の周波数安定度は、前
述の如< lF+−Fil<rm−Bmとなるように制
限される。
The frequency stability of the oscillator 13, which depends on the crystal oscillator, is limited to <lF+-Fil<rm-Bm as described above.

〈発明の効果〉 以上説明したように本発明によれば、質問器の発振(送
信)周波数による干渉問題が除去されるため、特に室内
で質問器を複数個同時に使用することが可能となり、当
システムの応用範囲が幅広く拡張される。
<Effects of the Invention> As explained above, according to the present invention, since the problem of interference caused by the oscillation (transmission) frequency of the interrogator is eliminated, it becomes possible to use a plurality of interrogators at the same time, especially indoors. The range of applications of the system is expanded widely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る識別システムの一実施例を示す図
、第2図はミキサ出力に使用するバンドパスフィルタの
特性を示す図、第3図は従来例の問題点及び本発明を説
明するだめの復調信号スペクトル図、第4図は識別シス
テムの基本構成図、第5図は位相同期発振器の一例を示
す図である。 図中の 1:信号発生器、 5:ミキサ(復調手段)、 7:出力端子、 10:変調器。 4:アンテナ、 6 :バンドパスフィルター 8:アンテナ、 代理人 弁理士 杉 山 毅 至(他1名)第2図 纂3図
Fig. 1 is a diagram showing an embodiment of the identification system according to the present invention, Fig. 2 is a diagram showing the characteristics of a bandpass filter used for mixer output, and Fig. 3 explains the problems of the conventional example and the present invention. FIG. 4 is a diagram showing the basic configuration of the identification system, and FIG. 5 is a diagram showing an example of a phase synchronized oscillator. In the figure, 1: signal generator, 5: mixer (demodulation means), 7: output terminal, 10: modulator. 4: Antenna, 6: Bandpass filter 8: Antenna, Agent Patent attorney Takeshi Sugiyama (and 1 other person) Figure 2 Collection 3

Claims (1)

【特許請求の範囲】 1、複数対の質問器と応答器とからなり、質問器が周波
数Fなる信号を送信し、該信号を応答器が受信して変調
信号fmで変調した変調信号を反射送信し、該変調信号
を質問器で受信し内蔵の復調手段で復調して応答器のデ
ータを取り出す識別システムであって、上記復調手段の
復調信号帯域幅が2Bmのものにおいて、 各質問器間の送信周波数のFa、Fbの差ΔF=|Fa
−Fb|(a、bは1、2、・・・、nの整数であって
、a≠bである)がΔF<fm−Bmとなるように各質
問器の送信周波数Fを設定したことを特徴とする識別シ
ステム。
[Claims] 1. Consisting of a plurality of pairs of interrogators and transponders, the interrogator transmits a signal with a frequency F, the transponder receives the signal, and reflects the modulated signal modulated with the modulation signal fm. The identification system transmits a modulated signal, receives the modulated signal by an interrogator, demodulates it by a built-in demodulating means, and extracts the data from the transponder. Difference ΔF between transmission frequencies Fa and Fb = |Fa
-Fb|(a, b are integers of 1, 2, ..., n, and a≠b) The transmission frequency F of each interrogator is set so that ΔF<fm-Bm An identification system featuring:
JP1030704A 1989-02-09 1989-02-09 Identification system Expired - Lifetime JP2624815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1030704A JP2624815B2 (en) 1989-02-09 1989-02-09 Identification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1030704A JP2624815B2 (en) 1989-02-09 1989-02-09 Identification system

Publications (2)

Publication Number Publication Date
JPH02208587A true JPH02208587A (en) 1990-08-20
JP2624815B2 JP2624815B2 (en) 1997-06-25

Family

ID=12311040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1030704A Expired - Lifetime JP2624815B2 (en) 1989-02-09 1989-02-09 Identification system

Country Status (1)

Country Link
JP (1) JP2624815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994000921A1 (en) * 1992-06-25 1994-01-06 Nippondenso Co., Ltd. Mobile object identification device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004056001A1 (en) 2002-12-13 2004-07-01 Brother Kogyo Kabushiki Kaisha Communication system, communication system inquiry device, and response device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994000921A1 (en) * 1992-06-25 1994-01-06 Nippondenso Co., Ltd. Mobile object identification device
US5525991A (en) * 1992-06-25 1996-06-11 Nippondenso Co., Ltd. Mobile object identification system

Also Published As

Publication number Publication date
JP2624815B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
US4709407A (en) Band discriminating method in a receiver
US5784021A (en) Noiseless radar detector
JPH02309825A (en) Vehicle-loaded equipment of automatic vehicle tracking system
US7242259B2 (en) Active backscatter transponder, communication system comprising the same and method for transmitting data by way of such an active backscatter transponder
JP3725864B2 (en) Oscillator signal generator
CA1044328A (en) Skirt-tuned single oscillator transceiver
JP4819067B2 (en) Distance measuring device
US3875399A (en) Multi-frequency optimum heterodyne system
JPH02208587A (en) Identifying apparatus
JPH06102349A (en) Method and apparatus for measuring speed of moving target by using doppler shift of electromagnetic radiation
US20010030988A1 (en) Spread spectrum, frequency hopping transceiver with frequency discriminator quadrature filter
US6904101B1 (en) Tuneless narrow-band super-regenerative receiver
US2877344A (en) Transmitter-receiver tuning system
US4411018A (en) Rapidly stabilized Gunn oscillator transceiver
JP3205847B2 (en) Radar system using spread spectrum system
US2950473A (en) Radioelectric distance measuring systems
JPH0223834B2 (en)
KR940007720B1 (en) Object tracing device using satellite
JP4623889B2 (en) Phase shift keying signal demodulator for data carrier device
JPH0671217B2 (en) Wireless device
JPH03144390A (en) Bidirectional simultaneous transmission and reception radar
JPS635625A (en) Radio communication equipment
JPS59151540A (en) Identifying device of receiving frequency band in radio signal receiving system
JPS63121773A (en) Moving body identifier
JPS63228860A (en) Modulated wave detection circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 12

EXPY Cancellation because of completion of term