JPH02206263A - Delay detecting circuit - Google Patents

Delay detecting circuit

Info

Publication number
JPH02206263A
JPH02206263A JP1026202A JP2620289A JPH02206263A JP H02206263 A JPH02206263 A JP H02206263A JP 1026202 A JP1026202 A JP 1026202A JP 2620289 A JP2620289 A JP 2620289A JP H02206263 A JPH02206263 A JP H02206263A
Authority
JP
Japan
Prior art keywords
output
shift register
frequency
circuit
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1026202A
Other languages
Japanese (ja)
Inventor
Yasuyuki Oishi
泰之 大石
Satoshi Nakamura
聡 中村
Eisuke Fukuda
英輔 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1026202A priority Critical patent/JPH02206263A/en
Publication of JPH02206263A publication Critical patent/JPH02206263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To always obtain the optimal demodulating characteristic of PSK demodulation by comparing the phase of a received signal with the phase of an output on the intermediate stage of a shift register, and controlling the frequency of the voltage controlled oscillator of the sample clock of the shift register. CONSTITUTION:A received signal Rin and the output of a shift register 1 for delaying having (m) stages is multiplied by a multiplier 5, only a low frequency component is fetched by a low pass filter 6, and the demodulated output is obtained. The demodulated output is identified at timing optimal for identification when an eye pattern aperture from a data timing reproducing circuit 8 is maximal by a discriminator 7, and data are reproduced. Further the input Rin of the shift register 1 having the (m) shift stages for a delay element and a shift output (k) on the intermediate stage of the (m) stages are inputted to input terminals (a) and (b) of a phase comparator 21 of a PLL circuit 2, an error voltage out of a phase error is impressed as the control voltage of a voltage control oscillator 22, and a frequency fS of the voltage controlled oscillator 22 is made variable.

Description

【発明の詳細な説明】 〔概要〕 PSK変澗のディジタル移動無線の受信装置におけるP
SK復調器の遅延検波回路に関し、移動無線で避けられ
ない受信機の局部発振器の発振周波数ωLの変動に対し
、遅延検波出力のアイパターン開口が劣化しない遅延検
波回路を提供することを目的とし、 受信信号Rinの位相と遅延用のシフトレジスタの途中
段の出力にの位相とを比較する位相比較器の出力誤差に
よりシフトレジスタへのサンプルクロック供給の電圧制
御発振器の発振周波数fsを制御するPLL回路2を構
成する(第1発明)か、又は前記受信信号Rinと遅延
用シフトレジスタの出力とを乗算し低域フィルタで取出
した低周波成分を、^/D変換して演算器CPUに読込
み、タイミング再生回路で得られる最適タイミングでN
回サンプリングし、得られたN個のサンプルデータの累
積分布の2つのピーク値の差の絶対値を求め該絶対値の
前回サンプリング時の値との差の正負により出力値の加
減算を繰り返す信号処理回路のD/A変換出力により、
復調出力のアイパターン開口が最大となるようにシフト
レジスタへのサンプルクロック供給の電圧制御発振器の
発振周波数fsを制御するサンプルクロック制御ループ
3を構成する(第2発明)か、前記信号処理回路と同じ
信号処理回路の演算器cpuの出力により、前記復調出
力のアイパターン開口が最大となるようにm段のシフト
レジスタの途中段のシフト出力を選択する選択回路から
なる段数選択ループ4を構成する(第3発明)ことによ
り、常に所定の遅延検波の条件を満たすように遅延用シ
フトレジスタの遅延IT(・m/fs)を可変するよう
に構成する。
[Detailed Description of the Invention] [Summary] P in a PSK conversion digital mobile radio receiving device
Regarding the delay detection circuit of the SK demodulator, an object of the present invention is to provide a delay detection circuit in which the eye pattern aperture of the delay detection output does not deteriorate due to fluctuations in the oscillation frequency ωL of the local oscillator of the receiver, which is inevitable in mobile radio. A PLL circuit that controls the oscillation frequency fs of the voltage-controlled oscillator that supplies the sample clock to the shift register based on the output error of a phase comparator that compares the phase of the received signal Rin with the phase of the output of the intermediate stage of the delay shift register. 2 (first invention), or multiplying the received signal Rin by the output of the delay shift register and extracting the low frequency component with a low pass filter, converting it into ^/D and reading it into the arithmetic unit CPU, N at the optimal timing obtained by the timing regeneration circuit
Signal processing in which the absolute value of the difference between the two peak values of the cumulative distribution of the N sample data obtained by sampling is repeated, and the output value is repeatedly added and subtracted depending on the sign of the difference between the absolute value and the value at the time of previous sampling. Due to the D/A conversion output of the circuit,
Either the sample clock control loop 3 is configured to control the oscillation frequency fs of the voltage controlled oscillator for supplying the sample clock to the shift register so that the eye pattern opening of the demodulated output is maximized (second invention), or the signal processing circuit and A stage number selection loop 4 is constituted by a selection circuit that selects the shift output of an intermediate stage of the m-stage shift register so that the eye pattern aperture of the demodulated output is maximized by the output of the arithmetic unit CPU of the same signal processing circuit. (Third invention) Accordingly, the delay IT (·m/fs) of the delay shift register is configured to be varied so as to always satisfy a predetermined condition for delayed detection.

〔産業上の利用分野] 本発明はディジタル変調の移動無線通信に係り特にPS
K変調の移動無線通信の受信装置におけるPSK変調信
号を復調するPSK復調器の遅延検波回路に関する。
[Industrial Application Field] The present invention relates to mobile radio communication using digital modulation, and particularly to PS
The present invention relates to a delay detection circuit of a PSK demodulator that demodulates a PSK modulated signal in a K modulation mobile radio communication receiving device.

移動前vAii11信では受信波の途切れる高速フェー
ジング等を伴う劣悪な電波伝播の環境下でも機能する必
要があるため、移動無線に用いるPSK復調器には移動
無線に適した技術の開発が要求されて、固定無線おける
同期検波によるPSK復調の如く受信入力に同期した搬
送波信号を再生する事の不要な遅延検波回路が有望と考
えられている。
In pre-mobile vAii11 communications, it is necessary to function even under poor radio wave propagation environments with interruptions in received waves and high-speed fading, etc., so PSK demodulators used in mobile radios are required to develop technology suitable for mobile radios. A delay detection circuit that does not require reproducing a carrier signal synchronized with the received input, such as PSK demodulation using synchronous detection in fixed radio, is considered to be promising.

(従来の技術〕 従来の遅延検波回路の構成を2相PSK信号を復調する
場合について説明すると、第5図に示す如く、図示しな
い送信側のPSK変調では、送りたいデータ列X、に1
ビツト前の送信データY、−1との和をとって出力ビッ
トとする和分変換を施す。
(Prior Art) To explain the configuration of a conventional delay detection circuit when demodulating a two-phase PSK signal, as shown in FIG. 5, in PSK modulation on the transmitting side (not shown), one
A summation conversion is performed in which the sum of the previous bit of transmission data Y and -1 is calculated and the output bit is obtained.

その変換後の送信データ列をY□とすると、Yム= y
i−+ + X、          (1)と表され
る。このY、をPSKの変調信号として、Yiの符号1
,0に対応して搬送波の位相を0.πと変化させた2相
PSK変調波を図示した受信側へ送信するが、このPS
K変調波1?(t)は次式で表される。
If the transmitted data string after conversion is Y□, then Y = y
It is expressed as i-+ + X, (1). Using this Y as a PSK modulation signal, the sign of Yi is 1.
, 0, the phase of the carrier wave is set to 0. A two-phase PSK modulated wave changed to π is transmitted to the receiving side shown in the figure, but this PS
K modulation wave 1? (t) is expressed by the following formula.

R(t)=CO5(ωLt+y、π)(2)ここで、ω
Lは搬送波周波数である。受信側ではこの無線周波数ω
。のPSX変調波をアンテナ10で受信し周波数ωLの
受信局部発振器20の発振波とミキサ30で混合し周波
数変換して次式の受信信号L(t) =C0S  ((
ω。−ωL)t+ V 、π〕(3)を得る。この受信
信号L(t)を例えばシフトレジスタの遅延回路1で、
伝送データの1シンボル時間Tだけ遅延させた信号は、 L(t −T) = COS ((ω。−ωL Xt  T) 十Y =
−+π〕(4)となる。従って受信信号を遅延検波する
為、式(3)と式(4)の信号を乗算器5にて掛合せる
と、D= L(t)χL(L −T) =172  ・COS  ((ω。−ωL)T+(Y 
R(t)=CO5(ωLt+y, π) (2) Here, ω
L is the carrier frequency. On the receiving side, this radio frequency ω
. The PSX modulated wave of is received by the antenna 10, mixed with the oscillation wave of the reception local oscillator 20 of frequency ωL by the mixer 30, and the frequency is converted to obtain the received signal L(t) = C0S ((
ω. −ωL)t+V,π] (3) is obtained. This received signal L(t) is processed by a delay circuit 1 of a shift register, for example.
The signal delayed by one symbol time T of the transmission data is L(t - T) = COS ((ω. - ωL Xt T) + Y =
−+π] (4). Therefore, in order to perform delayed detection of the received signal, when the signals of equations (3) and (4) are multiplied by the multiplier 5, D=L(t)χL(L-T)=172・COS ((ω. -ωL)T+(Y
.

y t−1)  π〕 =1/2 −CO3((ω。−<IJL )T十Xs 
 x ) (5)が得られ、低域フィルタ6でその低周
波成分のみを取出す。ここで (ωL−ωL)T=2ng  (nは自然数)、(6)
を満たすようにωLETを設定すると、式(5)はD工
172  ・CO5(X i π)(7)となり復調出
力が得られる。この乗算器5の出力を識別器7にて、デ
ータのタイミング再生回路8の出力の識別に最適なタイ
ミングにより、その極性の正を符号1.負を符号0と符
号化することにより、元のデータ列xiが誤り無く再生
されFSX復調が行われる。そして送信側で伝送帯域幅
の制限を施した場合の、式(7)の出力が識別器7にて
識別される余裕を表す復調出力のアイパターン開口が第
6図Aに示される。
y t-1) π] = 1/2 -CO3 ((ω.-<IJL)T0Xs
x ) (5) is obtained, and the low-pass filter 6 extracts only its low frequency components. Here, (ωL-ωL)T=2ng (n is a natural number), (6)
When ωLET is set so as to satisfy the equation (5), the equation (5) becomes D<172>CO5(X i π)(7), and a demodulated output is obtained. The output of the multiplier 5 is passed to the discriminator 7, and the positive polarity is determined by the sign 1. By encoding the negative with the code 0, the original data string xi is reproduced without error and FSX demodulation is performed. FIG. 6A shows an eye pattern aperture of the demodulated output representing the margin for the output of equation (7) to be identified by the discriminator 7 when the transmission bandwidth is limited on the transmitting side.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の遅延検波回路は、上述の如く、受信機の局部発振
器20の発振周波数ωLが変動した場合(移動無線機の
場合、周囲条件の変化により局発周波数ωLは変動し易
い)、弐(6)の所定の遅延検波の条件が満たされなく
なるため、PSK復調出力のアイパターン開口が減少し
、復調特性が第6図Bの如く劣化する。特に遅延回路1
で受信信号L(1)を遅延させる伝送データの1シンボ
ル時間′rが大きい場合(データ速度が遅い場合)は、
受信機の局部発振器20の発振周波数ωLの変動による
ミキサ30出力の周波数変換後の周波数(ω。−ωL)
の変動Δωと時間Tの積Δω・Tが2nπに近づき、復
調出力のアイパターン開口の許容される劣化度がクリテ
ィカルとなり、移動無線の実用上問題となる。本発明は
、移動無線で避けられない受信機の局部発振器20の発
振周波数ωLが成る程度変動した場合でも、識別器7で
許容される低域フィルタ6の出力のアイパターン開口が
劣化しない遅延検波回路を提供することを課題とする。
As mentioned above, in the conventional delay detection circuit, when the oscillation frequency ωL of the local oscillator 20 of the receiver fluctuates (in the case of a mobile radio, the local oscillation frequency ωL tends to fluctuate due to changes in the surrounding conditions), ) is no longer satisfied, the eye pattern aperture of the PSK demodulated output decreases, and the demodulation characteristics deteriorate as shown in FIG. 6B. Especially delay circuit 1
When the one symbol time 'r of the transmission data that delays the received signal L(1) is large (when the data rate is slow),
Frequency after frequency conversion of the mixer 30 output due to fluctuations in the oscillation frequency ωL of the local oscillator 20 of the receiver (ω.-ωL)
As the product Δω·T of the variation Δω and time T approaches 2nπ, the degree of allowable deterioration of the eye pattern aperture of the demodulated output becomes critical, which poses a practical problem for mobile radio. The present invention provides delayed detection in which the eye pattern aperture of the output of the low-pass filter 6 that is allowed by the discriminator 7 does not deteriorate even if the oscillation frequency ωL of the local oscillator 20 of the receiver, which is inevitable in mobile radio, fluctuates to a certain degree. The task is to provide a circuit.

〔課題を解決するための手段〕[Means to solve the problem]

この課題は、第1図の原理図に示す如く、アンテナ10
で受信した無線周波数ωゎのPSK変調の信号R(t)
を、発振周波数ωLの局部発振器20の出力とミキサ3
0にて混合して周波数変換した受信信号11inを、伝
送データの1シンボル時間の整数倍だけ遅延させるサン
プルクロック周波数がfsでありシフト段数がm段の、
遅延時間Tが式T=m /f、で与えられる遅延用シフ
トレジスタ(1)の出力と乗算器5で乗算し、その低周
波数成分のみを低域フィルタ(6)で取出し、データの
タイミング再生回路(8)で再生した最適タイミングで
識別(7)シデータを再生するPSK復調器の遅延検波
回路において、入力の受信信号Rinと遅延用のシフト
レジスタ1の途中段の出力にの位相を比較する位相比較
器21の出力誤差によりシフトレジスタlへのサンプル
クロック供給の電圧制御発振器22の発振周波数fsを
制御するPLL回路2を構成する(第1発明)か、又は
前記低域フィルタ6で取出した低周波成分を、A/D変
換し符号化して演算器CPUに読込み、タイミング再生
回路8で得られる最適タイミングでN回ザンプリングし
、得られたN個のサンプルデータの累積分布の2つのピ
ーク値の差の絶対値を求め該絶対値の前回サンプリング
時の値との差の正負によりD/A変換器への出力値の加
減算を繰り返す信号処理回路31のD/A変換出力によ
り、低域フィルタ6の出力の復調アイパターンの開口が
最大となるように、シフトレジスタ1へのサンプルクロ
ック供給の電圧制御発振器12の発振周波数fsを制御
するサンプルクロック制御ループ3を構成する(第2発
明)か、前記信号処理回路31と同じ信号処理回路41
の演算器cpυの出力により、前記低域フィルタ6で取
出した復調アイパターンの開口が最大となるようにm段
のシフトレジスタ1の途中段のシフト出力を選択する選
択回路42により段数選択ループ4を構成する(第3発
明)ことにより、乗算器5にて常に遅延検波の所定の条
件式(6)を満たすようにシフトレジスタ1の遅延量T
=m/fsを可変する本発明の構成によって解決される
This problem is solved by the antenna 10 as shown in the principle diagram of FIG.
PSK modulated signal R(t) of radio frequency ωゎ received at
is the output of the local oscillator 20 with the oscillation frequency ωL and the mixer 3
The sample clock frequency is fs and the number of shift stages is m, which delays the received signal 11 inches mixed and frequency-converted at 0 by an integral multiple of one symbol time of the transmission data.
The output of the delay shift register (1) whose delay time T is given by the formula T=m/f is multiplied by the multiplier 5, and only the low frequency component thereof is extracted by the low-pass filter (6) to reproduce the timing of the data. In the delay detection circuit of the PSK demodulator that reproduces the identification (7) data at the optimum timing reproduced by the circuit (8), the phase of the input received signal Rin and the output of the intermediate stage of the delay shift register 1 are compared. The output error of the phase comparator 21 constitutes a PLL circuit 2 that controls the oscillation frequency fs of the voltage-controlled oscillator 22 that supplies the sample clock to the shift register l (first invention), or the output error is extracted by the low-pass filter 6. The low frequency component is A/D converted, encoded, read into the arithmetic unit CPU, and sampled N times at the optimum timing obtained by the timing regeneration circuit 8, and two peak values of the cumulative distribution of the obtained N sample data are obtained. The D/A conversion output of the signal processing circuit 31 calculates the absolute value of the difference and repeats addition and subtraction of the output value to the D/A converter depending on the sign of the difference between the absolute value and the value at the time of previous sampling. A sample clock control loop 3 is configured to control the oscillation frequency fs of the voltage controlled oscillator 12 for supplying the sample clock to the shift register 1 so that the aperture of the demodulated eye pattern of the output of the shift register 1 is maximized (second invention). , the same signal processing circuit 41 as the signal processing circuit 31
Based on the output of the arithmetic unit cpυ, the selection circuit 42 selects the shift output of the intermediate stage of the m-stage shift register 1 so that the aperture of the demodulated eye pattern extracted by the low-pass filter 6 is maximized. (third invention), the delay amount T of the shift register 1 is adjusted so that the multiplier 5 always satisfies the predetermined conditional expression (6) for delayed detection.
This problem is solved by the configuration of the present invention in which = m/fs is varied.

本発明の遅延検波回路の構成を示す第1図の原理図にお
いて、 1は、アンテナ10で受信したPSK変調の無線周波数
ω。の受信信号R(t)を局部発振器20の発振周波数
ωLとミクサ30にて混合し周波数変換した受信信号R
inを入力とし、伝送データの1シンボル時間の整数倍
だけ遅延させる遅延回路素子であって、ビットシフトの
為のサンプルクロックの周波数がfsでシフト段数がm
段の、遅延時間Tが式T=m/fSで表せる遅延用シフ
トレジスタである。
In the principle diagram of FIG. 1 showing the configuration of the delay detection circuit of the present invention, 1 is the radio frequency ω of PSK modulation received by the antenna 10. The received signal R(t) is mixed with the oscillation frequency ωL of the local oscillator 20 by the mixer 30 and frequency-converted.
This is a delay circuit element that takes input in and delays it by an integral multiple of the time of one symbol of transmission data, the frequency of the sample clock for bit shifting is fs, and the number of shift stages is m.
This is a delay shift register in which the delay time T of a stage can be expressed by the formula T=m/fS.

2は、第1発明に対するもので、受信信号Rinとm段
のシフトレジスタlの途中段の出力にとの位相比較器2
1の出力誤差により、シフトレジスタ1へのサンプルク
ロック供給の電圧制御発振器22の発振周波数fsを制
御するPLL回路であって、受信信号Rinと乗算する
乗算器5にて遅延検波の所定の関係式(6)を満たすよ
うに、シフトレジスタ1の遅延量T(・m/fs)を可
変する。
2 is related to the first invention, and includes a phase comparator 2 between the received signal Rin and the output of an intermediate stage of the m-stage shift register l.
This is a PLL circuit that controls the oscillation frequency fs of the voltage-controlled oscillator 22 that supplies the sample clock to the shift register 1 based on an output error of The delay amount T (·m/fs) of the shift register 1 is varied so as to satisfy (6).

3は、第2発明に対するもので、受信信号Rinと遅延
用のシフトレジスタ1の出力とを乗算器5にて乗算した
出力から低域フィルタ6で取出した低周波成分を、A/
D変換し符号化して演算器CPUに読込み、タイミング
再生回路8で得られる最適タイミングでN回サンプリン
グし、得られたN個のサンプルデータの累積分布の2つ
のピーク値の差の絶対値を求め該絶対値の前回サンプリ
ング時の値との差の正負によりD/A変換器への出力値
の加減算を繰り返す信号処理回路31のD/A変換出力
により、低域フィルタ6の出力の復調アイパターンの開
口が最大となるように、シフトレジスタ1へのサンプル
クロック供給の電圧制御発振器32の発振周波数fsを
制御するサンプルクロック制御ループである。
3 is related to the second invention, in which a low frequency component extracted by a low-pass filter 6 from the output obtained by multiplying the received signal Rin and the output of the delay shift register 1 by a multiplier 5 is converted into an A/
D-convert the data, encode it, read it into the arithmetic unit CPU, sample it N times at the optimal timing obtained by the timing recovery circuit 8, and find the absolute value of the difference between the two peak values of the cumulative distribution of the obtained N sample data. The demodulated eye pattern of the output of the low-pass filter 6 is generated by the D/A conversion output of the signal processing circuit 31, which repeats addition and subtraction of the output value to the D/A converter depending on the sign of the difference between the absolute value and the value at the time of previous sampling. This is a sample clock control loop that controls the oscillation frequency fs of the voltage controlled oscillator 32 that supplies the sample clock to the shift register 1 so that the aperture of the shift register 1 is maximized.

4は、第3発明に対するもので、前記信号処理回路31
ど同じ信号処理回路41の演算器CPUの出力により、
前記低域フィルタ6で取出した復調出力のアイパターン
開口が最大となるように1段のシフトレジスタ1の途中
段のシフト出力を選択する選択回路43により構成され
た段数選択ループである。
4 is for the third invention, and the signal processing circuit 31
By the output of the arithmetic unit CPU of the same signal processing circuit 41,
This is a stage number selection loop comprised of a selection circuit 43 that selects the shift output of the intermediate stage of the one-stage shift register 1 so that the eye pattern aperture of the demodulated output extracted by the low-pass filter 6 is maximized.

そしてPLL回路2.サンプルクロック制御卸ループ3
、又は段数選択ループ4の何れかにより、受信信号Ri
nと受信信号Rinを伝送データの1シンボル時間の整
数倍だけ遅延させるシフトレジスタ1の出力との乗積出
力の低周波数成分を誤り無く識別する遅延検波の所定の
関係式(6)を満たすようにシフトレジスタ1の遅延M
Tを可変し設定する。
And PLL circuit 2. Sample clock control wholesale loop 3
, or the stage number selection loop 4, the received signal Ri
n and the output of the shift register 1 that delays the received signal Rin by an integer multiple of the transmission data symbol time. Shift register 1 delay M
Vary and set T.

〔作用〕[Effect]

遅延用シフトレジスタ1は、アンテナ10で受信した無
線周波数ω。のPSK変調の受信信号列R(t)を発振
周波数ωLの局部発振器20の出力とミクサ30にて混
合し周波数変換された受信信号Rinを入力し、伝送デ
ータの1シンボル時間の整数倍だけ遅延させる。そして
ビットシフトの為のサンプルクロックの周波数がfsで
ありシフト段数がm段であるので、その遅延時間Tは式
T=m/fsで表せる。 本発明の第1発明では、PL
L回路2が、受信信号Rinの位相とシフトレジスタl
の途中段の出力にの位相を比較する位相比較器21の出
力誤差により、シフトレジスタ1のサンプルクロックの
電圧制御発振器22の周波数fsを制御し、受信信号R
1nとシフトレジスタ1の最終段lのシフト出力との積
の低周波数成分を誤り無く識別する遅延検波の所定の関
係式(6)を満たすシフトレジスタ1の遅延量T=m/
fs  を設定する。従って無線周波数ω。の受信信号
R(t)を周波数変換する受信の局部発振器20の発振
周波数ωLが変動しても、上記のPLL回路2が遅延検
波の所定の関係式(6)を満たすようにシフトレジスタ
1の遅延、ITを設定するので、乗算器5の出力の復調
アイパターン開口の劣化は生ぜず、常に最適のPSK復
調の復調特性を得ることができるので問題が解決される
The delay shift register 1 receives the radio frequency ω received by the antenna 10. The received signal sequence R(t) of PSK modulation is mixed with the output of the local oscillator 20 having the oscillation frequency ωL in the mixer 30, and the frequency-converted received signal Rin is inputted and delayed by an integral multiple of the time of one symbol of the transmission data. let Since the frequency of the sample clock for bit shifting is fs and the number of shift stages is m, the delay time T can be expressed by the formula T=m/fs. In the first aspect of the present invention, PL
The L circuit 2 inputs the phase of the received signal Rin and the shift register l.
The frequency fs of the voltage controlled oscillator 22 of the sample clock of the shift register 1 is controlled by the output error of the phase comparator 21 which compares the phase with the output of the intermediate stage of the received signal R.
The delay amount T of the shift register 1 that satisfies the predetermined relational expression (6) for differential detection that identifies the low frequency component of the product of 1n and the shift output of the final stage l of the shift register 1 without error is T=m/
Set fs. Therefore the radio frequency ω. Even if the oscillation frequency ωL of the receiving local oscillator 20 that frequency-converts the received signal R(t) of Since the delay and IT are set, there is no deterioration of the demodulated eye pattern aperture of the output of the multiplier 5, and the problem is solved because the optimum demodulation characteristics of PSK demodulation can always be obtained.

本発明の第2発明では、サンプルクロック制御ループ3
が、人力信号Rinとm段のシフトレジスタ1の最終段
出力mとの積の低周波数成分を、信号処理回路31で、
先ずA/D変換して符号化し、演算器CPυに読込み、
タイミング再生回路8で得られる最適タイミングでN回
サンプリングし、得られたN個のサンプルデータの累積
分布の2つのピーク値の差の絶対値を求め該絶対値の前
回サンプリング時の値との差の正負によりD/A変換器
への出力値の加減算を繰り返し、最後にD/A変換した
出力電圧により、低域フィルタ6の出力の復調アイパタ
ーン開口が最大となるように、シフトレジスタ1へのサ
ンプルクロック供給の電圧制御発振器32の発振周波数
fsを制御するので、前記低周波数成分が遅延検波の所
定の関係式(6)を満たすようにシフトレジスタ1の遅
延量T(・m/fs)を設定する。
In the second aspect of the present invention, the sample clock control loop 3
However, the low frequency component of the product of the human input signal Rin and the final stage output m of the m-stage shift register 1 is processed by the signal processing circuit 31 as follows.
First, it is A/D converted, encoded, and read into the arithmetic unit CPυ.
Sampling is performed N times at the optimum timing obtained by the timing regeneration circuit 8, and the absolute value of the difference between the two peak values of the cumulative distribution of the obtained N sample data is determined, and the difference between this absolute value and the value at the time of previous sampling is determined. The output value is repeatedly added and subtracted to the D/A converter depending on the positive and negative values of Since the oscillation frequency fs of the voltage controlled oscillator 32 that supplies the sample clock is controlled, the delay amount T (·m/fs) of the shift register 1 is adjusted so that the low frequency component satisfies the predetermined relational expression (6) for delayed detection. Set.

本発明の第3発明では、段数選択ループ4が、その前記
信号処理回路31と同じ信号処理回路41の演算器cp
uの出力により、前記低域フィルタ6で取出した復調出
力のアイパターンの開口が最大となるようにm段のシフ
トレジスタ1の途中段のシフト出力を選択回路42によ
り選択するので、前記低周波数成分が遅延検波の所定の
関係式(6)を満たすシフトレジスタ1の遅延量T (
=m/fs)を設定する。従って本発明の第1発明、第
2発明、第3発明の何れでも、無線周波数ω。の受信信
号R(t)を周波数変換する受信の局部発振器20の発
振周波数ωLが変動しても、上記のPLL回路2.サン
プルクロツク制御ループ39段数選択ループ4の何れか
により、乗算器5にて遅延検波の所定の関係式(6)を
満たすようにシフトレジスタ1の遅延IJTを設定する
ので、復調出力のアイパターンの開口は劣化せず、常に
最適のPSK復調の復調特性を得ることができて問題が
解決される。
In the third aspect of the present invention, the stage number selection loop 4 is configured to include arithmetic unit cp of the same signal processing circuit 41 as the signal processing circuit 31.
Based on the output of signal u, the selection circuit 42 selects the shift output of the intermediate stage of the m-stage shift register 1 so that the opening of the eye pattern of the demodulated output extracted by the low-pass filter 6 is maximized. The delay amount T (
= m/fs). Therefore, in any of the first, second, and third aspects of the present invention, the radio frequency ω. Even if the oscillation frequency ωL of the receiving local oscillator 20 that converts the frequency of the received signal R(t) of the PLL circuit 2. Since the delay IJT of the shift register 1 is set by one of the sample clock control loop 39 and the stage number selection loop 4 so that the multiplier 5 satisfies the predetermined relational expression (6) for delayed detection, the eye pattern of the demodulated output is The problem is solved because the aperture does not deteriorate and the optimum demodulation characteristics of PSK demodulation can always be obtained.

〔実施例〕〔Example〕

第2図は本発明の第1発明の実施例の遅延検波回路の構
成を示すブロック図であり、第7図の(a)。
FIG. 2 is a block diagram showing the configuration of the delay detection circuit according to the first embodiment of the present invention, and is shown in FIG. 7(a).

(b)、 (C)、 (d)が、その動作を説明するた
めの説明図である。そして第3図、第4図は第2発明、
第3発明の実施例の遅延検波回路の構成を示すブロック
図である。何れも2相PSK遅延検波器に適用した場合
であり、遅延回路素子は、サンプルクロックがfs(I
lz)であり、シフト段数がm段のシフトレジスタ1で
構成され、その遅延時間Tは次式で定まる。
(b), (C), and (d) are explanatory diagrams for explaining the operation. And FIGS. 3 and 4 show the second invention,
FIG. 3 is a block diagram showing the configuration of a delay detection circuit according to an embodiment of the third invention. In both cases, the delay circuit element is applied to a two-phase PSK delay detector, and the sample clock is fs (I
lz), and is composed of a shift register 1 having m shift stages, and its delay time T is determined by the following equation.

T = m/fs           (8)遅延検
波のPSK復調器では、アンテナ10で受信した無線周
波数ω。のPSK変調の受信信号R(t)を局部発振器
20の出力ωLで周波数変換した受信信号Rinと、遅
延用の段数mのシフトレジスタ1の出力とを乗算器5に
て乗積し、低域通過フィルタ6によりその低周波数成分
のみを取り出し、前記の式(5)で表される復調出力を
得る。この復調出力を識別器7にて、データのタイミン
グ再生回路8からのアイパターン開口が最大となる識別
に最適のタイミングで識別してデータを再生する。
T = m/fs (8) In the delayed detection PSK demodulator, the radio frequency ω received by the antenna 10. The received signal Rin obtained by frequency-converting the received signal R(t) of PSK modulation using the output ωL of the local oscillator 20 is multiplied by the output of the shift register 1 with m stages for delay in the multiplier 5, and the low frequency Only the low frequency components are extracted by the pass filter 6, and a demodulated output expressed by the above equation (5) is obtained. This demodulated output is identified by the discriminator 7 at the optimum timing for identification, at which the eye pattern opening from the data timing reproducing circuit 8 is maximized, and the data is reproduced.

第2図の第1発明の実施例では、遅延素子のシフト段数
がm段のシフI・レジスタ1の入力Rinと、m段の途
中段のシフト出力にとを、PLL回路2の位相比較器2
1の入力端a、bへ入力し、その位相誤差の誤差電圧o
utを、電圧制御発振器22(自動発振器vCO1又は
水晶発振器VCXO)の制御電圧として印加し、電圧制
御発振器22の発振周波数fsを可変する。ここでkは
、 (m−k)/fs−π/2/(ω0−ωL)(9)で与
えられる。この人力Rinとに段遅延後の出力との位相
差は、入力の2相PSK信号Rinの位相0゜πによっ
て、±π/2となる。このPLL回路20位相比較器2
1の入力端a、bの位相誤差と、出力電圧Voutの関
係を説明図の第7図の(a) PLL回路の特性に、電
圧制御発振器22の制御電圧Vcと発振周波数fの関係
を第7図の(b)電圧′制御発振器の特性に示す。これ
より、I’LL回路2の位相安定点は、第7図の(a)
 PLL回路の特性の位相誤差が±π/2の2点であり
、これは遅延素子のシフトレジスタ1の入力Rinとm
段シフト後の出力の位相差帆πに対応している。
In the embodiment of the first invention in FIG. 2
1, and the error voltage o of the phase error is input to the input terminals a and b of
ut is applied as a control voltage to the voltage controlled oscillator 22 (automatic oscillator vCO1 or crystal oscillator VCXO), and the oscillation frequency fs of the voltage controlled oscillator 22 is varied. Here, k is given by (m-k)/fs-π/2/(ω0-ωL) (9). The phase difference between this human input Rin and the stage-delayed output is ±π/2 due to the phase 0°π of the input two-phase PSK signal Rin. This PLL circuit 20 phase comparator 2
1, the relationship between the phase error of the input terminals a and b and the output voltage Vout is shown in FIG. 7 (a) of the explanatory diagram. The characteristics of the voltage controlled oscillator are shown in FIG. 7(b). From this, the phase stable point of the I'LL circuit 2 is shown in (a) in Figure 7.
The phase error of the characteristics of the PLL circuit is at two points of ±π/2, which is the input Rin and m of the shift register 1 of the delay element.
This corresponds to the phase difference sail π of the output after the stage shift.

よってPLL回路2は、2相PSK変調波に対して常に
次式を満たすように収束する。
Therefore, the PLL circuit 2 always converges the two-phase PSK modulated wave so as to satisfy the following equation.

(ω。−ωL)xT=nπ (nは自然数>  (10
)ただし式(10)においてnが奇数に収束した場合は
、式(5)の出力の正負が反転し、再生データにビット
符号の逆転が起きてしまうので、これに対しては、復調
後のデータタイミング再生回路5にて同期信号の検出時
に確定するか、周波数変換用局部発振器20にて±π/
2を超える位相誤差を生じる発振周波数ωLの変動が無
いようにすることで、正しい再生データ列を得ることが
出来る。
(ω.-ωL)xT=nπ (n is a natural number> (10
) However, if n converges to an odd number in Equation (10), the sign of the output of Equation (5) will be reversed and the bit sign will be reversed in the reproduced data. The data timing regeneration circuit 5 determines when the synchronization signal is detected, or the frequency conversion local oscillator 20 determines ±π/
By avoiding fluctuations in the oscillation frequency ωL that would cause a phase error of more than 2, a correct reproduced data string can be obtained.

第7図の(C)は位相比較器21の構成例を示し、第7
図の(d)はその動作タイムチャートを示す。第7図の
(C)の位相比較器の構成は、エツジ検出器211゜エ
ツジ検出器212. RSフリップフロップ213.差
動増幅器214.低域フィルタ215で構成され、エツ
ジ検出器211 とエツジ検出器212は、第7図の(
d)タイムチャートの如く、位相比較する2つの入力信
号a、bの立上りと立下りを検出してパルスc、dを発
生してRSフリップフロップ213へ入力し、a入力の
立上り又は立下りエツジでRSフリップフロップ213
をセットし、b入力の立上り又は立下りエツジでリセッ
トする。これより、l?sフリップフロップ213の出
力口には、第7図(d)タイムチャートのeの如く、2
つのディジタル信号入力a、bの位相差−に対応したパ
ルス幅−の矩形信号が得られる。
FIG. 7(C) shows a configuration example of the phase comparator 21, and the seventh
(d) of the figure shows the operation time chart. The configuration of the phase comparator shown in FIG. 7(C) is as follows: edge detector 211, edge detector 212. RS flip-flop 213. Differential amplifier 214. It consists of a low-pass filter 215, and the edge detector 211 and the edge detector 212 are shown in FIG.
d) As shown in the time chart, detect the rising and falling edges of the two input signals a and b whose phases are to be compared, generate pulses c and d, and input them to the RS flip-flop 213. RS flip-flop 213
is set and reset at the rising or falling edge of the b input. From this, l? At the output port of the S flip-flop 213, as shown in e of the time chart of FIG.
A rectangular signal with a pulse width corresponding to the phase difference between the two digital signal inputs a and b is obtained.

このRSフリップフロップ213の出力口とその反転出
力Qを差動増幅器214のオペアンプを用いて、第7図
(d)のfの如く、電圧Oνを中心に変化する波形に変
換した後、低域フィルタ215をループフィルタとして
、パルス幅−に比例した値の直流電圧を得る。この直流
電圧を誤差電圧VcとしてPLL回路2の電圧制御発振
器22の発振周波数fを制御し、第7図の(ハ)の如く
、誤差電圧Vc=Oの発振周波数f。
After converting the output port of this RS flip-flop 213 and its inverted output Q into a waveform that changes around the voltage Oν as shown in f in FIG. 7(d) using the operational amplifier of the differential amplifier 214, the low frequency By using the filter 215 as a loop filter, a DC voltage having a value proportional to the pulse width is obtained. This DC voltage is used as the error voltage Vc to control the oscillation frequency f of the voltage controlled oscillator 22 of the PLL circuit 2, and as shown in FIG. 7(c), the oscillation frequency f when the error voltage Vc=O.

になるように制御する。PLL回路2のループフィルタ
215の時定数は、高速フェーディングによるPLL回
路2の入力信号a、bの変動により電圧制御発振器22
の発振周波数fが振られない程度に長く、且つPLL回
路2が適当な引込み時間を得るように設定する。
control so that The time constant of the loop filter 215 of the PLL circuit 2 changes due to fluctuations in the input signals a and b of the PLL circuit 2 due to high-speed fading.
The oscillation frequency f is set to be long enough not to fluctuate, and the PLL circuit 2 is set to have an appropriate pull-in time.

第3図の第2発明の実施例では、入力信号Rinと、m
段のシフトレジスタ1のシフト後の出力mとを乗算器5
にて乗算し、低域フィルタ6によりその低周波数成分の
みを取り出し、前記の式(5)で表される復調出力を得
、この復調出力を識別器7にてアイパターン開口が最も
大きくなる識別に最適のタイミングで識別してデータを
再生するが、この低域フィルタ6の出力を、サンプルク
ロック制御ループ3の信号処理回路31のA/D変換器
311にてA/D変喚してCF’U 312に読込み、
後述のアイパターン開口を最大とするアルゴリズムに従
って演算し、得られた値をD/A変換器313でD/A
変換して電圧制御発振器32のVCO(可変)の制御電
圧として印加し、その発振周波数fsを可変しシフトレ
ジスタ1のサンプルクロックfsを設定する。
In the embodiment of the second invention shown in FIG.
The shifted output m of the shift register 1 of the stage is multiplied by the multiplier 5.
A low-pass filter 6 extracts only the low frequency components to obtain a demodulated output expressed by the above equation (5), and this demodulated output is passed to a discriminator 7 to identify the one with the largest eye pattern aperture. The output of the low-pass filter 6 is A/D converted by the A/D converter 311 of the signal processing circuit 31 of the sample clock control loop 3 and converted into a CF. 'U read into 312,
The calculation is performed according to an algorithm that maximizes the eye pattern aperture, which will be described later, and the obtained value is converted into a D/A converter 313
The converted signal is applied as a control voltage to the VCO (variable) of the voltage controlled oscillator 32, and its oscillation frequency fs is varied to set the sample clock fs of the shift register 1.

以下にサンプルクロック制御ループ3の信号処理回路3
1のCPU 312の演算アルゴリズムを示す。■D/
A変換器313へOを出力し初期設定する。 ■A/D
変換器311からの入力値νiを、タイミング再生回路
8で得られる最適タイミングでN回すンプルする。
Below is the signal processing circuit 3 of sample clock control loop 3.
1 shows the calculation algorithm of the CPU 312 of No. 1. ■D/
Output O to the A converter 313 and initialize it. ■A/D
The input value νi from the converter 311 is sampled N times at the optimal timing obtained by the timing recovery circuit 8.

■得られたN個のデータ値Vに対する累積分布を求める
(2) Find the cumulative distribution for the N data values V obtained.

■累積分布にはアイパターン開口に対応した2つのピー
ク値が生じる。これを夫々、V o 、V tとして、
差の絶対値Δν0=  vH−vL を求める。
(2) The cumulative distribution has two peak values corresponding to the eye pattern aperture. Let these be V o and V t, respectively.
The absolute value of the difference Δν0=vH−vL is determined.

■D/A変換器313への出力値ΔvOをインクリメン
ト、またはデクリメントする。
(2) Increment or decrement the output value ΔvO to the D/A converter 313.

■ ■〜■を繰り返し、値ΔVK=VM−VLを求める
(2) Repeat steps (2) to (2) to obtain the value ΔVK=VM-VL.

■ 前回サンプリング時の値ΔV K−1との差が正Δ
VK−ΔV K−1> 0の場合は、■に戻り同じ操作
を続け、負ΔvK−ΔV X−1< 0の場合は、■に
戻り反対の操作を行う。
■ The difference from the previous sampling value ΔV K-1 is positive Δ
If VK-ΔV K-1>0, return to ① and continue the same operation; if negative ΔvK-ΔV X-1<0, return to ② and perform the opposite operation.

CPU312は、以上の演算を繰り返して、アイパター
ンのση口が最・大となるように電圧制御発振器22の
発振周波数fを制御する。そして■のA/D変換器31
1からの入力4fl V iをサンプルするサンプル数
Nは、高速フェーディングによってCPU 312から
D/A変換器313への出力値が変動して電圧制御発振
器32のVCO発振周波数fが振られない程度に大きく
、且つ適当な収束時間が得られるような数に設定する。
The CPU 312 repeats the above calculation and controls the oscillation frequency f of the voltage controlled oscillator 22 so that the ση of the eye pattern is maximized. and ■A/D converter 31
The number of samples N for sampling the input 4fl Vi from 1 is such that the output value from the CPU 312 to the D/A converter 313 fluctuates due to high-speed fading, and the VCO oscillation frequency f of the voltage controlled oscillator 32 does not fluctuate. Set the number to be large enough to obtain an appropriate convergence time.

第4図の第3発明の実施例は、段数選択ループ4が、前
記信号処理回路31と同じ信号処理回路41とm段シフ
トレジスタlの途中段のシフト出力を選択する選択回路
42と乗算器5と低域フィルタ6で構成され、信号処理
回路41の演算器CPU 412の出力により、前記低
域フィルタ6で取出した復調出力の低周波成分のアイパ
ターン開口が最大となるようにm段のシフトレジスタ1
の途中段のシフト出力を選択回路42のm対lセレクタ
により選択するので、前記低域フィルタ6の出力の低周
波成分が常に遅延検波の所定の関係式(6)を満たすよ
うにシフトレジスタ1の遅延WT (、・m/fs)を
設定する。
In the embodiment of the third invention shown in FIG. 4, the stage number selection loop 4 includes a signal processing circuit 41 that is the same as the signal processing circuit 31, a selection circuit 42 that selects the shift output of an intermediate stage of the m-stage shift register l, and a multiplier. 5 and a low-pass filter 6, and the output of the arithmetic unit CPU 412 of the signal processing circuit 41 is used to select m stages of shift register 1
Since the shift output in the middle stage of is selected by the m-to-l selector of the selection circuit 42, the shift register 1 is selected so that the low frequency component of the output of the low-pass filter 6 always satisfies the predetermined relational expression (6) of delay detection. The delay WT (,·m/fs) is set.

信号処理回路41の演算器CPU 412の出力により
選択口842を制御してシフトレジスタlの途中段のシ
フト出力を選択しアイパターン開口が最大となるように
切り換えるアルゴリズムは、前述の第3図の第2発明の
実施例と同様である。
The algorithm for controlling the selection port 842 by the output of the arithmetic unit CPU 412 of the signal processing circuit 41 to select the shift output in the middle stage of the shift register l and switching it so that the eye pattern aperture is maximized is as shown in FIG. This is similar to the embodiment of the second invention.

以上、第2図の第1発明の実施例、第3図の第2発明の
実施例、第4図の第3発明の実施例の何れでも、無線周
波数ω。の受信信号R(t)を周波数変換する受信の局
部発振器20の発振周波数ωLが周囲温度や振動や電源
電圧変動などで変動しても、上記のPLL回路2.サン
プルクロック制御ループ3゜段数選択ループ4の何れか
により、遅延検波の所定の関係式(6)を満たすように
シフトレジスタ1の遅延量Tを可変し設定するので、乗
算器5の出力の復調アイパターンの開口は劣化せず、常
に最適のPSK復調の復調特性を得ることができて問題
が無い。
As described above, in any of the embodiment of the first invention shown in FIG. 2, the embodiment of the second invention shown in FIG. 3, and the embodiment of the third invention shown in FIG. Even if the oscillation frequency ωL of the receiving local oscillator 20 that converts the frequency of the received signal R(t) of the PLL circuit 2. Since the delay amount T of the shift register 1 is varied and set by either the sample clock control loop 3 or the stage number selection loop 4 so as to satisfy the predetermined relational expression (6) for delayed detection, the output of the multiplier 5 can be demodulated. The eye pattern aperture does not deteriorate, and the optimum demodulation characteristics of PSK demodulation can always be obtained without any problem.

なお、以上の実施例は、2相PSK復調について説明し
たが、多相psに復調においても本発明を適用できるこ
とは勿論である。
Although the above embodiments have been described with respect to two-phase PSK demodulation, it goes without saying that the present invention can also be applied to multi-phase PS demodulation.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば、PSK復調に用い
る受信機の遅延検波器において、受信機の周波数変換の
為の局部発振器の発振周波数が変動した場合でも復調出
力のアイパターンの劣化が生じないため、PSK変調の
移動無線の受信機が常に最適の復調特性を有する効果が
得られる。
As explained above, according to the present invention, in the delay detector of the receiver used for PSK demodulation, even if the oscillation frequency of the local oscillator for frequency conversion of the receiver fluctuates, the eye pattern of the demodulated output deteriorates. Therefore, it is possible to obtain the effect that a PSK modulated mobile radio receiver always has optimal demodulation characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の遅延検波回路の構成を示す原理図、 第2図は本発明の第1発明の実施例の遅延検波回路の構
成を示すブロック図、 第3図は本発明の第2発明の実施例の遅延検波回路の構
成を示すブロック図、 第4図は本発明の第3発明の実施例の遅延検波回路の構
成を示すブロック図、 第5図は従来の遅延検波回路のブロック図、第6図は従
来の遅延検波回路の動作を説明するための復調アイパタ
ーン、 第7図の(a)、 (b)、 (C)、 (d)は第1
発明の詳細な説明するための説明図である。 図において、 1は遅延用シフトレジスタ、2はPLL回路、21は位
相比較器、22は電圧制御発振器、3はサンプルクロッ
ク制御ループ、31は信号処理回路、311はへ/D変
換器、312はCPU 、313はD/A変換器、32
は電圧制御発振器、4は段数選択ループ、41は信号処
理回路、411はA/D変換器、412はCPU 、4
2はシフト段数の選択回路、5は乗算器、6は低域フィ
ルタ、7は識別器、8はタイミング再生回路、10はア
ンテナ、20は局部発振器、30はミキサである。 \0 (d)クイムチv−) 本命明の第1売明の大梵4J’lの説明図第7図 (イの2)
FIG. 1 is a principle diagram showing the configuration of a delay detection circuit according to the present invention. FIG. 2 is a block diagram showing the configuration of a delay detection circuit according to an embodiment of the first invention. FIG. FIG. 4 is a block diagram showing the configuration of a delay detection circuit according to an embodiment of the invention. FIG. 4 is a block diagram showing the configuration of a delay detection circuit according to a third embodiment of the invention. FIG. 5 is a block diagram of a conventional delay detection circuit. 6 is a demodulation eye pattern for explaining the operation of a conventional delay detection circuit, and FIG. 7 (a), (b), (C), and (d) are the first
FIG. 2 is an explanatory diagram for explaining the invention in detail. In the figure, 1 is a delay shift register, 2 is a PLL circuit, 21 is a phase comparator, 22 is a voltage controlled oscillator, 3 is a sample clock control loop, 31 is a signal processing circuit, 311 is a to/D converter, and 312 is a CPU, 313 is a D/A converter, 32
4 is a voltage controlled oscillator, 4 is a stage selection loop, 41 is a signal processing circuit, 411 is an A/D converter, 412 is a CPU, 4
2 is a shift stage number selection circuit, 5 is a multiplier, 6 is a low-pass filter, 7 is a discriminator, 8 is a timing recovery circuit, 10 is an antenna, 20 is a local oscillator, and 30 is a mixer. \0 (d) Kuimuchi v-) Explanatory diagram of Honmeimei's 1st Umei Daibon 4J'l Figure 7 (A-2)

Claims (1)

【特許請求の範囲】 1、受信した無線周波数のPSK変調の信号を発振周波
数ω_Lの局部発振器(20)の出力と混合して周波数
変換した受信信号(Rin)を、伝送データの1シンボ
ル時間の整数倍だけ遅延させた信号と乗算(5)しその
低周波数成分のみを低域フィルタ(6)で取出し、デー
タのタイミング再生回路(8)で再生した最適のタイミ
ングで識別(7)しデータを再生するPSK復調器の遅
延検波回路において、伝送データを遅延させる手段とし
てシフトレジスタ(1)を用い、該シフトレジスタの入
力(Rin)と途中段の出力(k)の位相を比較する位
相比較器(21)の出力誤差により該シフトレジスタへ
サンプルクロックを供給する電圧制御発振器(22)の
発振周波数fsを制御するPLL回路(2)を備え、該
PLL回路(2)の電圧制御発振器(22)の発振周波
数fsの出力を前記遅延用のシフトレジスタ(1)のサ
ンプルクロックとすることにより前記局部発振器(20
)の発振周波数ω_Lが変動しても常に該シフトレジス
タ(1)が所定時間Tだけ受信信号(Rin)を遅延す
ることを特徴とした遅延検波回路。 2、受信した無線周波数のPSK変調の信号を発振周波
数ω_Lの局部発振器(20)の出力と混合して周波数
変換した受信信号(Rin)を、伝送データの1シンボ
ル時間の整数倍だけ遅延させた信号と乗算(5)し、そ
の低周波数成分のみを低域フィルタ(6)で取出し、デ
ータのタイミング再生回路(8)で再生したアイパター
ン開口が最大となる最適のタイミングで識別(7)しデ
ータを再生するPSK復調器の遅延検波回路において、 伝送データを遅延させる手段としてシフトレジスタ(1
)を用い、該低域フィルタ(6)で取出した低周波数成
分を符号化し演算器CPUに読込み前記タイミング再生
回路(8)で得られる最適タイミングでN回サンプリン
グし、得られたN個のサンプルデータの累積分布の2つ
のピーク値の差の絶対値を求め該絶対値の前回サンプリ
ング時の値との差の正負により出力値の加減算を繰り返
す信号処理回路(31)のD/A変換出力により前記ア
イパターン開口が最大となるように該シフトレジスタ(
1)へサンプルクロックを供給する電圧制御発振器(3
2)の発振周波数fsを制御するサンプルクロック制御
ループ(3)を備え、 該サンプルクロック制御ループ(3)の電圧制御発振器
(32)の出力fsを該シフトレジスタ(1)のサンプ
ルクロックとすることにより前記局部発振器(20)の
発振周波数ω_Lが変動しても常に該シフトレジスタ(
1)が所定時間Tだけ受信信号(Rin)を遅延するこ
とを特徴とした遅延検波回路。 3、受信した無線周波数のPSK変調の信号を発振周波
数ω_Lの局部発振器(20)の出力と混合して周波数
変換した受信信号(Rin)を、伝送データの1シンボ
ル時間の整数倍だけ遅延させた信号と乗算(5)し、そ
の低周波数成分のみを低域フィルタ(6)で取出し、デ
ータのタイミング再生回路(8)で再生したアイパター
ン開口が最大となる最適のタイミングで識別(9)しデ
ータを再生するPSK復調器の遅延検波回路において、 該低域フィルタ(6)で取出した低周波数成分を符号化
し演算器CPUに読込み前記タイミング再生回路(8)
で得られる最適タイミングでN回サンプリングし、得ら
れたN個のサンプルデータの累積分布の2つのピーク値
の差の絶対値を求め該絶対値の前回サンプリング時の値
との差の正負により出力値の加減算を繰り返す信号処理
回路(41)の出力により前記アイパターン開口が最大
となるように該シフトレジスタ(1)の途中段のシフト
出力を選択する選択回路(42)からなる段数選択ルー
プ(4)を備え、 該段数選択ループ(4)の選択回路(42)が選択した
シフト出力により前記局部発振器(20)の発振周波数
ω_Lが変動しても常に該シフトレジスタ(1)が所定
時間Tだけ受信信号(Rin)を遅延することを特徴と
した遅延検波回路。
[Claims] 1. The received signal (Rin) obtained by mixing the received radio frequency PSK modulated signal with the output of the local oscillator (20) of the oscillation frequency ω_L and converting the frequency is Multiply (5) with a signal delayed by an integer multiple, extract only the low frequency component with a low-pass filter (6), identify (7) at the optimal timing reproduced by the data timing regeneration circuit (8), and process the data. In the delay detection circuit of the PSK demodulator to be reproduced, a shift register (1) is used as a means for delaying transmission data, and a phase comparator that compares the phase of the input (Rin) of the shift register and the output (k) of an intermediate stage. The voltage controlled oscillator (22) of the PLL circuit (2) is provided with a PLL circuit (2) that controls the oscillation frequency fs of the voltage controlled oscillator (22) that supplies a sample clock to the shift register based on the output error of the PLL circuit (21). The output of the oscillation frequency fs of the local oscillator (20) is used as the sample clock of the delay shift register (1).
1. A delay detection circuit characterized in that said shift register (1) always delays a received signal (Rin) by a predetermined time T even if the oscillation frequency ω_L of ) changes. 2. The received signal (Rin), which is frequency-converted by mixing the received radio frequency PSK modulated signal with the output of the local oscillator (20) of oscillation frequency ω_L, is delayed by an integer multiple of one symbol time of the transmission data. The signal is multiplied (5), only its low frequency components are extracted with a low-pass filter (6), and the data is identified at the optimal timing at which the reproduced eye pattern aperture (8) is maximized (7). In the delay detection circuit of the PSK demodulator that reproduces data, a shift register (1
), the low frequency components extracted by the low-pass filter (6) are encoded, read into the arithmetic unit CPU, and sampled N times at the optimal timing obtained by the timing recovery circuit (8), resulting in N samples. Based on the D/A conversion output of the signal processing circuit (31), which calculates the absolute value of the difference between two peak values of the cumulative distribution of data and repeats addition and subtraction of the output value depending on the sign of the difference between the absolute value and the value at the time of previous sampling. The shift register (
Voltage controlled oscillator (3) that supplies the sample clock to (1)
2) includes a sample clock control loop (3) for controlling the oscillation frequency fs of the sample clock control loop (3), and uses the output fs of the voltage controlled oscillator (32) of the sample clock control loop (3) as the sample clock of the shift register (1). Therefore, even if the oscillation frequency ω_L of the local oscillator (20) changes, the shift register (
A delay detection circuit characterized in that 1) delays a received signal (Rin) by a predetermined time T. 3. The received signal (Rin), which is frequency-converted by mixing the PSK modulated signal of the received radio frequency with the output of the local oscillator (20) of oscillation frequency ω_L, is delayed by an integral multiple of the time of one symbol of the transmission data. The signal is multiplied (5), only its low frequency components are extracted with a low-pass filter (6), and the data is identified at the optimal timing at which the reproduced eye pattern aperture (8) is maximized (9). In the delay detection circuit of the PSK demodulator that reproduces data, the low frequency components extracted by the low-pass filter (6) are encoded and read into the arithmetic unit CPU, and the timing regeneration circuit (8)
Sampling is performed N times at the optimal timing obtained by , and the absolute value of the difference between the two peak values of the cumulative distribution of the obtained N sample data is determined and output based on the sign or negative of the difference between the absolute value and the value at the time of previous sampling. A stage number selection loop (42) comprising a selection circuit (42) that selects the shift output of the intermediate stage of the shift register (1) so that the eye pattern aperture is maximized by the output of the signal processing circuit (41) that repeats addition and subtraction of values. 4), and even if the oscillation frequency ω_L of the local oscillator (20) fluctuates due to the shift output selected by the selection circuit (42) of the stage number selection loop (4), the shift register (1) always maintains the predetermined time T. A delay detection circuit characterized in that it delays a received signal (Rin) by .
JP1026202A 1989-02-03 1989-02-03 Delay detecting circuit Pending JPH02206263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1026202A JPH02206263A (en) 1989-02-03 1989-02-03 Delay detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1026202A JPH02206263A (en) 1989-02-03 1989-02-03 Delay detecting circuit

Publications (1)

Publication Number Publication Date
JPH02206263A true JPH02206263A (en) 1990-08-16

Family

ID=12186885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1026202A Pending JPH02206263A (en) 1989-02-03 1989-02-03 Delay detecting circuit

Country Status (1)

Country Link
JP (1) JPH02206263A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095744A (en) * 2013-11-12 2015-05-18 日本電信電話株式会社 Radio communication system
JP2016076751A (en) * 2014-10-02 2016-05-12 富士通株式会社 Reception circuit and method for controlling the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095744A (en) * 2013-11-12 2015-05-18 日本電信電話株式会社 Radio communication system
JP2016076751A (en) * 2014-10-02 2016-05-12 富士通株式会社 Reception circuit and method for controlling the same

Similar Documents

Publication Publication Date Title
KR970007618B1 (en) Afc circuit for qpsk demodulator
US5093848A (en) Method of controlling the frequency of a coherent radio receiver and apparatus for carrying out the method
US5640427A (en) Demodulator
US4827488A (en) Demodulator for PSK-modulated signals
CN108712190B (en) Multi-carrier tracking method and tracking device
JPH02206263A (en) Delay detecting circuit
JP3489493B2 (en) Symbol synchronizer and frequency hopping receiver
JP2931454B2 (en) Digital phase modulation signal demodulation circuit
US5982200A (en) Costas loop carrier recovery circuit using square-law circuits
JPH0541717A (en) Demodulator for digital modulated wave
CN114793154B (en) Timing synchronization locking detection method
JPH0897874A (en) Offset qpsk demodulator
JPH07235835A (en) Digital if- all baseband signal converter
EP0534180B1 (en) MSK signal demodulating circuit
JP3518429B2 (en) Digital PLL device and symbol synchronizer
KR19980077667A (en) Symbol Timing Recovery Device
KR100246619B1 (en) Demodulation apparatus for up-stream link in very high speed digital subscriber line
JPH1028149A (en) Clock recovery circuit
Gustrau et al. Reducing the PLL noise bandwidth by a digital split-loop
JPH066397A (en) Delay detector
JPH0648828B2 (en) Line monitor circuit
KR20000020597A (en) Apparatus for detecting symbol synchronous lock in digital receiver and method therefor
Patel et al. Digital Implementation of Costas Loop with Carrier Recovery
KR960027863A (en) Carrier recovery device
JPH04315342A (en) Delay detection circuit