JPH02206183A - Josephson junction and manufacture thereof - Google Patents

Josephson junction and manufacture thereof

Info

Publication number
JPH02206183A
JPH02206183A JP1028000A JP2800089A JPH02206183A JP H02206183 A JPH02206183 A JP H02206183A JP 1028000 A JP1028000 A JP 1028000A JP 2800089 A JP2800089 A JP 2800089A JP H02206183 A JPH02206183 A JP H02206183A
Authority
JP
Japan
Prior art keywords
film
oxide superconductor
josephson junction
conducting layer
normal conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1028000A
Other languages
Japanese (ja)
Inventor
Chiyoushin Sai
兆申 蔡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1028000A priority Critical patent/JPH02206183A/en
Publication of JPH02206183A publication Critical patent/JPH02206183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide an S-N-S junction of good quality having a clean S-N interface by depositing a normal conducting layer on a cleaved face on a sidewall of an oxide superconductor film and making Josephson junction, through the normal conducting layer, between the oxide superconductor film and a superconducting counter electrode film produced on the normal conducting layer. CONSTITUTION:A substrate 2 having an oxide superconductor film 1 deposited thereon and cooled to a low temperature under a vacuum is cleaved. On the clean cleaved face 4 thus obtained on the film wall, a normal conducting layer 5 and a superconducting counter electrode 3 are vacuum deposited in the direction as indicated by the arrows in the figure, whereby an S-N-S, Josephson junction 6 is obtained. If the normal conducting layer 5 is formed of gold or platinum, a stable S-N interface can be obtained. Further, if the oxide superconductor is an epitaxial film, the flat cleaved face 4 can be obtained on the film wall. The Josephson junction 6 thus obtained is of better quality.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物超伝導体を少なくとも一方の電極に持つ
5−N−9型ジョセフソン接合及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a 5-N-9 type Josephson junction having an oxide superconductor in at least one electrode and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

高温酸化物超伝導体は超伝導コヒーレンス長が約数nm
と大変短いので、これを電極にしたジョセフソン接合は
、5−I−3型よりも5−N−8型の方が作りやす・い
と考えられている。従来この種の5−N−3接合は第4
図に示した断面構造を持つものが作られていた。図中、
1は酸化物超伝導体膜、2は基板、3は対向電極、5は
常伝導層である。酸化物超伝導体膜1と対向電極3との
超伝導オーダパラメータは常伝導層5の中まで近接効果
により侵入するので、この常伝導層5が十分に薄ければ
画電極はジョセフソン結合する。この常伝導層の厚さは
近接効果によりコヒーレンス長ξNと同じオーダーであ
ることが必要であり、極低温では通常ξN21庫である
The superconducting coherence length of high-temperature oxide superconductors is approximately several nm.
Therefore, it is thought that it is easier to make a Josephson junction using this as an electrode in the 5-N-8 type than in the 5-I-3 type. Conventionally, this type of 5-N-3 junction
A device with the cross-sectional structure shown in the figure was manufactured. In the figure,
1 is an oxide superconductor film, 2 is a substrate, 3 is a counter electrode, and 5 is a normal conductive layer. The superconducting order parameters of the oxide superconductor film 1 and the counter electrode 3 penetrate into the normal conducting layer 5 due to the proximity effect, so if the normal conducting layer 5 is sufficiently thin, the picture electrode will undergo Josephson coupling. . The thickness of this normal conducting layer needs to be of the same order as the coherence length ξN due to the proximity effect, and is usually ξN21 at extremely low temperatures.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、Yl Baz Cu307−sに代表される
1−2−3相化合物やB1−5r−Ca−Cu−0,T
Q−Ba−Ca−Cu−0などの高温酸化物超伝導体の
自然に形成されたその表面は、非超伝導物質である。通
常のパックスバッタ法などによる表面のクリーニングは
、超伝導体の結晶にイオンダメージを与えるので効果が
ない。したがってこのような非超伝導な表面に、第4図
のように5−N−5接合を作っても、酸化物超伝導体膜
1と常伝導層5間の清浄なコンタクトがとれないので、
得られたジョセフソン接合の特性は、理想的な5−N−
5接合特性からほど遠いものであった。
By the way, 1-2-3 phase compounds represented by Yl Baz Cu307-s and B1-5r-Ca-Cu-0,T
The naturally formed surface of high temperature oxide superconductors such as Q-Ba-Ca-Cu-0 is a non-superconducting material. Cleaning the surface using the usual Paxbatter method is ineffective because it damages the superconductor crystals with ions. Therefore, even if a 5-N-5 junction is made on such a non-superconducting surface as shown in FIG. 4, clean contact cannot be made between the oxide superconductor film 1 and the normal conductive layer 5.
The characteristics of the obtained Josephson junction are those of the ideal 5-N-
5 junction characteristics.

本発明の目的は上記課題を解決したジョセフソン接合と
その製造方法を提供することにある。
An object of the present invention is to provide a Josephson junction that solves the above problems and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明によるジョセフソン接
合においては、酸化物超伝導体膜の膜側壁劈開面上に成
膜された常伝導層を介して前記酸化物超伝導体膜と前記
常伝導層上に作られた超伝導対向電極膜とをジョセフソ
ン結合させものである。
In order to achieve the above object, in the Josephson junction according to the present invention, the oxide superconductor film and the normal conductor This layer is made by Josephson coupling with a superconducting counter electrode film formed on the layer.

本発明のジョセフソン接合は、基板上に成膜されている
酸化物超伝導体膜を低温真空環境下において劈開し、得
られた膜側壁劈開面上に、前記低温真空環境下において
常伝導層及び超伝導対向電極膜を順次成膜する製造方法
によって得られる。
In the Josephson junction of the present invention, an oxide superconductor film formed on a substrate is cleaved in a low-temperature vacuum environment, and a normal conductive layer is placed on the resulting film sidewall cleavage plane in the low-temperature vacuum environment. and a manufacturing method in which superconducting counter electrode films are sequentially formed.

〔作用〕[Effect]

酸化物超伝導体を低温環境で劈開すると清浄な酸化物の
表面を露出させることができる。これは低温環境下では
化学反応速度が大変遅くなるので、新しく露出した表面
が劣化しないからである。このような状態でこの清浄面
に常伝導層を成膜することにより、清浄なS−N界面が
得られる。その手順を第3図(a)〜(c)に示す。図
中、1は酸化物超伝導体膜、2は基板、4は膜側壁臂開
面、5は常伝導層、8は溝である。第3図(a)に示し
たような酸化物超伝導体膜1が成膜されている基板2を
真空装置内に入れ、低温状態にする。これは液体窒素ト
ラップ付きのサンプルホルダーなどの手段を用いて実現
できる。このような環境中で基板2に圧力をかけ、基板
2に予め作っである溝8に沿って基板2及び超伝導体膜
1を劈開する。すると第3図(b)に示す清浄な膜側壁
臂開面4が露出する。この露出した劈開面4は、基板2
が低温状態にあるので、化学変化や表面の酸素の真空中
への脱出が起らない。このような清浄な状態で、第3図
(c)に示した矢印の成膜方向に沿って常伝導層5を真
空成膜すると、清浄なS−N界面が得られる。したがっ
てこの上にさらに超伝導対向電極を成膜することにより
5−N−5ジョセフソン接合が形成される。
By cleaving an oxide superconductor in a low-temperature environment, a clean oxide surface can be exposed. This is because the chemical reaction rate is very slow in a low-temperature environment, so the newly exposed surface does not deteriorate. By forming a normal conductive layer on this clean surface in such a state, a clean S-N interface can be obtained. The procedure is shown in FIGS. 3(a) to 3(c). In the figure, 1 is an oxide superconductor film, 2 is a substrate, 4 is a side wall opening of the film, 5 is a normal conductive layer, and 8 is a groove. A substrate 2 on which an oxide superconductor film 1 as shown in FIG. 3(a) is formed is placed in a vacuum apparatus and brought to a low temperature state. This can be achieved using means such as a sample holder with a liquid nitrogen trap. In such an environment, pressure is applied to the substrate 2 to cleave the substrate 2 and the superconductor film 1 along the grooves 8 previously formed in the substrate 2. Then, a clean membrane side wall opening surface 4 shown in FIG. 3(b) is exposed. This exposed cleavage plane 4 is located on the substrate 2.
Since it is in a low temperature state, chemical changes and surface oxygen escape into the vacuum do not occur. In such a clean state, if the normal conductive layer 5 is vacuum-deposited along the deposition direction of the arrow shown in FIG. 3(c), a clean S--N interface is obtained. Therefore, by further forming a superconducting counter electrode thereon, a 5-N-5 Josephson junction is formed.

〔実施例〕〔Example〕

以下に本発明の実施例を示す。 Examples of the present invention are shown below.

(実施例1) 第1図に本発明の第1の実施例の断面の略図を示す。図
中、1は酸化物超伝導体膜、2は基板、3は対向電極、
4は膜側壁襞開面、5は常伝導層、6は5−N−8接合
である。まず、真空中で低温に冷却した酸化物超伝導体
膜1が成膜されている基板2を劈開する。このようにし
て得られた清浄な膜側壁臂開面4に、矢印の方向から常
伝導層5及び超伝導対向電極3を真空成膜することによ
り、図示のような5−N−3接合6が得られる。この場
合酸化物超伝導体には多くの種類のものが考えられるが
、もっとも化学的に不安定なY−Ba−Cu−0のよう
な酸化物超伝導体でも、常伝導層5に金又は白金を使用
することにより安定したS−N界面が得られる。常伝導
層5の厚さを数nmにすることにより、かなりの高温ま
でジョセフソン結合を保つことができる。また酸化物超
伝導体がエピタキシャル膜であれば、平坦な膜側壁臂開
面4が得られるので、さらに良質のジョセフソン接合が
できる。対向電極3には金属超伝導体はもちろんのこと
、酸化物超伝導体を使用することも可能である。
(Example 1) FIG. 1 shows a schematic cross-sectional view of a first example of the present invention. In the figure, 1 is an oxide superconductor film, 2 is a substrate, 3 is a counter electrode,
4 is a membrane side wall fold opening, 5 is a normal conductive layer, and 6 is a 5-N-8 junction. First, the substrate 2 on which the oxide superconductor film 1 is formed, which has been cooled to a low temperature in a vacuum, is cleaved. By vacuum forming a normal conductive layer 5 and a superconducting counter electrode 3 from the direction of the arrow on the thus obtained clean membrane side wall opening surface 4, a 5-N-3 junction 6 as shown in the figure is formed. is obtained. In this case, there are many types of oxide superconductors, but even the most chemically unstable oxide superconductor such as Y-Ba-Cu-0 has gold or gold in the normal conducting layer 5. By using platinum, a stable S-N interface can be obtained. By setting the thickness of the normal conductive layer 5 to several nanometers, Josephson coupling can be maintained even at considerably high temperatures. Furthermore, if the oxide superconductor is an epitaxial film, a flat film side wall opening surface 4 can be obtained, so that a Josephson junction of even better quality can be obtained. For the counter electrode 3, not only a metal superconductor but also an oxide superconductor can be used.

(実施例2) 第2図に本発明の第2の実施例の断面略図を示す。本実
施例の構成及び製法はほぼ第1の実施例と同じである。
(Example 2) FIG. 2 shows a schematic cross-sectional view of a second example of the present invention. The structure and manufacturing method of this embodiment are almost the same as those of the first embodiment.

本実施例では予め劈開前に絶縁膜7を酸化物超伝導体膜
1上に成膜しておく。このようなサンプルを低温真空環
境内で劈開し、得られた膜側壁臂開面1及び絶縁膜7上
に、矢印で示した方向より常伝導層5及び対向電極3を
成膜し5−N−5接合6を形成する。このようにすると
基板2の裏面に成膜する必要がなくなる。
In this embodiment, an insulating film 7 is formed on the oxide superconductor film 1 in advance before cleavage. Such a sample is cleaved in a low-temperature vacuum environment, and a normal conductive layer 5 and a counter electrode 3 are formed on the obtained film side wall arm opening surface 1 and insulating film 7 in the direction shown by the arrow. -5 Form junction 6. In this way, there is no need to form a film on the back surface of the substrate 2.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、酸化物超伝導体を
少なくとも一方の電極に使用した清浄なS−N界面を持
つ良質な5−N−5接合を形成できる効果を有する。
As explained above, according to the present invention, it is possible to form a high-quality 5-N-5 junction with a clean S-N interface using an oxide superconductor for at least one electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本発明の第1及び第2の実
施例の断面同一第3図(a)〜(c)はS−N界面を得
る手順を示す図、第4図は従来例の断面図である。
1 and 2 are the same cross-sections of the first and second embodiments of the present invention. FIG. 3 is an example cross-sectional view.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化物超伝導体膜の膜側壁劈開面上に成膜された
常伝導層を介して前記酸化物超伝導体膜と前記常伝導層
上に作られた超伝導対向電極膜とをジョセフソン結合さ
せたことを特徴とするジョセフソン接合。
(1) The oxide superconductor film and the superconducting counter electrode film formed on the normal conductive layer are connected via the normal conductive layer formed on the cleavage plane of the side wall of the oxide superconductor film. A Josephson junction characterized by a Josephson junction.
(2)基板上に成膜されている酸化物超伝導体膜を低温
真空環境下において劈開し、得られた膜側壁劈開面上に
、前記低温真空環境下において常伝導層及び超伝導対向
電極膜を順次成膜することを特徴とするジョセフソン接
合の製造方法。
(2) The oxide superconductor film formed on the substrate is cleaved in a low-temperature vacuum environment, and a normal conductive layer and a superconducting counter electrode are placed on the resulting film sidewall cleavage plane in the low-temperature vacuum environment. A method for manufacturing a Josephson junction characterized by sequentially forming films.
JP1028000A 1989-02-06 1989-02-06 Josephson junction and manufacture thereof Pending JPH02206183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028000A JPH02206183A (en) 1989-02-06 1989-02-06 Josephson junction and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028000A JPH02206183A (en) 1989-02-06 1989-02-06 Josephson junction and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02206183A true JPH02206183A (en) 1990-08-15

Family

ID=12236543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028000A Pending JPH02206183A (en) 1989-02-06 1989-02-06 Josephson junction and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02206183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362439B2 (en) * 2008-05-07 2016-06-07 Silicon Genesis Corporation Layer transfer of films utilizing controlled shear region

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362439B2 (en) * 2008-05-07 2016-06-07 Silicon Genesis Corporation Layer transfer of films utilizing controlled shear region

Similar Documents

Publication Publication Date Title
US5846846A (en) Method for making a superconducting field-effect device with grain boundary channel
US4454522A (en) Microbridge superconducting device having support with stepped parallel surfaces
US5434127A (en) Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer
EP0283623B1 (en) Superconducting josephson junctions
JPH02206183A (en) Josephson junction and manufacture thereof
US5663081A (en) Method for making a high-temperature superconducting field-effect transistor with thick superconducting channel layer
JPH02207575A (en) Josephson junction and its manufacture
JPH05335637A (en) Josephson junction structure body
JPH02207574A (en) Tunnel junction and its manufacture
EP0534811A2 (en) Method of manufacturing superconducting thin film formed of oxide superconductor having non superconducting region in it, and method of manufacturing superconducting device utilizing the superconducting thin film
US5420101A (en) Structures super conductor tracks and process for making them
KR930004024B1 (en) Manufacturing method of super conductor ic
JP2647985B2 (en) Josephson element
KR950004595B1 (en) Manufacturing method of josephson tunnel junction using yba2cu3oy substrate
JPH03208380A (en) Josephson junction and formation thereof
KR100459125B1 (en) Manufacturing method for divice junction Josephson superconductor
JP2000195837A (en) Micromachining, magnetic probe for microscope and electric field sensor
JP2982913B2 (en) How to make Josephson junctions
JP3325999B2 (en) Method for manufacturing three-terminal device using oxide semiconductor
JPH0255955B2 (en)
JPS63281482A (en) Superconducting transistor
JP2774576B2 (en) Superconductor device and method of manufacturing the same
JP2737499B2 (en) Superconducting field effect element and method for producing the same
JPH04186781A (en) Manufacture of superconducting element
KR20030071300A (en) Manufacturing method for divice junction Josephson superconductor