JPH02188987A - Material for wiring board and manufacture thereof - Google Patents

Material for wiring board and manufacture thereof

Info

Publication number
JPH02188987A
JPH02188987A JP795089A JP795089A JPH02188987A JP H02188987 A JPH02188987 A JP H02188987A JP 795089 A JP795089 A JP 795089A JP 795089 A JP795089 A JP 795089A JP H02188987 A JPH02188987 A JP H02188987A
Authority
JP
Japan
Prior art keywords
metal layer
copper
plating
metal
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP795089A
Other languages
Japanese (ja)
Inventor
Akinari Kida
木田 明成
Akishi Nakaso
昭士 中祖
Toshiro Okamura
岡村 寿郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP795089A priority Critical patent/JPH02188987A/en
Publication of JPH02188987A publication Critical patent/JPH02188987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To improve fine wiring formation properties by forming a metal layer on at least single surface of an insulation film and laminating it with an insulation resin base in one piece. CONSTITUTION:Polyethylene, etc., is used as a material of an insulation film 1 and then a metal layer 2 such as copper is formed on it by applying the resistance heating deposition method. the electron beam deposition method, the ion plating method, the sputtering method, etc. Then, when the metal layer 2 is formed only on the single surface of the insulation film 1, a required number of prepregs 3 obtained by dipping a glass cloth, etc., into epoxy resin, thus resulting in a semi-cured state, are placed on a surface where no metal layer 2 is formed, heating/press forming is performed to obtain a laminated body. A metal layer 2 of a required part is exposed on the laminated plate with metal layer thus obtained and plating resist is formed at other parts and are allowed to contact a chemical etching liquid. Then, it is eliminated and subjected to circuit machining to allow a wiring board to be formed. Thus, a metal can be formed without affecting an insulation material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高密度配線板に用いる材料の製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing materials used in high-density wiring boards.

(従来の技術) 高密度配線板の配線形成法の1つにセミアデイティブ法
がある。これは銅などの金属層を基板全面に形成し、最
終的に導体とならない部分にレジストを形成した後、露
出している金属層上にめっきで導体パターンを厚付けし
、レジスト剥#後、不要部分の金属を除去する配線形成
法である。高密度配線板では、ライン/スペース中の微
細化は、避は難い傾向となっている。セミアデイティブ
法においてこの微細化を容易にするためには、基板全面
に形成する金属層(以下、下地金属層と略す)の厚さを
薄くすることが望ましい、その理由は、下地金属層が厚
いほど、最終段階で行うエツチング量が多くなり、導体
として残すべき、ラインのサイドエツチングが進みやす
くライン欠けや断線等が生じやすくなるためである。こ
のセミアデイティブ法をガラス布−エポキシ基板等の通
常の積層基板上で行う方法として、以下の3つの従来法
があった。
(Prior Art) One of the wiring formation methods for high-density wiring boards is a semi-additive method. This involves forming a metal layer such as copper on the entire surface of the board, and finally forming a resist on the parts that will not become conductors. Then, a thick conductor pattern is plated on the exposed metal layer, and after removing the resist, This is a wiring formation method that removes metal from unnecessary parts. In high-density wiring boards, miniaturization of lines/spaces has become an unavoidable trend. In order to facilitate this miniaturization in the semi-additive method, it is desirable to reduce the thickness of the metal layer formed on the entire surface of the substrate (hereinafter referred to as the base metal layer). This is because the thicker the etching, the greater the amount of etching to be performed in the final stage, which tends to cause side etching of lines that should remain as conductors, making it more likely that lines will be chipped or disconnected. There are the following three conventional methods for carrying out this semi-additive method on a normal laminated substrate such as a glass cloth-epoxy substrate.

1つは銅箔を積層して得られる銅張積層板を用いる方法
である。現状、最も薄い銅箔には、厚さ10μm以上の
アルミキャリアに5μm程度、めっきで銅を形成した極
薄銅箔と呼ばれるものがある0例えば、日鉱グールド・
ファイル■社製のGTC−5μm箔がある。
One method is to use a copper-clad laminate obtained by laminating copper foils. Currently, some of the thinnest copper foils are called ultra-thin copper foils, which are made by plating copper to a thickness of about 5 μm on an aluminum carrier with a thickness of 10 μm or more.
There is GTC-5μm foil manufactured by File ■.

2番目の方法として、積層板上にゴム成分を含む接着剤
をコーティングし、接着剤を粗化した後、直接めっきで
金属層を形成する方法がある。
The second method is to coat the laminate with an adhesive containing a rubber component, roughen the adhesive, and then form a metal layer by direct plating.

3番目の方法として、抵抗加熱蒸着法、電子ビーム蒸着
法、スタンバ法等の真空成膜法で積層板上に金属層を直
接形成する方法がある。
A third method is to directly form a metal layer on the laminate using a vacuum film forming method such as a resistance heating evaporation method, an electron beam evaporation method, or a standby method.

(発明が解決しようとする問題点) このアルミキャリア付銅箔を用いた場合は、プリプレグ
と共に積層した後、アルミだけを)容解除去し、銅張積
層板として回路加工するのであるが、こ方法ではアルミ
だけを選択的にエツチングする必要があり、専用のエツ
チング装置の新設や、エツチング時の1iili密な作
業管理が必要となる。
(Problem to be solved by the invention) When using this copper foil with an aluminum carrier, after laminating it together with the prepreg, only the aluminum is dissolved and removed, and circuit processing is performed as a copper-clad laminate. In this method, it is necessary to selectively etch only aluminum, which requires the installation of a new dedicated etching device and careful work management during etching.

また、キャリアがアルミであるため、銅箔取り扱い時に
しわや折れ等が発生しやすく作業が困難である。
Furthermore, since the carrier is made of aluminum, the copper foil tends to wrinkle or fold when handled, making the work difficult.

積層板上にゴム成分を含む接着剤をコーティングし、接
着剤を粗化した後、直接めっきで金属層を形成する方法
は、この接着剤の耐熱性や絶縁性が不充分なため用途が
限定されている。
The method of coating a laminate with an adhesive containing a rubber component, roughening the adhesive, and then forming a metal layer directly by plating has limited applications because the adhesive has insufficient heat resistance and insulation properties. has been done.

抵抗加熱蒸着法、電子ビーム蒸着法、スタンパ法等の真
空成膜法で積層板上に金属層を直接形成するこれらの方
法は、いづれも積層板を減圧雰囲気にさらすことになり
、通常のガラス布エポキシ積層板等では、その構成材料
であるガラス布とエポキシ樹脂の界面に残存する水分等
の揮発性成分が減圧下で揮発し、積層板の眉間剥離が生
じやすいという欠点があった。
These methods, in which a metal layer is directly formed on a laminate using a vacuum film forming method such as resistance heating evaporation, electron beam evaporation, or stamper method, expose the laminate to a reduced pressure atmosphere, making it difficult to use with ordinary glass. Cloth epoxy laminates and the like have the disadvantage that volatile components such as moisture remaining at the interface between the glass cloth and the epoxy resin, which are the constituent materials thereof, evaporate under reduced pressure, and the laminate tends to peel between the eyebrows.

本発明は、微細配線形成性に優れた配線板用の材料とそ
の製造法を提供するものである。
The present invention provides a material for a wiring board that has excellent ability to form fine wiring and a method for manufacturing the same.

(問題点を解決するための手段) 本発明は、第1図に示すように、絶縁フィルム1と、均
一な金属N2と、絶縁樹脂基材3とからなる配線板用材
料である。
(Means for Solving the Problems) The present invention is a wiring board material comprising an insulating film 1, a uniform metal N2, and an insulating resin base material 3, as shown in FIG.

その製造法としては、第2図(a)及び(b)に示すよ
うに、絶縁フィルム1の少なくとも片面に、抵抗加熱蒸
着法、電子ビーム蒸着法、イオンプレーティング法また
はスパッタリング法によって金属N2を形成し、絶縁樹
脂基材3と積層一体化する方法がある。
As shown in FIGS. 2(a) and 2(b), the manufacturing method includes depositing metal N2 on at least one side of the insulating film 1 by resistance heating evaporation, electron beam evaporation, ion plating, or sputtering. There is a method of forming and laminating and integrating with the insulating resin base material 3.

この絶縁フィルム1の材質として、ポリエチレン、ポリ
プロピレン、ポリエステル、ナイロン、ポリビニルアル
コール、ポリ塩化ビニル、ポリ塩化ビニルデン、ポリス
チレン、ポリメチルペンテン、ポリブテン、ポリカーボ
ネート、ポリサルホン、ポリイミド、フッ素樹脂等の1
つあるいは、これらを組み合わせたものが使用できる。
The material of this insulating film 1 may be polyethylene, polypropylene, polyester, nylon, polyvinyl alcohol, polyvinyl chloride, polyvinyldene chloride, polystyrene, polymethylpentene, polybutene, polycarbonate, polysulfone, polyimide, fluororesin, etc.
or a combination of these can be used.

この絶縁フィルムの金属を形成する面には、金属を形成
する前に、その表面をウェットエツチング処理、サンド
ブラスト処理、ブラッシング処理、VU10ff処理、
コロナ放電処理、プラズマ処理などあるいは複数を組み
合わせて行ってもよい。
Before forming the metal, the surface of the insulating film is subjected to wet etching treatment, sandblasting treatment, brushing treatment, VU10ff treatment,
Corona discharge treatment, plasma treatment, etc. or a combination of these treatments may be performed.

また、これらフィルムの厚さは特に限定するものではな
いが、ロール状に容易に巻きとれる厚さであれば、真空
成膜の量産性に適している。真空成膜法としては、抵抗
加熱蒸着法、電子ビーム蒸着法〜イオンプレーティング
法、スバ・ツタリング法などが適用できる。
Further, the thickness of these films is not particularly limited, but any thickness that can be easily wound into a roll is suitable for mass production in vacuum film formation. As the vacuum film forming method, a resistance heating evaporation method, an electron beam evaporation method to an ion plating method, a sputtering method, etc. can be applied.

また、絶縁フィルムlの表面に形成する金属層2の材質
としては望ましくは銅であるが、ニッケル、クロム、ア
ルミ、チタン、パラジウム、スズ、金属ベース、白金で
も良く、またこれら金属を複数組み合わせて使用しても
よい。
Further, the material of the metal layer 2 formed on the surface of the insulating film l is preferably copper, but may also be nickel, chromium, aluminum, titanium, palladium, tin, metal base, platinum, or a combination of two or more of these metals. May be used.

また、これらの金属層2は、必要があれば第3図(a)
に示すように、両面に形成しても良い。
Moreover, these metal layers 2 can be formed as shown in FIG. 3(a) if necessary.
It may be formed on both sides as shown in FIG.

金属層2を形成した後、所望のサイズに絶縁フィルム1
をカッティングする。金属層2が絶縁フィルム1の片面
だけに形成されている場合に、金属層2が形成されてい
ない面に、ガラス布などにエポキシ樹脂が含浸され半硬
化状態になったプリプレグを必要枚数配置し、通常の積
層板製造法と同様に加熱加圧成型を行い、積層体とする
。上述した場合では成型後、片面金属積層板となる。
After forming the metal layer 2, the insulating film 1 is cut into the desired size.
to cut. When the metal layer 2 is formed on only one side of the insulating film 1, the required number of semi-cured prepregs made of glass cloth impregnated with epoxy resin are placed on the side where the metal layer 2 is not formed. Then, heat and pressure molding is performed in the same manner as in a normal laminate manufacturing method to obtain a laminate. In the above case, after molding, it becomes a single-sided metal laminate.

両面金属積層板とするには必要枚数のプリプレグの両面
に片面金属付フィルムを配置して、加熱加圧成型を行え
ばよい。
In order to obtain a double-sided metal laminate, a single-sided metal-attached film may be placed on both sides of the required number of prepregs, and then heated and pressure molded.

ここで、使用できるプリプレグの材料には、先程のガラ
ス布の他に紙基材やガラス不織布、クォーツ布、ケブラ
ー布等が使用でき、またエポキシ樹脂の他に、フェノー
ル樹脂、ポリエステル摺脂、ポリイミド樹脂、フッ素樹
脂等が使用できる。
Here, in addition to glass cloth, paper base material, glass nonwoven fabric, quartz cloth, Kevlar cloth, etc. can be used as prepreg materials, and in addition to epoxy resin, phenol resin, polyester resin, polyimide resin, etc. Resin, fluororesin, etc. can be used.

また、プリプレグとしてガラス布などの芯材がない樹脂
単独のものを用いても良い。
Further, as the prepreg, a resin alone without a core material such as glass cloth may be used.

また、積層時にプリプレグだけでな(回路形成を行った
基板をプリプレグの間にはさんで積層することにより内
層回路付積層板とすることも可能である。
Moreover, it is also possible to make a laminate with an inner layer circuit by sandwiching a circuit-formed substrate between prepregs and stacking them not only using prepregs during lamination.

このようにして得られた金属層付積層板に、必要な部分
の金属層2を露出し他の部分にめっきレジストを形成し
てめっき金属を析出させめっきレジストを除去して露出
した金属層2を化学エツチング液に接触させて除去し回
路加工して、配線板を製造することができる。
In the thus obtained metal layer-attached laminate, the metal layer 2 is exposed in necessary parts, a plating resist is formed in other parts, plating metal is deposited, and the plating resist is removed to expose the metal layer 2. It is possible to manufacture a wiring board by contacting the substrate with a chemical etching solution, removing it, and processing the circuit.

両面銅材積層板を例にとると、第3図(C)に示すよう
に、NCドリルマシン等で穴あけ後、通常の方法で、基
板表面と穴4の内壁にめっき触媒を付着させ、この後最
終的に回路とならない部分にめっきレジスト5を形成す
る。めっきレジスト5を形成する前に、必要であれば無
電解銅めっきを行っても良い、レジスト5を形成した後
無電解銅めっき、あるいは電気銅めっき、あるいは無電
解銅めっきと電気銅めっきの併用で、第3図(d)に示
すように導体を厚付けする。この後、第3図(e)に示
すように、レジスト5を剥離して、不要部分の銅をエツ
チングする。また、銅めっきで導体を厚付けした後、は
んだ、あるいはニッケルめっきを行いレジストを剥離し
て、不要部分の銅をエツチングしてもよい。
Taking a double-sided copper material laminate as an example, as shown in Figure 3 (C), after drilling holes with an NC drill machine, etc., a plating catalyst is attached to the surface of the substrate and the inner wall of hole 4 using the usual method. After that, a plating resist 5 is formed on the portions that will not ultimately form a circuit. Before forming the plating resist 5, electroless copper plating may be performed if necessary; after forming the resist 5, electroless copper plating, electrolytic copper plating, or a combination of electroless copper plating and electrolytic copper plating Then, the conductor is thickened as shown in FIG. 3(d). Thereafter, as shown in FIG. 3(e), the resist 5 is peeled off and unnecessary copper is etched. Alternatively, after thickening the conductor with copper plating, solder or nickel plating may be applied, the resist may be peeled off, and the copper in unnecessary portions may be etched.

以上はセミアデイティブ法の回路形成法の例である。The above is an example of a semi-additive circuit formation method.

両面銅材積層板の配線形成法としては、穴あけ後所望厚
さの銅層を基板全面に形成し、不要な部分をエツチング
する方法も適用できる。
As a wiring formation method for a double-sided copper material laminate, a method can also be applied in which after drilling holes, a copper layer of a desired thickness is formed on the entire surface of the board, and unnecessary portions are etched.

(作用) 本発明によれば、フィルム上に必要な厚さの金属を形成
して、そのフィルムを用いて積層板を製造するため、従
来技術で問題となっていた、不要なアルミキャリアのエ
ツチング等が不用でアルミキャリアにかかわる装置の新
設や特殊なエツチング技術は不要となる。また、フィル
ム上に真空成膜装置で金属を直接形成するため、耐熱性
や絶縁性に問題がある接着剤は不要となる。また、従来
揮発性成分で問題となっていた積層板を真空装置内に入
れる必要がないので、絶縁材料に悪影響なく金属を形成
することができる。
(Function) According to the present invention, since metal is formed to a required thickness on a film and a laminate is manufactured using the film, unnecessary etching of the aluminum carrier, which was a problem with the conventional technology, is avoided. etc., and there is no need to install new equipment or special etching technology related to aluminum carriers. Furthermore, since the metal is directly formed on the film using a vacuum film forming apparatus, there is no need for adhesives that have problems with heat resistance or insulation. Furthermore, since there is no need to place the laminated plate in a vacuum apparatus, which has conventionally caused problems due to volatile components, metal can be formed without adversely affecting the insulating material.

実施例 まず、ポリイミドフィルムである厚さ25μmのカプト
ン−100V(東し・デュポン株式会社、商品名)を準
備する。このポリイミドフィルムの片面に通常のスパッ
タ装置を用い、成膜速度0.2μm/sinで、厚さ1
μmの銅2を形成する。
Example First, a polyimide film, Kapton-100V (trade name, manufactured by DuPont Toshi Co., Ltd.) having a thickness of 25 μm is prepared. One side of this polyimide film was coated with a film-forming rate of 0.2 μm/sin using an ordinary sputtering device to a thickness of 1
Copper 2 of μm is formed.

次に、銅層付きポリイミドフィルムのフィルム面に接す
る様に複数枚のガラス布入りエポキシプリプレグE−6
7(日立化成工業株式会社、商品名)を配置し、温度1
70℃、圧力40Kg/di”1時間プレスを行い、積
層体を得る。
Next, multiple sheets of epoxy prepreg E-6 with glass cloth were placed in contact with the film surface of the polyimide film with a copper layer.
7 (Hitachi Chemical Co., Ltd., product name), and set the temperature to 1.
Pressing was performed at 70° C. and a pressure of 40 kg/di for 1 hour to obtain a laminate.

この後、NCドリルマシンで所望部分に貫通孔4をあけ
、積層体表面および貫通孔内壁に通常の方法で、めっき
触媒を付着させる。そして積層体表面にドライフィルム
レジストであるフォテック5R−3000(日立化成工
業株式会社、商品名)を貼り合わせ、露光、現像して最
終的に導体とならない部分にめっきレジスト5を形成す
る。
Thereafter, a through hole 4 is drilled in a desired portion using an NC drill machine, and a plating catalyst is adhered to the surface of the laminate and the inner wall of the through hole using a conventional method. Then, a dry film resist, Photoc 5R-3000 (trade name, Hitachi Chemical Co., Ltd.) is bonded to the surface of the laminate, exposed to light, and developed to form a plating resist 5 on the portions that will not become conductors.

この後、以下の無電解銅めっき液に20時間浸漬して、
無電解銅めっき層6を形成する。
After this, it was immersed in the following electroless copper plating solution for 20 hours,
An electroless copper plating layer 6 is formed.

〔組成〕〔composition〕

Cu5Oa  ・5Ht O:  10g/IEDTA
  4Na    :  4Gg/J37% CHxO
:  3rnl/1 〔条件〕 PH:iz、3 めっき液温度 : 70℃ 次に基板を塩化メチレン溶液に浸漬して、めっきレジス
トを除去した後、過硫酸アンモニウム水溶液に浸漬して
、不溶部分のスパッタfR1を除去する。
Cu5Oa・5HtO: 10g/IEDTA
4Na: 4Gg/J37% CHxO
: 3rnl/1 [Conditions] PH: iz, 3 Plating solution temperature: 70°C Next, the substrate was immersed in a methylene chloride solution to remove the plating resist, and then immersed in an ammonium persulfate aqueous solution to sputter fR1 of the insoluble part. remove.

この後、必要であれば、基板にドライフィルムレジスト
であるフォテック5R−1000(日立化成工業株式会
社、商品名)を貼り合わせ、露光、現像して、所望部分
 永久レジストを形成する。
Thereafter, if necessary, a dry film resist Photec 5R-1000 (trade name, Hitachi Chemical Co., Ltd.) is bonded to the substrate, exposed and developed to form a permanent resist in desired areas.

(発明の効果) 本発明により以下の効果が達成できる。(Effect of the invention) The following effects can be achieved by the present invention.

1) 不要なキャリアなしで薄い金属層を積層板に形成
できる為、工程が簡略な高密度配線板を製造することが
できる。
1) Since a thin metal layer can be formed on a laminate without unnecessary carriers, a high-density wiring board can be manufactured with a simple process.

2) フィルム材質が選択可能である為、配線板の低熱
膨張化や、低誘電率化等の特徴を容易に実現できる。
2) Since the film material can be selected, features such as low thermal expansion and low dielectric constant of the wiring board can be easily achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図(a)
及び(b)は本発明の一実施例による工程を説明するた
めの断面図、第3図(a)〜(e)は本発明による配線
板の製造工程を示す断面図である。 符号の説明 1 ポリイミドフィルム 2 スパッタ銅    3 プリプレグ硬化物4 貫通
孔      5 めっきレジスト6 無電解銅めっき
層 〜 ((L) 第2図
Figure 1 is a sectional view showing one embodiment of the present invention, Figure 2 (a)
3(b) are sectional views for explaining the process according to an embodiment of the present invention, and FIGS. 3(a) to 3(e) are sectional views showing the manufacturing process of the wiring board according to the present invention. Explanation of symbols 1 Polyimide film 2 Sputtered copper 3 Prepreg cured product 4 Through hole 5 Plating resist 6 Electroless copper plating layer ~ ((L) Fig. 2

Claims (2)

【特許請求の範囲】[Claims] 1. 絶縁フィルム(1)と、均一な金属層(2)と、
絶縁樹脂基材(3)とからなる配線板用材料。
1. an insulating film (1), a uniform metal layer (2),
A wiring board material comprising an insulating resin base material (3).
2. 絶縁フィルム(1)の少なくとも片面に、抵抗加
熱蒸着法、電子ビーム蒸着法、イオンプレーティング法
またはスパッタリング法によって金属層(2)を形成し
、絶縁樹脂基材(3)と積層一体化する請求項1記載の
配線板用材料の製造法。
2. A claim in which a metal layer (2) is formed on at least one side of the insulating film (1) by a resistance heating vapor deposition method, an electron beam vapor deposition method, an ion plating method, or a sputtering method, and is laminated and integrated with an insulating resin base material (3). Item 1. A method for producing a wiring board material according to item 1.
JP795089A 1989-01-17 1989-01-17 Material for wiring board and manufacture thereof Pending JPH02188987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP795089A JPH02188987A (en) 1989-01-17 1989-01-17 Material for wiring board and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP795089A JPH02188987A (en) 1989-01-17 1989-01-17 Material for wiring board and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02188987A true JPH02188987A (en) 1990-07-25

Family

ID=11679773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP795089A Pending JPH02188987A (en) 1989-01-17 1989-01-17 Material for wiring board and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02188987A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231158A (en) * 1994-02-17 1995-08-29 Nec Corp Wiring formation method
JP2003101240A (en) * 2001-09-20 2003-04-04 Mitsubishi Gas Chem Co Inc Method of manufacturing high-density printed wiring board
JP2012505553A (en) * 2008-11-25 2012-03-01 インテル コーポレイション Method for enabling selective substrate area plating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231158A (en) * 1994-02-17 1995-08-29 Nec Corp Wiring formation method
JP2003101240A (en) * 2001-09-20 2003-04-04 Mitsubishi Gas Chem Co Inc Method of manufacturing high-density printed wiring board
JP2012505553A (en) * 2008-11-25 2012-03-01 インテル コーポレイション Method for enabling selective substrate area plating

Similar Documents

Publication Publication Date Title
JPH0226397B2 (en)
US20140090245A1 (en) Method of manufacturing printed circuit board
US3884771A (en) Process of producing resinous board having a rough surface usable for firmly supporting thereon a printed circuit
US4521280A (en) Method of making printed circuits with one conductor plane
JPH02188987A (en) Material for wiring board and manufacture thereof
JPH05102630A (en) Manufacture of copper foil with carrier and copper laminated plate using same
KR20070044165A (en) Ccl base film and carrier tape for mounting electric components
JP3534194B2 (en) Manufacturing method of insulating substrate with thin metal layer
JPH11204942A (en) Manufacture of multilayer wiring board
JPH01205495A (en) Manufacture of flexible printed circuit board
JP2002353597A (en) Metal transfer sheet, producing method and wiring circuit board thereof
JP2004179540A (en) Manufacturing method of adhesive-free flexible metal laminate
JPH05243742A (en) Multilayer printed wiring board and its manufacture
JPH03225995A (en) Wiring board
JPS5815952B2 (en) Manufacturing method for adhesive coated laminates
JPH07221456A (en) Manufacture of multilayer wiring board
JPH03203394A (en) Manufacture of insulating substrate with thin metallic layer and manufacture of wiring board using insulating substrate manufactured thereby
JP2003332713A (en) Adhesive-free flexible metal laminate, flexible wiring board using the same, and method of manufacturing same
JP3680321B2 (en) Manufacturing method of multilayer printed wiring board
KR20030048282A (en) Method for manufacturing a copper-clad laminate
JP2536604B2 (en) Copper / organic insulation film wiring board manufacturing method
CN118158893A (en) Circuit board and processing method thereof
JP2530678B2 (en) Method of manufacturing printed circuit board
JPH02183597A (en) Manufacture of multilayer printed circuit board
KR20030048281A (en) Method for manufacturing a copper-clad laminate