JPH0218379A - Device for pulling up semiconductor single crystal - Google Patents

Device for pulling up semiconductor single crystal

Info

Publication number
JPH0218379A
JPH0218379A JP16772488A JP16772488A JPH0218379A JP H0218379 A JPH0218379 A JP H0218379A JP 16772488 A JP16772488 A JP 16772488A JP 16772488 A JP16772488 A JP 16772488A JP H0218379 A JPH0218379 A JP H0218379A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
purity
heater
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16772488A
Other languages
Japanese (ja)
Other versions
JP2745408B2 (en
Inventor
Hideyasu Matsuo
松尾 秀逸
Masayuki Saito
正行 斎藤
Yasusane Sasaki
佐々木 泰実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP63167724A priority Critical patent/JP2745408B2/en
Publication of JPH0218379A publication Critical patent/JPH0218379A/en
Application granted granted Critical
Publication of JP2745408B2 publication Critical patent/JP2745408B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the title pulling up device capable of preventing a pulled-up single crystal semiconductor from being adversely affected by the impurities of a carbon member, etc., by forming a crucible with a quartz glass crucible and a crucible made of high-purity Mo or W and holding the quartz glass crucible, and making a heater from high-purity Mo or W. CONSTITUTION:A quartz crucible 20 consisting of a high-purity split body and a high-purity Mo crucible 22 holding the crucible 20 are provided in a high- purity opaque quartz glass vessel 29 of the device 2 for pulling up a semiconductor single crystal. An Mo heater 24 coated with high-purity Mo is provided outside the crucible 22. A heat-insulating cylinder 26 consisting of an SiC porous body is furnished around the heater 24, and a reflector 25 with the surface coated with an SiO2 film is provided inside the cylinder 26. An Si seed crystal 28' is rotated in direction of the arrow D, and pulled up in direction of the arrow C by a lifting means 27. By this method, an excellent Si single crystal 28 having a long lifetime and low OSE density can be obtained.

Description

【発明の詳細な説明】 ・ の1 本発明は半導体単結晶引上げ装置に関する。[Detailed description of the invention] ・No.1 The present invention relates to a semiconductor single crystal pulling apparatus.

従Juと医■− 半導体デバイスの基板としC用いられる半導体単結晶(
特にシリコン単結晶)は、主にCZ法により製造されて
いる。
Juju and medicine - Semiconductor single crystals used as substrates for semiconductor devices (
In particular, silicon single crystals are mainly manufactured by the CZ method.

ここでC7法について簡単に説明する。まず、ルツボ内
に例えば多結晶シリコン原料を装填し、周囲から加熱し
て多結晶シリコン原料を溶融する。次に、上方から種結
晶を吊下してシリコン融液に浸、シ、これを引上げるこ
とによりシリコン中結晶インゴットを製造する。
Here, the C7 method will be briefly explained. First, a polycrystalline silicon raw material, for example, is loaded into a crucible, and the polycrystalline silicon raw material is melted by heating from the surroundings. Next, a seed crystal is suspended from above, immersed in a silicon melt, and then pulled up to produce a silicon-in-crystal ingot.

上記ルツボとして、一般に石英ガラス製のものを用いて
いる。この石英ガラスルツボを支持するためにカーボン
ルツボを用い、ざらにルツボの外側にカーボンヒータ及
びカーボン製の保温材を設ける。また、半導体単結晶引
上げ装置の周囲を、金属製の容器(チャンバーとも言う
)で覆って、この容器を水冷する。従来の半導体単結晶
引上げ装置は、以上のように構成するのが常であった。
The crucible is generally made of quartz glass. A carbon crucible is used to support this quartz glass crucible, and a carbon heater and a carbon heat insulating material are provided roughly outside the crucible. Further, the semiconductor single crystal pulling device is surrounded by a metal container (also referred to as a chamber), and this container is cooled with water. Conventional semiconductor single crystal pulling apparatuses have usually been configured as described above.

し     と 前述したように、このような半導体単結晶引上げ@置に
使用されるルツボやヒータ、保温筒はカーボン類である
。このため、石英ガラスルツボと組合せて使用する場合
に、次のような様々な欠点がある。
As mentioned above, the crucibles, heaters, and heat-insulating tubes used for pulling and placing semiconductor single crystals are made of carbon. Therefore, when used in combination with a silica glass crucible, there are various drawbacks as follows.

即ち、シリコン単結晶引上げ時に、石英ガラスルツボが
シリコン融液に浸蝕され(第0式)、シリコン融液中の
酸素8度が高くなる。
That is, when pulling a silicon single crystal, the quartz glass crucible is eroded by the silicon melt (Equation 0), and the oxygen content in the silicon melt increases.

5i02→−8i→2Si O・・・・・・・・・0式
このシリコン融液中の酸素の一部は、酸素とシリコンの
蒸気圧の差により、融液の外にSiOとなって放出され
る。また、引上げられるシリコン単結晶中に取り込まれ
、シリコン単結晶中の微小欠陥の原因となる。
5i02→-8i→2Si O・・・・・・・・・0 formula Some of the oxygen in this silicon melt is released outside the melt as SiO due to the difference in vapor pressure between oxygen and silicon. be done. Moreover, it is incorporated into the silicon single crystal being pulled, causing micro defects in the silicon single crystal.

一方、このようなシリコン単結晶中の酸素濃度を低減す
る目的で近年MCZ法が注目されている。MCZ法によ
れば、磁場によって石英ガラスルツボ中のシリコン融液
の対流が抑止される。従って、シリコン融液による石英
ガラスルツボの浸蝕が少なくなり、シリコン単結晶中の
酸素111度が減少する。しかしながら、C7法、MC
Z法の何れによっても次に述べる問題は解決されていな
い。
On the other hand, the MCZ method has recently attracted attention for the purpose of reducing the oxygen concentration in such silicon single crystals. According to the MCZ method, convection of silicon melt in a silica glass crucible is suppressed by a magnetic field. Therefore, the erosion of the quartz glass crucible by the silicon melt is reduced, and the oxygen concentration in the silicon single crystal is reduced by 111 degrees. However, C7 method, MC
None of the Z-methods solves the following problem.

即ち、シリコン融液中から放出されたSiOはカーボン
ルツボ及びカーボンヒータのカーボンと反応し、COが
生成される(第2式st o+c→Si +GO・・・
・・・・・・・・・0式このCoが再びシリコン融液中
に取り込まれ、引上げられるシリコン単結晶中の炭素濃
度が大きくなり、微小欠陥の原因となる。特にカーボン
ヒータはカーボン部材の中でも最^温度に達するので、
シリコン単結晶引上げ時には8i0との反応が激しく、
最大の炭素供給源となる。
That is, SiO released from the silicon melt reacts with carbon in the carbon crucible and carbon heater, and CO is generated (second equation sto+c→Si+GO...
......Formula 0 This Co is taken into the silicon melt again, and the carbon concentration in the pulled silicon single crystal increases, causing micro defects. In particular, the carbon heater reaches the highest temperature among all carbon members, so
When pulling a silicon single crystal, there is a strong reaction with 8i0,
It becomes the largest source of carbon.

シリコン単結晶中の炭素11文を低減する方法としては
FZ法が考えられる。しかし、FZ法はかなりのコスト
がかかり、また引上げられるシリコン単結晶の径大化が
困難である。
The FZ method can be considered as a method for reducing carbon-11 carbon content in silicon single crystals. However, the FZ method requires considerable cost, and it is difficult to increase the diameter of the silicon single crystal to be pulled.

このため、FZ法は特殊な用途にしか用いられていない
For this reason, the FZ method is used only for special purposes.

さらに、カーボンルツボ、カーボンヒータ、カーボン類
、の保温材等は不純物ガスを吸着し易い。特にカーボン
ヒータの外側に位置する保温材は断熱性を高めるために
カーボンフェルト等と組合せて使用される。従って、表
面積が大きく、且つガスを吸着し易い。カーボン部材に
吸着した不純物は、高温時に再び半導体単結晶引上げ装
置内に放出されて汚染の原因になる。不純物がシリコン
融液中に混入すると、シリコン単結晶中に転位等が生じ
易く、歩留りが低下する原因となる。
Furthermore, heat insulating materials such as carbon crucibles, carbon heaters, and carbon materials tend to adsorb impurity gases. In particular, the heat insulating material located outside the carbon heater is used in combination with carbon felt or the like to improve heat insulation. Therefore, it has a large surface area and easily adsorbs gas. Impurities adsorbed on the carbon member are released into the semiconductor single crystal pulling apparatus again at high temperatures, causing contamination. When impurities are mixed into the silicon melt, dislocations and the like are likely to occur in the silicon single crystal, causing a decrease in yield.

また、カーボンヒータの外側に配置されるカーボン類の
保温材は断熱性が悪く、半導体単結晶引上げ装置を覆う
金属製の容器を水冷しなければならない。このため熱効
率が悪いという欠点がある。
Furthermore, the heat insulating material made of carbon placed outside the carbon heater has poor insulation properties, and the metal container covering the semiconductor single crystal pulling device must be cooled with water. This has the disadvantage of poor thermal efficiency.

他方、カーボン類のルツボやヒータ、保温筒は断熱性が
悪く、この点でも熱効率にマイナスである。
On the other hand, crucibles, heaters, and heat insulating tubes made of carbon have poor insulation properties, which also has a negative impact on thermal efficiency.

さらに、装置内部はヒータにより加熱され^温状態にな
るのでカーボンフェルト等から不純物を含んだパーティ
クルが発生し易く、引上げるシリコン単結晶に悪影響を
与える。
Furthermore, since the inside of the device is heated by a heater and reaches a high temperature, particles containing impurities are likely to be generated from the carbon felt, etc., and have an adverse effect on the silicon single crystal to be pulled.

また、金irI製の容器からはFe 、Cu等の不純物
が発生する。これらが保温材等に吸着し、高温時に再び
放出されると半導体単結晶装置内を汚染する。このため
、半導体単結晶中に転位等が生じ易くなる。
Further, impurities such as Fe and Cu are generated from the gold irI container. When these are adsorbed to heat insulating materials and released again at high temperatures, they contaminate the inside of semiconductor single crystal devices. Therefore, dislocations and the like are likely to occur in the semiconductor single crystal.

11へ11 本発明は前述した様々な問題点を解決することを目的と
しており、特に引上げた単結晶半導体がカーボン部材又
はF(41CLI等の不純物から受ける悪影響を排除し
、しかも熱効率を向上させた半導体単結晶引上げ装置を
提供することを目的としている。
11 to 11 The present invention aims to solve the various problems mentioned above, and in particular eliminates the adverse effects that a pulled single crystal semiconductor receives from impurities such as carbon members or F (41CLI), and improves thermal efficiency. The purpose is to provide a semiconductor single crystal pulling device.

を  するだめの 本発明の単結晶引上げ装置は容器内に回転自在に設けた
ルツボと、ルツボの外側に設けたヒータと、ヒータの外
側に設けた保温材とを備え、回転自在に吊下げた種結晶
を引上げて単結晶半導体を製造する構成の半導体単結晶
引上げ装置において、ルツボを石英ガラスルツボとこの
石英ガラスルツボを保持する高純度のMo又はW製のル
ツボで構成し、ヒータを高純度のMo又はWで構成し、
ヒータの外側にリフレクタ−を設置し、しかも保温材を
SiC多孔体で構成し、さらに容器を石英ガラス又はS
t −S; Cにより構成することを特徴とする。
The single crystal pulling device of the present invention includes a crucible rotatably provided in a container, a heater provided outside the crucible, and a heat insulating material provided outside the heater, and is suspended rotatably. In a semiconductor single crystal pulling apparatus configured to produce a single crystal semiconductor by pulling a seed crystal, the crucible is composed of a quartz glass crucible and a high-purity Mo or W crucible that holds the quartz glass crucible, and the heater is a high-purity crucible. composed of Mo or W,
A reflector is installed outside the heater, the heat insulating material is made of SiC porous material, and the container is made of quartz glass or S
t-S; Characterized by being composed of C.

この高純度のMo又はW製のルツボの少なくとも内面に
高純度のMol!LMo化合物膜、高純度のW膜又はW
化合物膜を被覆してもよい。膜の被覆は例えばCVD法
により行う。
At least the inner surface of this high-purity Mo or W crucible contains high-purity Mol! LMo compound film, high purity W film or W
A compound film may also be coated. The coating of the film is performed, for example, by the CVD method.

このリフレクタ−はMo又はWで構成するのが好ましい
。さらに、リフレクタ−に含まれる不純物の影響を防止
するために、少なくともりフレフタ−の内面を高純度の
SiO2層で被Ifると有利である。リフレクタ−を保
温材内面に密着させて設置してもよい。
Preferably, this reflector is made of Mo or W. Furthermore, in order to prevent the influence of impurities contained in the reflector, it is advantageous to coat at least the inner surface of the reflector with a layer of high purity SiO2. The reflector may be placed in close contact with the inner surface of the heat insulating material.

この高純度のMo又はW製のヒータに、高純度のMo膜
、Mo化合物膜、高純度のW膜又はW化合物膜を被覆し
てもよい。膜の被覆は例えばCVD法により行う。
This high-purity Mo or W heater may be coated with a high-purity Mo film, a Mo compound film, a high-purity W film, or a W compound film. The coating of the film is performed, for example, by the CVD method.

SiC多孔体の気孔率を15〜60%にすると有利であ
る。
It is advantageous for the porous SiC body to have a porosity of 15 to 60%.

気孔率を限定したのは、気孔率が15%以下であると断
熱性が悪く、60%以上であると強度が低下するためで
ある。
The reason for limiting the porosity is that if the porosity is 15% or less, the heat insulation properties will be poor, and if the porosity is 60% or more, the strength will decrease.

容器を複数の構成部材から構成した場合には、その構成
部材の一部を石英ガラス又は5−St Cによって形成
してもよい。もちろん、容器仝休を石英ガラス又はガス
不透過性のs; −st cを用いて形成することもで
きる。
When the container is constructed from a plurality of components, some of the components may be made of quartz glass or 5-St C. Of course, the container can also be made of quartz glass or gas-impermeable material.

1−」L [Mo又はW製のルツボ] Mo又はW製のルツボは、シリコン単結晶引上げ時の高
温においても石英ガラスルツボとほとんど反応しない。
1-''L [Crucible made of Mo or W] A crucible made of Mo or W hardly reacts with a silica glass crucible even at high temperatures when pulling a silicon single crystal.

また、発生するSi0ガスとも反応しにくく、スムース
にSiOガスを排気できる。
In addition, it does not easily react with the generated SiO gas, and the SiO gas can be smoothly exhausted.

このようにCOガスが発生しないので、引上げるシリコ
ン単結晶中の炭素濃度を大幅に減少できる。また、発生
するSiOをスムースに排気できるので酸素濃度ら減少
できる。
Since no CO gas is generated in this way, the carbon concentration in the silicon single crystal to be pulled can be significantly reduced. Furthermore, since the generated SiO can be smoothly exhausted, the oxygen concentration can be reduced.

さらに、本発明のMoルツボはカーボンルツボに比較し
てFe 、Cu等の不純物の吸着がほとIυどない。
Furthermore, the Mo crucible of the present invention has almost no adsorption of impurities such as Fe and Cu compared to a carbon crucible.

[リフレクタ−1 単結晶引上げの際に、リフレクタ−はヒータから放射さ
れる放射熱を遮断するので、熱効率が大幅に向上する。
[Reflector 1 During single crystal pulling, the reflector blocks radiant heat emitted from the heater, so thermal efficiency is greatly improved.

また、リフレクタ−をWa置することにより、単結晶引
上げ時にも保温材の温度が高くならない。従って、保温
材に吸着した不純物が再び半導体単結晶引上げ装置内に
放出され、装置内を汚染したり融液中に混入することが
抑制される。また、同じ理由で不純物を含んだパーティ
クルが、保温材中のカーボンフェルト等から発生するこ
とが抑制される。
Further, by placing the reflector at Wa, the temperature of the heat insulating material does not become high even when pulling a single crystal. Therefore, the impurities adsorbed on the heat insulating material are prevented from being released into the semiconductor single crystal pulling apparatus again and contaminating the inside of the apparatus or being mixed into the melt. Furthermore, for the same reason, particles containing impurities are suppressed from being generated from carbon felt or the like in the heat insulating material.

[Mo又はW製のヒータ] Mo又はWFJのヒータは、シリコン単結晶引上げ時の
高温において発生するSiOガスと反応しにくく、スム
ースにSiOガスを排気できる。
[Heater made of Mo or W] A heater made of Mo or WFJ is difficult to react with SiO gas generated at high temperatures during pulling of a silicon single crystal, and can smoothly exhaust SiO gas.

従って、カーボンヒータの使用時に問題となるCOガス
が発生しないので、引上げる単結晶中の炭素濃度が大幅
に減少する。また、発生するSiOをスムースに排気で
きるので酸素S度も減少する。
Therefore, since CO gas, which is a problem when using a carbon heater, is not generated, the carbon concentration in the single crystal to be pulled is significantly reduced. Furthermore, since the generated SiO can be smoothly exhausted, the oxygen S degree is also reduced.

さらに、Mo又はWl!Jのヒータはカーボンヒータと
比較してFO9Cu等の不純物の吸着がほとんどない。
Furthermore, Mo or Wl! The J heater hardly adsorbs impurities such as FO9Cu compared to the carbon heater.

[SiC多孔体の保温材] SiC多孔体からなる保温材は、シリコン単結晶引上げ
時の高温においてもSiOガスと反応しにくく、スムー
スにSiOガスを排気する。
[Heat Insulating Material Made of SiC Porous Body] A heat insulating material made of a porous SiC body hardly reacts with SiO gas even at high temperatures during pulling of a silicon single crystal, and smoothly exhausts SiO gas.

したがって、カーボン製の保湿材の使用時に問題となる
COガスがSiC多孔体から発生せず、引上げるシリコ
ン単結晶中の炭素濃度が減少する。また、発生するSi
Oをスムースに排気できるので、単結晶中の酸素m度ら
減少する。
Therefore, CO gas, which is a problem when using a carbon moisturizer, is not generated from the SiC porous body, and the carbon concentration in the silicon single crystal to be pulled is reduced. In addition, the generated Si
Since O can be smoothly exhausted, the amount of oxygen in the single crystal is reduced.

さらに、本発明のSiC多孔体からなる保温材はカーボ
ン製の保温材に比較して比表面積が小さく、表面が滑ら
かである。従って、FO等の不純物の吸着がほとんどな
い。
Furthermore, the heat insulating material made of the SiC porous body of the present invention has a smaller specific surface area and a smoother surface than a heat insulating material made of carbon. Therefore, there is almost no adsorption of impurities such as FO.

[石英ガラス製又はst −st c製容器]本発明の
石英ガラス製容器又はSi −SiC製容器は、金属製
の容器に比較して耐熱性が高い。従って水冷せずに使用
することができ、熱効率が大幅に向上する。
[Container made of quartz glass or st-st c] The quartz glass container or the Si-SiC container of the present invention has higher heat resistance than a metal container. Therefore, it can be used without water cooling, and thermal efficiency is greatly improved.

また、本発明の容器は高純度のSiO2又はSi −8
i Cにより構成されるので金属容器のようにl”e 
1Qu等の発生源にはならない。従って、半導体結晶引
上げ装置内をクリーンに保つ。このため、品質が良好な
単結晶半導体を得ることができる。
Moreover, the container of the present invention is made of high purity SiO2 or Si-8
Since it is composed of i C, l”e like a metal container.
It does not become a source of 1Qu etc. Therefore, the interior of the semiconductor crystal pulling apparatus is kept clean. Therefore, a single crystal semiconductor with good quality can be obtained.

支I乱 第1図は、本発明による半導体中結晶引上げ装置の実施
例を示している。
FIG. 1 shows an embodiment of an apparatus for pulling crystals in a semiconductor according to the present invention.

半導体単結晶引上げ装置2の容器29内には、ルツボが
設けである。容器は純1!f[99゜995%の不透明
石英ガラス製のチャンバー本体29a、チャンバー上部
材29C,チャンバー下部材29bにより構成しである
。ルツボは高純度の分割体からなる石英ルツボ20とそ
れを保持する高純度のMo製のルツボ22で構成されて
いる。Mo製のルツボ22には高純度のMoのコーティ
ングが施しである。コーティングは高純度のMo  (
Go)6を原料とし、CVD法により行ったものである
A crucible is provided in the container 29 of the semiconductor single crystal pulling apparatus 2. The container is pure 1! It is composed of a chamber main body 29a made of opaque quartz glass of f[99°995%, a chamber upper member 29C, and a chamber lower member 29b. The crucible is composed of a quartz crucible 20 made of high-purity divided bodies and a high-purity Mo crucible 22 that holds the quartz crucible 20. The crucible 22 made of Mo is coated with high-purity Mo. The coating is made of high purity Mo (
This was carried out using CVD method using Go) 6 as a raw material.

ルツボは矢印Bの方向に回転可能であり、矢印Aの方向
に上下移動可能である。
The crucible is rotatable in the direction of arrow B and can be moved up and down in the direction of arrow A.

ルツボの外側には、Mo製のヒータ24が設けである。A heater 24 made of Mo is provided outside the crucible.

ヒータ24には高純度のMoのコーティングが施しであ
る。コーティングは高NiN11(7)  (Co)e
 を原料とし、CVD法により行ったものである。
The heater 24 is coated with high purity Mo. Coating is high NiN11(7)(Co)e
was used as a raw material, and the CVD method was used.

ヒータ24のまわりにはSiC多孔体からなる保温筒2
6が設けである。
Around the heater 24 is a heat insulating cylinder 2 made of porous SiC material.
6 is a provision.

保温筒の内側にはMo!Jのりフレフタ25が設けであ
る。この表面にはCVD法により3i021!が被覆し
である。
Mo! inside the heat insulation cylinder! A J-glue flaper 25 is provided. This surface is coated with 3i021! by CVD method. is covered.

ルツボの上方には、種結晶の引上げ手段27が設けであ
る。引上げ手段27は、シリコンの種結晶28′を矢印
り方向に回転させながら、矢印C方向に引上げる。
Seed crystal pulling means 27 is provided above the crucible. The pulling means 27 pulls up the silicon seed crystal 28' in the direction of arrow C while rotating it in the direction of arrow C.

この半導体単結晶引上げ装置を用いて、35kgの高純
度シリコンを約11111/l1linの条件で引上げ
、結晶方位<100)の直径5インチのシリコン単結晶
18を得た。
Using this semiconductor single crystal pulling apparatus, 35 kg of high-purity silicon was pulled under conditions of approximately 11111/l1lin to obtain a silicon single crystal 18 with a crystal orientation <100) and a diameter of 5 inches.

[比較例1] 実施例1のMoルツボと同寸法のカーボンルツボを使用
し、カーボンヒータ、カーボン製の保温筒を使用する従
来の半導体単結晶引上げ装置で実施例と同様にしてシリ
コン単結晶を引上げた。なお、リフレクタは設4ノでい
ない。
[Comparative Example 1] Using a carbon crucible with the same dimensions as the Mo crucible in Example 1, a silicon single crystal was grown in the same manner as in the example using a conventional semiconductor single crystal pulling apparatus that uses a carbon heater and a carbon heat-insulating cylinder. I pulled it up. Note that the reflector is not included in the configuration.

実施例1及び比較例で引上げたシリコン単結晶のライフ
タイム、O8F密度を第1表に示す。
Table 1 shows the lifetime and O8F density of the silicon single crystals pulled in Example 1 and Comparative Example.

尚、MCZ法によって引上げられたシリコン単結晶の特
性も参考例1として記載する。
Note that the characteristics of a silicon single crystal pulled by the MCZ method are also described as Reference Example 1.

第1表にJ:れば、実施例1では、従来例と比較してラ
イフタイムの長いシリコン単結晶が得られた。これは、
シリコン単結晶引上げ時に発生するSi O,Coガス
がスムースに排気され、シリコン単結晶中に取り込まれ
る聞が少なくなり、且つ雰囲気がクリーンであったこと
を意味する。
If J is shown in Table 1, in Example 1, a silicon single crystal with a longer lifetime was obtained compared to the conventional example. this is,
This means that the SiO, Co gas generated during pulling of the silicon single crystal was smoothly exhausted, less of it was taken into the silicon single crystal, and the atmosphere was clean.

また、Mo及びWルツボはFe、Cu等の不純物を吸着
しにくいので、単結晶引上げ時の重金属による汚染が大
幅に減少し、雰囲気がクリーンになるため、O8F密度
の低い良好なシリコン単結晶が得られた。
In addition, since Mo and W crucibles are difficult to adsorb impurities such as Fe and Cu, contamination by heavy metals during single crystal pulling is greatly reduced and the atmosphere is clean, resulting in good silicon single crystals with low O8F density. Obtained.

さらに、実施例1ではシリコン単結晶引上げ時に結晶欠
陥の発生を抑制できるので、Dislocation 
(転位)が発生しにくり、歩留りが大幅に向上した。
Furthermore, in Example 1, since the generation of crystal defects can be suppressed during pulling of a silicon single crystal, Dislocation
(dislocations) are less likely to occur, resulting in a significant improvement in yield.

ところで、本発明は前述の実施例に限定されない。実施
例では、容器としてのチャンバー本体19a、チャンバ
ー上部材19C及びチャンバー下部材19bを石英ガラ
°ス又は5−8i Cにより形成したが、容器の一部、
例えばチャンバー本体19aのみを石英ガラス又はst
 −st cで形成してもよい。この場合チャンバー上
・下部材は金属で形成する。
By the way, the present invention is not limited to the above-described embodiments. In the embodiment, the chamber main body 19a, chamber upper member 19C, and chamber lower member 19b as a container were formed of quartz glass or 5-8iC, but a part of the container,
For example, only the chamber body 19a may be made of quartz glass or
-st c may be formed. In this case, the chamber upper and lower members are made of metal.

また、石英ガラスと5i−st cの両方の材料を用い
てヂャンバーの各部材を形成することら可能である。ま
た、容器の形状・単結晶引上げ装置の構成等も前述の実
施例に限定されず、従来用いられている様々な形式のも
のを採用することができる。
It is also possible to form each member of the chamber using both quartz glass and 5i-stc materials. Further, the shape of the container, the configuration of the single crystal pulling device, etc. are not limited to the above-mentioned embodiments, and various conventionally used types can be adopted.

11へ11 本発明による半導体単結晶引上げ装置によれば、ライフ
タイムが長くかつO8F密度が低い良好なシリコン単結
晶を得ることができる。また、結晶欠陥の発生を抑制で
きるので、歩留りを大幅に向上できる。さらに、単結晶
半導体引上げ時の効率を向上することができる。
11 to 11 According to the semiconductor single crystal pulling apparatus according to the present invention, a good silicon single crystal with a long lifetime and a low O8F density can be obtained. Further, since the generation of crystal defects can be suppressed, the yield can be significantly improved. Furthermore, efficiency in pulling a single crystal semiconductor can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半導体単結晶引上げ装置の実施例
を示す概念図である。 2・・・・・・半導体単結晶引上げ装置20・・・石英
ルツボ 22・・・カーボンルツボ 24・・・カーボンヒータ 25・・・リフレクタ− 26・・・保湿筒 27・・・種結晶の引上げ手段 28・・・シリコン単結晶 29・・・容器 29a・・・チャンバー本体 29b・・・チャンバー下部材 29c・・・チ11ンバー上部材 第1表 第 図
FIG. 1 is a conceptual diagram showing an embodiment of a semiconductor single crystal pulling apparatus according to the present invention. 2...Semiconductor single crystal pulling device 20...Quartz crucible 22...Carbon crucible 24...Carbon heater 25...Reflector 26...Moisturizing tube 27...Seed crystal pulling Means 28... Silicon single crystal 29... Container 29a... Chamber body 29b... Chamber lower member 29c... Chamber upper member Table 1, Figure

Claims (1)

【特許請求の範囲】[Claims]  容器内に回転自在に設けたルツボと、ルツボの外側に
設けたヒータと、ヒータの外側に設けた保温材とを備え
、回転自在に吊下げた種結晶を引上げて単結晶半導体を
製造する構成の半導体単結晶引上げ装置において、ルツ
ボを石英ガラスルツボとこの石英ガラスルツボを保持す
る高純度のMo製又はW製のルツボで構成し、ヒータを
高純度のMo又はWで構成し、ヒータの外側にリフレク
ターを設置し、しかも保温材をSiC多孔体で構成し、
さらに容器を石英ガラス又はSi−SiCにより構成す
ることを特徴とする半導体単結晶引上げ装置。
A configuration that includes a crucible that is rotatably installed in a container, a heater that is installed outside the crucible, and a heat insulating material that is installed outside the heater, and that pulls up a rotatably suspended seed crystal to produce a single crystal semiconductor. In the semiconductor single crystal pulling apparatus of A reflector is installed in the area, and the heat insulating material is made of SiC porous material.
Furthermore, a semiconductor single crystal pulling apparatus characterized in that the container is made of quartz glass or Si-SiC.
JP63167724A 1988-07-07 1988-07-07 Semiconductor single crystal pulling equipment Expired - Lifetime JP2745408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63167724A JP2745408B2 (en) 1988-07-07 1988-07-07 Semiconductor single crystal pulling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63167724A JP2745408B2 (en) 1988-07-07 1988-07-07 Semiconductor single crystal pulling equipment

Publications (2)

Publication Number Publication Date
JPH0218379A true JPH0218379A (en) 1990-01-22
JP2745408B2 JP2745408B2 (en) 1998-04-28

Family

ID=15854995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63167724A Expired - Lifetime JP2745408B2 (en) 1988-07-07 1988-07-07 Semiconductor single crystal pulling equipment

Country Status (1)

Country Link
JP (1) JP2745408B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1440187A2 (en) * 2001-09-21 2004-07-28 Crystal Is, Inc. Powder metallurgy tungsten crucible for aluminum nitride crystal growth
JP2004268854A (en) * 2003-03-11 2004-09-30 Shimano Inc Change gear controlling device for two-wheeler
US7211146B2 (en) 2001-09-21 2007-05-01 Crystal Is, Inc. Powder metallurgy crucible for aluminum nitride crystal growth
US7638346B2 (en) 2001-12-24 2009-12-29 Crystal Is, Inc. Nitride semiconductor heterostructures and related methods
US7641735B2 (en) 2005-12-02 2010-01-05 Crystal Is, Inc. Doped aluminum nitride crystals and methods of making them
US7776153B2 (en) 2001-12-24 2010-08-17 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
US8349077B2 (en) 2005-11-28 2013-01-08 Crystal Is, Inc. Large aluminum nitride crystals with reduced defects and methods of making them
KR101279389B1 (en) * 2011-04-12 2013-07-04 주식회사 엘지실트론 Apparatus for manufacturing silicon single crystal ingot
US8545629B2 (en) 2001-12-24 2013-10-01 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
US8834630B2 (en) 2007-01-17 2014-09-16 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
US9028612B2 (en) 2010-06-30 2015-05-12 Crystal Is, Inc. Growth of large aluminum nitride single crystals with thermal-gradient control
US9299880B2 (en) 2013-03-15 2016-03-29 Crystal Is, Inc. Pseudomorphic electronic and optoelectronic devices having planar contacts
US9437430B2 (en) 2007-01-26 2016-09-06 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers
US9447519B2 (en) 2006-03-30 2016-09-20 Crystal Is, Inc. Aluminum nitride bulk crystals having high transparency to untraviolet light and methods of forming them
US9771666B2 (en) 2007-01-17 2017-09-26 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
US10074784B2 (en) 2011-07-19 2018-09-11 Crystal Is, Inc. Photon extraction from nitride ultraviolet light-emitting devices
US10446391B2 (en) 2007-01-26 2019-10-15 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113780A (en) * 1977-03-17 1978-10-04 Toshiba Ceramics Co Method of manufacturing silicon monocrystal containing little impurities
JPS58104096A (en) * 1981-10-23 1983-06-21 Toshiba Ceramics Co Ltd Drawing-up device for silicon single crystal
JPS6311589A (en) * 1986-07-01 1988-01-19 イビデン株式会社 Heat resistant tool and manufacture
JPS6395196A (en) * 1986-10-06 1988-04-26 Sumitomo Electric Ind Ltd Method for growing single crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113780A (en) * 1977-03-17 1978-10-04 Toshiba Ceramics Co Method of manufacturing silicon monocrystal containing little impurities
JPS58104096A (en) * 1981-10-23 1983-06-21 Toshiba Ceramics Co Ltd Drawing-up device for silicon single crystal
JPS6311589A (en) * 1986-07-01 1988-01-19 イビデン株式会社 Heat resistant tool and manufacture
JPS6395196A (en) * 1986-10-06 1988-04-26 Sumitomo Electric Ind Ltd Method for growing single crystal

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1440187A4 (en) * 2001-09-21 2005-11-30 Crystal Is Inc Powder metallurgy tungsten crucible for aluminum nitride crystal growth
US7211146B2 (en) 2001-09-21 2007-05-01 Crystal Is, Inc. Powder metallurgy crucible for aluminum nitride crystal growth
EP1440187A2 (en) * 2001-09-21 2004-07-28 Crystal Is, Inc. Powder metallurgy tungsten crucible for aluminum nitride crystal growth
US7638346B2 (en) 2001-12-24 2009-12-29 Crystal Is, Inc. Nitride semiconductor heterostructures and related methods
US7776153B2 (en) 2001-12-24 2010-08-17 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
US9447521B2 (en) 2001-12-24 2016-09-20 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
US8545629B2 (en) 2001-12-24 2013-10-01 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
JP2004268854A (en) * 2003-03-11 2004-09-30 Shimano Inc Change gear controlling device for two-wheeler
US8580035B2 (en) 2005-11-28 2013-11-12 Crystal Is, Inc. Large aluminum nitride crystals with reduced defects and methods of making them
US8349077B2 (en) 2005-11-28 2013-01-08 Crystal Is, Inc. Large aluminum nitride crystals with reduced defects and methods of making them
US7641735B2 (en) 2005-12-02 2010-01-05 Crystal Is, Inc. Doped aluminum nitride crystals and methods of making them
US9447519B2 (en) 2006-03-30 2016-09-20 Crystal Is, Inc. Aluminum nitride bulk crystals having high transparency to untraviolet light and methods of forming them
US8834630B2 (en) 2007-01-17 2014-09-16 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
US9624601B2 (en) 2007-01-17 2017-04-18 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
US9670591B2 (en) 2007-01-17 2017-06-06 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
US9771666B2 (en) 2007-01-17 2017-09-26 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
US9437430B2 (en) 2007-01-26 2016-09-06 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers
US10446391B2 (en) 2007-01-26 2019-10-15 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers
US9028612B2 (en) 2010-06-30 2015-05-12 Crystal Is, Inc. Growth of large aluminum nitride single crystals with thermal-gradient control
US9580833B2 (en) 2010-06-30 2017-02-28 Crystal Is, Inc. Growth of large aluminum nitride single crystals with thermal-gradient control
KR101279389B1 (en) * 2011-04-12 2013-07-04 주식회사 엘지실트론 Apparatus for manufacturing silicon single crystal ingot
US10074784B2 (en) 2011-07-19 2018-09-11 Crystal Is, Inc. Photon extraction from nitride ultraviolet light-emitting devices
US9299880B2 (en) 2013-03-15 2016-03-29 Crystal Is, Inc. Pseudomorphic electronic and optoelectronic devices having planar contacts

Also Published As

Publication number Publication date
JP2745408B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
JPH0218379A (en) Device for pulling up semiconductor single crystal
US6187089B1 (en) Tungsten doped crucible and method for preparing same
JP5304792B2 (en) Method and apparatus for producing SiC single crystal film
TWI361847B (en) Method and equipment for aln-monocrystal production with gas-pervious crucible-wall
US6319313B1 (en) Barium doping of molten silicon for use in crystal growing process
JP3898278B2 (en) Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same
JP2000302600A (en) Method for growing large-sized single-polytype silicon carbide single crystal
EP0229322A2 (en) Method and apparatus for Czochralski single crystal growing
EP1169496B1 (en) Strontium doping of molten silicon for use in crystal growing process
JP4604728B2 (en) Method for producing silicon carbide single crystal
JP3505597B2 (en) Silicon carbide single crystal
JP2000302576A (en) Graphite material coated with silicon carbide
JP2006503781A (en) Formation of single crystal silicon carbide
JP2717669B2 (en) Semiconductor single crystal pulling equipment
US6183553B1 (en) Process and apparatus for preparation of silicon crystals with reduced metal content
JPH06191998A (en) Method for growing silicon carbide single crystal and device for growing the same
JPS6018638B2 (en) Silicon single crystal pulling equipment
JPS5855119B2 (en) Vapor phase growth method and equipment for magnesia spinel
JPH0218380A (en) Device for pulling up semiconductor single crystal
JPS62189726A (en) Susceptor for vapor growth of semiconductor
JP2001002490A (en) Single crystal pulling up device
JPH05238874A (en) Production apparatus for silicon single crystal
JPH11292685A (en) Apparatus for extending life of graphite susceptor for growing silicon single crystal by coating with silicon nitride and extending method
JPH0218375A (en) Device for pulling up semiconductor single crystal
JPS62138385A (en) Device for pulling semiconductor single crystal