JPH02183103A - Target for three-dimensional information detection - Google Patents

Target for three-dimensional information detection

Info

Publication number
JPH02183103A
JPH02183103A JP164989A JP164989A JPH02183103A JP H02183103 A JPH02183103 A JP H02183103A JP 164989 A JP164989 A JP 164989A JP 164989 A JP164989 A JP 164989A JP H02183103 A JPH02183103 A JP H02183103A
Authority
JP
Japan
Prior art keywords
light emitting
target
elements
base
emitting elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP164989A
Other languages
Japanese (ja)
Inventor
Shoichi Iikura
省一 飯倉
Michihiro Uenohara
植之原 道宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP164989A priority Critical patent/JPH02183103A/en
Publication of JPH02183103A publication Critical patent/JPH02183103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enable accurate detection of three-dimensional information even on an object to which power is hard to supply by using a solar battery element provided on the surface of a target base having a plurality of light emitting elements as surface color thereof and as power source for the light emitting elements as well. CONSTITUTION:Light emitting elements 3a-3d are near a surface corner part of a target base 1 of a target and a light emitting element 3e is at the tip of a pole 5 erected vertical to the surface of the base 1 at the center of the elements 3a-3d. Moreover, a solar battery element 7 stuck closely on the surface of the base 1 is connected to the elements 3a-3e. The target is mounted on an object to be handled with a robot and the target is lighted by a lighting or the like arranged in the perimeter or the like of the object. As a result, an element 7 of the base 1 generates a power to emit light from the elements 3a-3e. Here, when a CCD camera catches the elements 3a-3e and inputs a video signal output into a light emitting element detection circuit, the circuit can detect the elements 3a-3e with a high reliability utilizing that black of the element 7 serves as surface color of the base 1.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明はロボットが高度な作業を遂行する場合等に必要
不可欠な作業対象物又は作業環境及び作業治具等の三次
元位置や距離及び姿勢等の三次元情報を得る方式に用い
られる三次元情報検出用ターゲットに関する。
[Detailed Description of the Invention] [Purpose of the Invention (Industrial Field of Application) The present invention relates to three-dimensional work objects, work environments, and work jigs that are essential when robots perform advanced work. The present invention relates to a three-dimensional information detection target used in a method for obtaining three-dimensional information such as position, distance, and orientation.

(従来の技術) 従来、ロボットが扱う対象物はベルトコンベア等によっ
て正確に位置決めされていたために、ロボット自らが対
象物の位置を検出する必要がなかった。しかしロボット
の利用される環境は工場・内から宇宙空間、原子力発電
所内部等の極限環境を手始めとして、外部自然環境に広
がりつつあり、ロボットが扱う対象物が位置決めされて
いることを期待できないようになってきている。このた
め作業対象物又は作業環境及び作業治具等の三次元位置
や距離及び姿勢等を正確に測定することが重要である。
(Prior Art) Conventionally, objects handled by robots have been accurately positioned using a belt conveyor or the like, so there has been no need for the robots themselves to detect the position of the objects. However, the environments in which robots are used are expanding from factories and indoors to extreme environments such as outer space and nuclear power plants, and are expanding to the external natural environment, and it is no longer expected that the objects handled by robots will be precisely positioned. It is becoming. Therefore, it is important to accurately measure the three-dimensional position, distance, posture, etc. of the work object, work environment, work jig, etc.

また同様な環境下においてロボット以外での作業の自動
化を推進するためにも対象物の現在位置を正確に測定す
ることは同様に重要である。
Furthermore, it is equally important to accurately measure the current position of an object in order to promote the automation of tasks other than robots in similar environments.

ところでロボットが作業する場合に必要となるのはロボ
ットハンドが掴む場所の位置及び姿勢である。従ってカ
メラで捉えた画面全体を画像処理して対象物を検出・認
・識する等の方式よりも対象物にターゲットを取付け、
そのターゲットを検出する方式の方が高性能のプロセッ
サや膨大な画像処理計算が不要となり効率的である。
By the way, when a robot works, what is required is the position and posture of the place to be grasped by the robot hand. Therefore, rather than methods such as detecting, recognizing, and recognizing objects by image processing the entire screen captured by a camera, attaching a target to the object,
The method of detecting the target is more efficient because it does not require a high-performance processor or a huge amount of image processing calculations.

このような方式の一例として特開昭60−52703号
公報に記載された三次元情報検出方式がある。この方式
は作業対象物に複数個の発光素子を取付け、この発光素
子のスポット光をカメラで検出し、これらの発光素子の
画面内の位置からそれぞれの三次元位置及び姿勢等を計
算するものである。
An example of such a method is a three-dimensional information detection method described in Japanese Unexamined Patent Publication No. 60-52703. This method attaches multiple light emitting elements to the workpiece, detects the spot light of these light emitting elements with a camera, and calculates the three-dimensional position and orientation of each light emitting element from the position on the screen. be.

ところでこの方式では作業対象物に取付ける発光素子を
発光させるために対象物側に電力を必要とする。従って
、この方式をロボットの作業教示に用いるためならば発
光素子をロボットハンドに取付けるのであり、電力を得
ることは可能であるため容易に実施できる。しかしロボ
ットが燃料タンクや交換部品運搬のトランク等を運搬す
る場合には燃料タンクや交換部品運搬用トランクに発光
素子を取付けなければならず、一般にこれらから電力供
給を受けるのは不可能であり実施困難となる。また発光
素子を取付ける燃料タンクや交換部品運搬用トランク等
の表面の状態によっては発光素子の光を信頼性良く検出
することができない恐れがある。
However, in this method, electric power is required on the workpiece side in order to cause the light emitting element attached to the workpiece to emit light. Therefore, if this method is to be used for teaching robot work, a light emitting element is attached to the robot hand, which can be easily implemented since it is possible to obtain electric power. However, when a robot transports a fuel tank or a trunk for transporting replacement parts, a light emitting element must be attached to the fuel tank or trunk for transporting replacement parts, and it is generally impossible to receive power from these. It becomes difficult. Furthermore, depending on the condition of the surface of the fuel tank to which the light emitting element is attached, the trunk for transporting replacement parts, etc., the light from the light emitting element may not be detected reliably.

(発明が解決しようとする課題) このように作業の自動化において目標物の三次元情報を
正確に得ることが重要であるが、従来の三次元位置・姿
勢検出方式では目標物から電力供給を受けることができ
ないものについては採用することが困難であった。また
目標物の表面の状態によっては発光素子の光を信頼性良
く検出できない恐れがあった。
(Problem to be solved by the invention) As described above, it is important to accurately obtain three-dimensional information of a target in work automation, but in the conventional three-dimensional position/orientation detection method, power is supplied from the target. It was difficult to employ those who were unable to do so. Furthermore, depending on the condition of the surface of the target object, there is a possibility that the light from the light emitting element cannot be reliably detected.

そこでこの発明は、目標物から電力供給を受けることが
できないものであっても採用することができ、しかも信
頼性良く発光素子の光を検出することができる三次元情
報検出用ターゲットの提供を目的とする。
Therefore, the purpose of this invention is to provide a three-dimensional information detection target that can be used even if the target object cannot receive power supply, and that can detect light from a light emitting element with high reliability. shall be.

[発明の構成] (課題を解決するための手段) 上記課題を解決するためにこの発明は、複数点の発光素
子を有するターゲットベースの表面に太陽電池素子を設
け、この太陽電池素子を前記ターゲットベースの表面色
とすると共に前記発光素子の電源とする構成とした。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention provides a solar cell element on the surface of a target base having a plurality of light emitting elements, and attaches the solar cell element to the target base. The structure is such that it is used as the surface color of the base and as a power source for the light emitting element.

(作用) ターゲットベースに光が当るとその表面に設けられた太
陽電池素子が電力を生じ発光素子が発光する。また発光
素子の回りの太陽電池素子は黒色であるのでカメラで発
光素子を捉えれば容易に発光素子を検出でき、目標物の
三次元情報を信頼性良く得ることができる。
(Function) When light hits the target base, the solar cell element provided on its surface generates electric power and the light emitting element emits light. Further, since the solar cell elements surrounding the light emitting element are black, the light emitting element can be easily detected by capturing the light emitting element with a camera, and three-dimensional information of the target can be obtained with high reliability.

(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図は本発明の一実施例に係る三次元情報検出用ター
ゲットの斜視図を示すものである。この三次元情報検出
用ターゲットのターゲットベース1は複数点、例えば5
点の発光素子3a、3b。
FIG. 1 shows a perspective view of a three-dimensional information detection target according to an embodiment of the present invention. The target base 1 of this three-dimensional information detection target has multiple points, for example, 5 points.
Point light emitting elements 3a, 3b.

3c、3d、3eを有している。この発光素子3a乃至
3oのうち4点3a乃至3dはターゲットベース1の表
面コーナ部近傍にそれぞれ配置され、それぞれを結ぶ線
分が長方形状となっている。また残りの発光素子3eは
、4点の発光素子3a乃至3dの中央にターゲットベー
ス1表面に対して垂直に立てられたボール5の先端に設
けられている。更にターゲットベース1の表面には複数
の太陽電池素子7が密に貼付けられており、この太陽電
池素子7と6発光素子3a乃至3eとは電気的に接続さ
れている。従って太陽電池素子7はターゲットベース1
の表面色を構成すると共に発光素子3a乃至3eの電源
となっている。
3c, 3d, and 3e. Four points 3a to 3d of the light emitting elements 3a to 3o are arranged near the surface corners of the target base 1, and a line segment connecting each point has a rectangular shape. The remaining light emitting elements 3e are provided at the tip of a ball 5 which is placed perpendicularly to the surface of the target base 1 at the center of the four light emitting elements 3a to 3d. Further, a plurality of solar cell elements 7 are closely attached to the surface of the target base 1, and the solar cell elements 7 and the six light emitting elements 3a to 3e are electrically connected. Therefore, the solar cell element 7 is the target base 1
It forms the surface color of the light emitting elements 3a to 3e and serves as a power source for the light emitting elements 3a to 3e.

第2図は本発明の一実施例に係る三次元情報検出用ター
ゲットを実施する三次元情報検出方式のブロック図を示
すものである。この三次元情報検出方式はCODカメラ
9と計算機11とを備えている。計算I!11は発光素
子検出回路13、画面自位置検出回路15、バッファメ
モリ17、及びマイクロプロセッサ19を含んでいる。
FIG. 2 shows a block diagram of a three-dimensional information detection method implementing a three-dimensional information detection target according to an embodiment of the present invention. This three-dimensional information detection method includes a COD camera 9 and a computer 11. Calculation I! 11 includes a light emitting element detection circuit 13, a screen self-position detection circuit 15, a buffer memory 17, and a microprocessor 19.

次に作用を説明する。Next, the action will be explained.

先ず第1図に示すターゲットをロボットで扱う対象物に
取付ける。そしてロボットに取付けられた照明或いは対
象物の周辺に配置された照明等によってターゲットを照
す。するとターゲットベース1の太陽電池素子7が電力
を生じ、5個の発光素子3a乃至3eが発光する。ここ
でCCDカメラ9が発光素子3a乃至3eを捉え、その
ビデオ信号出力を発光素子検出回路13に入力する。発
光素子検出回路13では太陽電池素子7の黒色がターゲ
ットベース1の表面色となっていることを利用し、この
黒色と発光素子3a乃至3θの高い光度とのコントラス
トによりビデオ信号の中から発光素子3a乃至3eを検
出する。従って発光素子3a乃至3eが信頼性良く容易
に検出される。
First, the target shown in Figure 1 is attached to the object to be handled by the robot. The target is then illuminated by a light attached to the robot or a light placed around the object. Then, the solar cell element 7 of the target base 1 generates electric power, and the five light emitting elements 3a to 3e emit light. Here, the CCD camera 9 captures the light emitting elements 3a to 3e, and inputs the video signal output to the light emitting element detection circuit 13. The light emitting element detection circuit 13 utilizes the fact that the black of the solar cell element 7 is the surface color of the target base 1, and uses the contrast between this black color and the high luminous intensity of the light emitting elements 3a to 3θ to detect the light emitting elements from the video signal. 3a to 3e are detected. Therefore, the light emitting elements 3a to 3e can be easily detected with high reliability.

発光素子3a乃至3eが検出されるとその画面内での位
置を画面自位置検出回路15で算出する。
When the light emitting elements 3a to 3e are detected, their positions within the screen are calculated by the screen self-position detection circuit 15.

そしてその結果をバッファメモリ17に書込む。Then, the result is written into the buffer memory 17.

バッファメモリ17のデータはバスを通してマイクロプ
ロセッサ19からアクセス可能であり、マイクロプロセ
ッサ19はモニタ画面内での発光素子3a乃至3θの位
置をバッファメモリ17から読込み、それら複数点の画
面内の二次元位置から投影の逆変換計算を行い、それぞ
れの三次元位置を求める。またそれらの三次元位置から
ターゲットベース1の姿勢を求める。こうして対象物の
三次元位置や距離及び姿勢等を信頼性良く容易に求める
ことかできる。すなわち、対象物が燃料タンクや交換部
品運搬用トランクのように内部の燃料を運搬役荷下しし
、タンク及びトランクは再利用するような場合に、これ
らから発光素子3a乃至3eは電力を供給することがで
きないが、太陽電池素子7によって電力供給ができ、こ
れらタンク或いはトランク等であっても三次元位置や距
離及び姿勢等を検出することができる。更に太陽電池素
子7の黒色がターゲットベース1の表面色となるためタ
ンクやトランクの表面の反射光度が高くなるような場合
でも発光素子3a乃至3eの検出を精度良(行うことが
できる。
The data in the buffer memory 17 can be accessed from the microprocessor 19 through the bus, and the microprocessor 19 reads the positions of the light emitting elements 3a to 3θ on the monitor screen from the buffer memory 17, and determines the two-dimensional positions of these multiple points on the screen. Inverse projection calculations are performed to find each three-dimensional position. Also, the attitude of the target base 1 is determined from these three-dimensional positions. In this way, the three-dimensional position, distance, orientation, etc. of the object can be easily determined with high reliability. That is, when the target object is a fuel tank or a trunk for transporting replacement parts, the fuel inside is transported and unloaded, and the tank and trunk are reused, the light emitting elements 3a to 3e supply power from these. However, power can be supplied by the solar cell element 7, and the three-dimensional position, distance, attitude, etc. of these tanks, trunks, etc. can be detected. Furthermore, since the black color of the solar cell element 7 becomes the surface color of the target base 1, the light emitting elements 3a to 3e can be detected with high accuracy even when the intensity of reflected light on the surface of a tank or trunk is high.

尚ボール5の先端に発光素子3θを設けることにより画
面に垂直な方向の傾きも精度よく知ることができる。但
し必ずしも必要とするものではない。
By providing the light emitting element 3θ at the tip of the ball 5, the inclination in the direction perpendicular to the screen can also be determined with high accuracy. However, this is not always necessary.

次に発光素子3a乃至3eのそれぞれに特定の色で発光
するLEDを用いると、更に信頼性高く容易に発光素子
3a乃至3eの検出を行うことができる。即ち発光素子
検出回路13においてはCCDカメラ9からのビデオ信
号出力をY/C分離し輝度信号だけでなく色信号に対し
ても発光素子れるが他の色゛信号では検出されないので
、この各色信号の検出結果の組合せを利用することによ
り更に精度良く発光素子3a乃至3eの検出を行うこと
ができる。
Next, by using LEDs that emit light in a specific color for each of the light emitting elements 3a to 3e, the light emitting elements 3a to 3e can be easily detected with higher reliability. That is, in the light-emitting element detection circuit 13, the video signal output from the CCD camera 9 is separated into Y/C, and the light-emitting element is detected not only for the luminance signal but also for the color signal, but is not detected for other color signals. By using the combination of the detection results, the light emitting elements 3a to 3e can be detected with higher accuracy.

またICを用いて6発光素子3a乃至3eをそれぞれに
特定の周期で発光させれば更に精度良く容易に発光素子
3a乃至3eの検出を行うことができる。即ち6発光素
子3a乃至3eはそれぞれの発光周期に従って検出、非
検出を繰返す。発光素子検出回路13ではビデオ信号の
複数フィールドの発光素子検出結果から特定の周期で検
出、非検出を繰返す点を発光素子3a乃至3eと認識す
ることにより、更に精度良く容易に検出を行うことがで
きる。
Further, if each of the six light emitting elements 3a to 3e is caused to emit light at a specific period using an IC, the light emitting elements 3a to 3e can be detected more accurately and easily. That is, the six light emitting elements 3a to 3e repeat detection and non-detection according to their respective light emission cycles. The light-emitting element detection circuit 13 recognizes points that are repeatedly detected and non-detected at a specific cycle from the light-emitting element detection results of multiple fields of the video signal as the light-emitting elements 3a to 3e, thereby making it possible to detect them more accurately and easily. can.

[発明の効果] 以上より明らかなようにこの発明の構成によれば、燃料
タンクや交換部品運搬用トランク等のように電力を供給
できないような物体でもその三次元情報を精度良く容易
に検出することが可能となる。
[Effects of the Invention] As is clear from the above, according to the configuration of the present invention, the three-dimensional information of objects that cannot be supplied with electricity, such as fuel tanks and trunks for transporting replacement parts, can be easily detected with high accuracy. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る三次元情報検出用ター
ゲットの斜視図、第2図は三次元情報検出方式の一例を
示すブロック図である。 1・・・ターゲットベース 3a乃至3e・・・発光素子 7・・・太陽電池素子
FIG. 1 is a perspective view of a three-dimensional information detection target according to an embodiment of the present invention, and FIG. 2 is a block diagram showing an example of a three-dimensional information detection method. 1...Target bases 3a to 3e...Light emitting element 7...Solar cell element

Claims (1)

【特許請求の範囲】[Claims] 複数点の発光素子を有するターゲットベースの表面に太
陽電池素子を設け、この太陽電池素子を前記ターゲット
ベースの表面色とすると共に前記発光素子の電源とする
ことを特徴とする三次元情報検出用ターゲット。
A target for detecting three-dimensional information, characterized in that a solar cell element is provided on the surface of a target base having a plurality of light emitting elements, and the solar cell element is used as the surface color of the target base and as a power source for the light emitting element. .
JP164989A 1989-01-07 1989-01-07 Target for three-dimensional information detection Pending JPH02183103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP164989A JPH02183103A (en) 1989-01-07 1989-01-07 Target for three-dimensional information detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP164989A JPH02183103A (en) 1989-01-07 1989-01-07 Target for three-dimensional information detection

Publications (1)

Publication Number Publication Date
JPH02183103A true JPH02183103A (en) 1990-07-17

Family

ID=11507368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP164989A Pending JPH02183103A (en) 1989-01-07 1989-01-07 Target for three-dimensional information detection

Country Status (1)

Country Link
JP (1) JPH02183103A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603865B1 (en) 2000-01-27 2003-08-05 President Of Nagoya University System for optically performing position detection and data communication
JP2009068968A (en) * 2007-09-12 2009-04-02 Fuji Xerox Co Ltd Position measuring system
JP2009092568A (en) * 2007-10-10 2009-04-30 Fuji Xerox Co Ltd Object recognizing device, object to be recognized, and program
JP2012251827A (en) * 2011-06-01 2012-12-20 Ohbayashi Corp Measuring method for build-in error of steel pipe, and steel pipe
JP2013234971A (en) * 2012-05-11 2013-11-21 Kokusai Kogyo Co Ltd Triaxial marker measuring method, program and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603865B1 (en) 2000-01-27 2003-08-05 President Of Nagoya University System for optically performing position detection and data communication
JP2009068968A (en) * 2007-09-12 2009-04-02 Fuji Xerox Co Ltd Position measuring system
US7742895B2 (en) 2007-09-12 2010-06-22 Fuji Xerox Co., Ltd. Position measurement system, position measurement method and computer readable medium
JP2009092568A (en) * 2007-10-10 2009-04-30 Fuji Xerox Co Ltd Object recognizing device, object to be recognized, and program
JP2012251827A (en) * 2011-06-01 2012-12-20 Ohbayashi Corp Measuring method for build-in error of steel pipe, and steel pipe
JP2013234971A (en) * 2012-05-11 2013-11-21 Kokusai Kogyo Co Ltd Triaxial marker measuring method, program and device

Similar Documents

Publication Publication Date Title
Agin Computer vision systems for industrial inspection and assembly
Nayar et al. Specular surface inspection using structured highlight and Gaussian images.
Gonzalez et al. Computer vision techniques for industrial applications and robot control
Nitzan Three-dimensional vision structure for robot applications
US4611292A (en) Robot vision system
US6549683B1 (en) Method and apparatus for evaluating a scale factor and a rotation angle in image processing
US20220305680A1 (en) Perception module for a mobile manipulator robot
JPH06300702A (en) Printed-circuit-board inspecting device
JP2009128201A (en) Position and attitude recognition device
Hijikata et al. A simple indoor self-localization system using infrared LEDs
CN208155258U (en) A kind of online dimensional measurement of phone housing and surface defects detection system
JPH02183103A (en) Target for three-dimensional information detection
Nitzan Machine intelligence research applied to industrial automation
JPS62134504A (en) Device for detecting presence of body and displaying position thereof
CN207717029U (en) The screw mounting device of view-based access control model processing
CN211148449U (en) Detection device
JPS6365884B2 (en)
CA2307439C (en) Method and apparatus for evaluating a scale factor and a rotation angle in image processing
CN209312143U (en) A kind of robot based on machine vision stores up vending system automatically
Kaufmann et al. Visual inspection using linear features
Kotthauser et al. Vision-based autonomous robot control for pick and place operations
Eissa et al. An effective programming by demonstration method for SMEs’ industrial robots
CN209692942U (en) A kind of camera function test device for electronic product
Berger et al. Identification of influence parameters and dependencies on the illumination of machine vision systems for robots
Mussabayev Colour-based object detection, inverse kinematics algorithms and pinhole camera model for controlling robotic arm movement system