JPH02178604A - Cross diffraction grating and polarized wave rotation detecting device using same - Google Patents

Cross diffraction grating and polarized wave rotation detecting device using same

Info

Publication number
JPH02178604A
JPH02178604A JP33363288A JP33363288A JPH02178604A JP H02178604 A JPH02178604 A JP H02178604A JP 33363288 A JP33363288 A JP 33363288A JP 33363288 A JP33363288 A JP 33363288A JP H02178604 A JPH02178604 A JP H02178604A
Authority
JP
Japan
Prior art keywords
diffraction grating
light
gratings
crossed
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33363288A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kawatsuki
喜弘 川月
Yasumasa Fujisawa
藤沢 泰全
Shiro Osada
長田 司郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP33363288A priority Critical patent/JPH02178604A/en
Publication of JPH02178604A publication Critical patent/JPH02178604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To obtain much information by a small-sized cross diffraction grating by providing two gratings which cross each other in one plane containing the optical axis of an optical anisotropic substrate and making the two gratings different in refractive index to mutually orthogonal polarized light components from the optical anisotropic substrate. CONSTITUTION:The optical anisotropic substrate 1 is provided with 1st diffraction gratings 3a and 3b in mutual crossing relation, and the optical axis 2 of the optical anisotropic substrate 1 is in a (-y) direction; and the 1st diffraction grating 3a is provided in a (z) direction on one surface of the substrate and the 1st diffraction grating 3b is provided in a (y) direction. When incident light 11 in an (x) direction is made incident on this cross diffraction grating, the polarized light component which vibrates mainly in the (y) direction is diffracted by the 1st diffraction grating 3a to obtain two primary diffracted light beams 16 and 17. Further, a polarized component which vibrates mainly in the (z) direction is diffracted by the 1st diffraction grating 3b to obtain two primary diffracted light beams 18 and 19 and undiffracted light travels straight to pass. Consequently, the cross diffraction grating which diffracts diffracted light beams in different polarizing directions to perform polarization plane detection and a magneto-optical head which is reducible in weight and size are obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は2つの格子が交差して形成された交差回折格
子に関し、特に入射光の偏波面の微小な変化の検出に好
適に用いられる交差回折格子に関する。さらに上記交差
回折格子を用いた偏波回転検出装置、特に光磁気ヘッド
に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a crossed diffraction grating formed by intersecting two gratings, and in particular to a crossed diffraction grating that is suitably used for detecting minute changes in the plane of polarization of incident light. Regarding diffraction gratings. Furthermore, the present invention relates to a polarization rotation detection device using the above-mentioned crossed diffraction grating, particularly to a magneto-optical head.

[従来の技術] 入射光の偏波面を検出したり、偏波面の変化を検出した
りするために用いられる偏光光学素子(偏光ビームスプ
リッタ)としては、(イ)直角プリズムを2枚貼り合わ
せ、貼り合わせ面1こ誘電体多層膜をコートしたものや
、(cl)方解石等の複屈折の大きい結晶を用いたもの
が従来から多く使用されている。また(ハ)特開昭61
−240204号には微小ピッチの回折格子から成る偏
光ビームスプリッタが示されている。さらに(ニ)特開
昭H−55501号にはニオブ酸リチウム結晶板にH゛
イオン交換領域の回折格子を形成した先偏光板が開示さ
れている。
[Prior Art] As a polarizing optical element (polarizing beam splitter) used to detect the plane of polarization of incident light or detect changes in the plane of polarization, (a) two rectangular prisms bonded together; Conventionally, materials in which one bonding surface is coated with a dielectric multilayer film, and materials using crystals with high birefringence such as (Cl) calcite have been widely used. Also (c) JP-A-61
No. 240204 discloses a polarizing beam splitter consisting of a fine pitch diffraction grating. Furthermore, (iv) JP-A-55501 discloses a pre-polarizing plate in which a diffraction grating of an H ion exchange region is formed on a lithium niobate crystal plate.

たとえば、上記(11)の偏光光学素子は常光線と異常
光線とに対する°媒質の屈折率の違いにより、入射した
光を2つに分離する。すなわち第11図に示す複屈折の
大きな媒質(たとえば方解石)49に入射した光50は
、直線偏光で振動方向が互いに直角な2つの屈折光51
.52に分離する。ここで、屈折光52は紙面に平行方
向の偏光、屈折光51は紙面に置駒方向の偏光である。
For example, the polarizing optical element (11) above separates incident light into two parts due to the difference in the refractive index of the medium for ordinary rays and extraordinary rays. That is, light 50 incident on a medium 49 with large birefringence (for example, calcite) shown in FIG.
.. Separate into 52 parts. Here, the refracted light 52 is polarized light in a direction parallel to the paper surface, and the refracted light 51 is polarized light in the direction of the frames placed on the paper surface.

上記偏光光学素子(偏光ビームスプリッタ)を用いた偏
波面検出装置として光磁気ヘッドが゛ある。
A magneto-optical head is a polarization plane detection device using the above polarization optical element (polarization beam splitter).

第12図は光磁気ヘッドの1例の概略構成を示している
FIG. 12 shows a schematic configuration of an example of a magneto-optical head.

第12図において、41は半導体レーザ(レーザ光源)
、42はコリメートレンズ、43はビームスプリッタ、
44は対物レンズ、21は光磁気ディスクである。半導
体レーザ41から出射されたレーザ光しは、コリメート
レンズ42で平行光にされた後、ビームスプリッタ43
を透過して、対物レンズ44で絞られて光磁気ディスク
21に集光されるとともに、反射される。この反射光(
レーザ光) Llはカー効果を受けて偏光面が回転され
て、再び、対物レンズ44を通過した後、ビームスプリ
ッタ43により反射されてビームスプリッタ15に向か
う。
In FIG. 12, 41 is a semiconductor laser (laser light source)
, 42 is a collimating lens, 43 is a beam splitter,
44 is an objective lens, and 21 is a magneto-optical disk. The laser beam emitted from the semiconductor laser 41 is made into parallel light by the collimating lens 42 and then sent to the beam splitter 43.
The light is transmitted through the lens, focused by the objective lens 44, focused on the magneto-optical disk 21, and reflected. This reflected light (
Laser light) The polarization plane of Ll is rotated by the Kerr effect, and after passing through the objective lens 44 again, it is reflected by the beam splitter 43 and heads toward the beam splitter 15.

上記ビームスプリッタ15に入射された反射光Llは、
一部が反射されて集光レンズおよびシリンドカルレンズ
からなるセンサレンズ46に入射し、4分割フォトダイ
オード(検知器)45に集光される。
The reflected light Ll incident on the beam splitter 15 is
A portion of the light is reflected and enters a sensor lens 46 consisting of a condensing lens and a cylindrical lens, and is focused on a four-part photodiode (detector) 45 .

この4分割フォトダイオード45からの出力を受けた比
較回路47によって、フォーカスおよびトラッキング状
態が検知され、サーボ機構(図示せず)によりフォーカ
シングおよびトラッキングを行う。
A comparison circuit 47 receiving the output from the four-division photodiode 45 detects the focus and tracking state, and a servo mechanism (not shown) performs focusing and tracking.

一方、上記反射光L1の通過光は、偏光ビームスプリッ
タ20に入射し、透過または反射されて光検知器38.
39に検出される。ここで、光磁気ディスク21に反射
された反射光L1の偏光状態に微小な変化が生じている
場合は、光検出器38.39に向かう光の光強度に変化
が生じる。したがって、雨検出器38.39の出力を差
動検出器48により差動検出して、光磁気ディスク21
の情報を続み取ることができる。
On the other hand, the transmitted light of the reflected light L1 enters the polarizing beam splitter 20, is transmitted or reflected, and is transmitted to the photodetector 38.
Detected at 39. Here, if a slight change occurs in the polarization state of the reflected light L1 reflected by the magneto-optical disk 21, a change occurs in the light intensity of the light directed toward the photodetectors 38 and 39. Therefore, the outputs of the rain detectors 38 and 39 are differentially detected by the differential detector 48, and the magneto-optical disk 21 is
You can continue to receive information.

また光磁気ヘッドの1つの構成例として、特開昭63−
247941号には屈折率異方性を有する異方性板にグ
レーティング溝を形成し、溝に所定の屈折率を有する充
填材料を詰めたグレーティング素子を用いた光磁気ヘッ
ドが示されている。
In addition, as an example of the structure of a magneto-optical head,
No. 247941 discloses a magneto-optical head using a grating element in which grating grooves are formed in an anisotropic plate having refractive index anisotropy and the grooves are filled with a filling material having a predetermined refractive index.

[゛発明が解決しようとする課題] 上記(イ)〜(ニ)の偏光光学素子は入射光を偏光面の
異なる2つの光に分離するので、第12図に示すような
構成の光磁気ヘッドに用いると、フォーカスおよびトラ
ッキング状態の検出と、差動検出とを行うにあたり、反
射光LLを分離するためには複数のビームスプリッタ1
5.20を用いなければならないので、光磁気ヘッドが
コンパクトにならず、また、高価な偏光光学素子を多く
必要とする。
[Problems to be Solved by the Invention] Since the polarizing optical elements (a) to (d) above separate incident light into two lights with different polarization planes, a magneto-optical head having the configuration as shown in FIG. When used in a camera, multiple beam splitters 1 are required to separate the reflected light LL when performing focus and tracking state detection and differential detection.
5.20, the magneto-optical head cannot be made compact and also requires many expensive polarizing optical elements.

この発明は上記課題に鑑みてなされたもので、複数の回
折光の偏光方向が異なり、偏波面検出が行える交差回折
格子や、軽量・小型化を図り得る光磁気ヘッドを提供す
ることを目的としている。
This invention was made in view of the above problems, and aims to provide a crossed diffraction grating in which a plurality of diffracted lights have different polarization directions and can detect the plane of polarization, and a magneto-optical head that can be made lightweight and compact. There is.

[課題を解決するための手段] 上記目的を達成するために、この出願の請求項(1)の
交差回折格子は、光学的異方性基板の光学軸を含む1つ
の面に互いに交差する2つの格子か設けられており、上
記2つの格子はそれぞれ主に互いに直交する偏光成分に
対する屈折率が上記光学的異方性基板とは異なっている
ことを特徴とする 請求項(2)の交差回折格子は請求項(1)において、
上記光学的異方性基板の光学軸を含む1つの面に、互い
に交差する2つの第1の回折格子が深さ方向に設けられ
ていることを特徴とする 請求項(3)の交差回折格子では、上記2つの第1の回
折格子の深さが互いに異なっている。
[Means for Solving the Problems] In order to achieve the above object, the crossed diffraction grating of claim (1) of this application has two gratings that intersect with each other in one plane including the optical axis of the optically anisotropic substrate. Cross diffraction according to claim 2, characterized in that two gratings are provided, and each of the two gratings has a refractive index different from that of the optically anisotropic substrate for polarization components that are mainly orthogonal to each other. In claim (1), the lattice is
Cross diffraction grating according to claim (3), characterized in that two first diffraction gratings intersecting each other are provided in the depth direction on one surface including the optical axis of the optically anisotropic substrate. In this case, the depths of the two first diffraction gratings are different from each other.

請求項(4)の交差回折格子は請求項(1)において、
上記光学的異方性基板の光学軸を含む1つの面に、互い
に交差する2つの第1の回折格子か深さ方向に設けられ
ており、上記第1の回折格子と同一方向に透明膜層から
なる第2の回折格子が積層されており、上記第2の回折
格子は上記第1の回折格子による、それぞれ互いに直交
する偏光成分に対する位相差を相殺するように形成され
ていることを特徴とする 請求項(5)の交差回折格子では、上記光学的異方性基
板がX輪またはZ軸のニオブ酸リチウム結晶板であり、
上記第1の回折格子は、上記ニオブ酸リチウム結晶板の
1つの主面にH゛イオン交換より設けられている。
The crossed diffraction grating of claim (4) is characterized in claim (1) by:
Two first diffraction gratings intersecting each other are provided in the depth direction on one surface including the optical axis of the optically anisotropic substrate, and a transparent film layer is provided in the same direction as the first diffraction gratings. A second diffraction grating is stacked, and the second diffraction grating is formed so as to cancel out the phase difference caused by the first diffraction grating with respect to mutually orthogonal polarization components. In the crossed diffraction grating according to claim (5), the optically anisotropic substrate is an X-ring or Z-axis lithium niobate crystal plate,
The first diffraction grating is provided on one main surface of the lithium niobate crystal plate by H ion exchange.

上記請求項(1)の交差回折格子は、上記交差回折格子
により得られろ回折光を検出することによって入射光の
偏光状轢を検出する検出器と組み合わせて、請求項(6
)の偏波回転検出装置に用いられる。
The crossed diffraction grating of claim (1) can be combined with a detector for detecting the polarization of incident light by detecting the diffracted light obtained by the crossed diffraction grating.
) is used for polarization rotation detection devices.

また、上記請求項(1)の交差回折格子は、上記交差回
折格子からの透過光を受けてトラッキング状態またはフ
ォーカス状態のいずれか一方または両方を検出する光検
出器と、回折光を受けて上記光磁気記録媒体の情報を読
み取る光検出器とを備えると、光磁気記録媒体からの反
射光または通過光により情報の読み取りを行う請求項(
7)の光磁気ヘッドに用いることができる。
Further, the crossed diffraction grating according to claim (1) above includes a photodetector that receives the transmitted light from the crossed diffraction grating and detects either a tracking state or a focus state, or both, and a photodetector that receives the diffracted light and detects the tracking state or the focused state. A photodetector for reading information on a magneto-optical recording medium is provided, and the information is read using reflected light or passing light from the magneto-optical recording medium.
7) It can be used for the magneto-optical head.

[作 用] 本発明の作用を図面を参照しながら説明する。[Work] The operation of the present invention will be explained with reference to the drawings.

第8図ないし第10図は本発明の交差回折格子の作用を
説明するための概略説明図であって、光学的異方性基板
1の光学軸2を含む面に基板とは屈折率の異なる第1の
回折格子3が設けられている。
8 to 10 are schematic explanatory diagrams for explaining the function of the crossed diffraction grating of the present invention, in which the surface including the optical axis 2 of the optically anisotropic substrate 1 has a refractive index different from that of the substrate. A first diffraction grating 3 is provided.

ここで異方性基板の光学軸は−X方向(第8図図示)で
あり、第1の回折格子はy(第8図図示)方向に形成さ
れている。
Here, the optical axis of the anisotropic substrate is in the -X direction (as shown in FIG. 8), and the first diffraction grating is formed in the y direction (as shown in FIG. 8).

基板と第1の回折格子との屈折率差を常光成分に対して
はΔNo、No光成分に対してはΔNeとする。ここで
、常光成分、異常光成分とは上記基板の光学軸方向で決
まる偏光方向の光をいい、−軸性結晶では上記偏光方向
は互いに垂直である。第1の回折格子3の厚さをDとす
ると、第1の回折格子を通過した光と基板のみを通過し
た光の光学的光路長差は厚さDと上記屈折率差との積に
より与えられる。すなわち常光成分に対する光路長差を
ΔOP0、異常光成分に対する光路長差をΔOPeとす
ると、 Δ0Po−ΔNo−D Δ0Pe=  Δ Ne−D である。ここで、回折格子としての作用を考えると、上
記光路長差が入射する光の波長以下の範囲では、回折効
率は光路長差か増加するにつれて増加する。たとえば第
8図において、1Δ0Pel)lΔ0P01とすると、
2方向(第8図図示)の入射光11に対して常光成分(
y方向に振動する偏光成分)の光は上記第!の回折格子
によりほとんど回折されることはなく、0次光12とな
って基板1を直進通過する。一方、入射光の異常光成分
(X方向に振動する偏光成分)の光は上記第1の回折格
子により回折され、1次回折光13.14となって基板
lから出射する。偏光成分による分離の消光比を大きく
するためには上記ΔOPeとΔOP0との比が大きいほ
うが望ましい。
Let the refractive index difference between the substrate and the first diffraction grating be ΔNo for the ordinary light component and ΔNe for the No light component. Here, the ordinary light component and the extraordinary light component refer to light whose polarization direction is determined by the optical axis direction of the substrate, and in a -axial crystal, the polarization directions are perpendicular to each other. When the thickness of the first diffraction grating 3 is D, the optical path length difference between the light passing through the first diffraction grating and the light passing only through the substrate is given by the product of the thickness D and the above-mentioned refractive index difference. It will be done. That is, if the optical path length difference for the ordinary light component is ΔOP0, and the optical path length difference for the extraordinary light component is ΔOPe, then Δ0Po−ΔNo−D Δ0Pe=ΔNe−D. Considering the function as a diffraction grating, in a range where the optical path length difference is equal to or less than the wavelength of incident light, the diffraction efficiency increases as the optical path length difference increases. For example, in Fig. 8, if 1Δ0Pel)lΔ0P01,
The ordinary light component (
The light of the polarized light component vibrating in the y direction is the above! The light is hardly diffracted by the diffraction grating, and passes straight through the substrate 1 as zero-order light 12. On the other hand, the extraordinary light component (polarized light component vibrating in the X direction) of the incident light is diffracted by the first diffraction grating, becomes first-order diffracted light 13 and 14, and exits from the substrate l. In order to increase the extinction ratio of separation by polarized light components, it is desirable that the ratio between ΔOPe and ΔOP0 is large.

第9図は第8図の基板上に透明膜からなる第2の回折格
子4を積層したときの概略構成図を示している。上記第
2の回折格子を、常光成分または異常光成分のいずれか
一方に対する位相差を相殺する条件で形成すると、その
偏光成分の光の回折効率を零にすることができる。たと
えば第9図において、第1の回折格子3上の上記第2の
回折格子4の高さをHl、屈折率をnl、第1の回折格
子上以外の部分の上記第2の回折格子の高さをH2、屈
折率をntとすると、ΔOPo<OであればΔOPo 
+(n+H1nlH* )  = 0を満たす第2の回
折格子を積層すると常光成分の光に対する回折効率は零
になる。つまり常光成分の光はすべて直進しく透過光1
2)、異常光成分の光のみが回折される(1次回折光1
3.14)。
FIG. 9 shows a schematic configuration diagram when the second diffraction grating 4 made of a transparent film is laminated on the substrate of FIG. 8. If the second diffraction grating is formed under conditions that cancel out the phase difference for either the ordinary light component or the extraordinary light component, the diffraction efficiency of the light of that polarization component can be made zero. For example, in FIG. 9, the height of the second diffraction grating 4 on the first diffraction grating 3 is Hl, the refractive index is nl, and the height of the second diffraction grating other than on the first diffraction grating is If the distance is H2 and the refractive index is nt, if ΔOPo<O, then ΔOPo
When a second diffraction grating satisfying +(n+H1nlH*)=0 is stacked, the diffraction efficiency for the ordinary light component becomes zero. In other words, all the ordinary light components travel in a straight line, and the transmitted light 1
2) Only the extraordinary light component is diffracted (first-order diffracted light 1
3.14).

ところで上記第2の回折格子は、常光成分または異常光
成分に対する、光学的異方性基板と第1の回折格子との
位相差をなくすために、上記第1の回折格子が形成され
ていない面上に積層してもよい。第1θ図は上記第1の
回折格子が形成されていない面上に第2の回折格子4を
形成した場合を示す概略斜視図である。ここで上記第1
の回折格子上の上記第2の回折格子の高さをHl、屈折
率をnl、第1の回折格子上以外の部分の上記第2の回
折格子の高さをH2、屈折率を1.とすれば、上記ΔO
PeがΔOPe>Oであれば、 ΔOPe + (n+H+  ntHt) = 0を満
たす第2の回折格子を積層すると入射光11のうち異常
光成分の光に対する回折効率は零になる。
By the way, the second diffraction grating has a surface on which the first diffraction grating is not formed, in order to eliminate the phase difference between the optically anisotropic substrate and the first diffraction grating for the ordinary light component or the extraordinary light component. It may be laminated on top. FIG. 1θ is a schematic perspective view showing the case where the second diffraction grating 4 is formed on the surface where the first diffraction grating is not formed. Here, the first
The height of the second diffraction grating on the diffraction grating is Hl, the refractive index is nl, the height of the second diffraction grating other than on the first diffraction grating is H2, and the refractive index is 1. Then, the above ΔO
If Pe is ΔOPe>O, if a second diffraction grating satisfying ΔOPe + (n+H+ntHt) = 0 is stacked, the diffraction efficiency for the extraordinary light component of the incident light 11 becomes zero.

つまり異常光成分の光は直進しく透過光12)、常光成
分の光は回折される(1次回折光13.14)。
In other words, the light of the extraordinary light component travels straight through the transmitted light 12), and the light of the ordinary light component is diffracted (first-order diffracted light 13, 14).

本発明の交差回折格子は第8図ないし第10図に示す第
1の回折格子を光学的異方性基板の1つの面に互いに交
差して2つ形成したものである。
The crossed diffraction grating of the present invention has two first diffraction gratings shown in FIGS. 8 to 10 formed on one surface of an optically anisotropic substrate so as to intersect with each other.

[実施例コ 第1図は本発明の交差回折格子の第1の実施例を示す概
略斜視図であり、光学的異方性基板lには第1の回折格
子3a、 3bが互いに交差して設けられている。ここ
で上記光学的異方性基板1の光学軸2は−y方向(第1
図図示)であり、上記光学的異方性基板の1つの面には
、2方向(第1図図示)に第1の回折格子3a1y方向
(第1図図示)に第1の回折格子3bを有している。こ
こで上記第1の回折格子3aの深さDaは、入射光のう
ち異常光成分に対する上記光学的異方性基板と上記第1
の回折格子との屈折率差が大きく、1Δ0Pel)Δ0
P01である条件で形成されている。一方上記第1の回
折格子3bの深さDbは、入射光のうち常光成分に対す
る、上記光学的異方性基板と上記第1の回折格子との屈
折率差が大きく、1Δ0Pol)1Δ0Pelである条
件で形成されている。これらの交差部5は上記深さDa
とDbを合計した深さになっている。この交差回折格子
にX方向の入射光11 h4人射すると、第1の回折格
子3aにより主にy方向に振動する偏光成分の光が回折
され、2つの1次回折光16.17が得られる。さらに
第1の回折格子3bにより主に2方向に振動する偏光成
分の光が回折され2つの1次回折光18.19が得られ
る。回折されなかった光は直進して通過する(透過光1
2)。
[Example 1] FIG. 1 is a schematic perspective view showing a first example of a crossed diffraction grating of the present invention, in which first diffraction gratings 3a and 3b cross each other on an optically anisotropic substrate l. It is provided. Here, the optical axis 2 of the optically anisotropic substrate 1 is in the -y direction (the first
The optically anisotropic substrate has a first diffraction grating 3a in two directions (as shown in FIG. 1) and a first diffraction grating 3b in the y direction (as shown in FIG. 1) on one surface of the optically anisotropic substrate. have. Here, the depth Da of the first diffraction grating 3a is between the optically anisotropic substrate and the first diffraction grating for the extraordinary light component of the incident light.
The difference in refractive index with the diffraction grating is large, 1Δ0Pel)Δ0
It is formed under the condition of P01. On the other hand, the depth Db of the first diffraction grating 3b is set under the condition that the refractive index difference between the optically anisotropic substrate and the first diffraction grating for the ordinary light component of the incident light is large and is 1Δ0Pol)1Δ0Pel. It is formed of. These intersections 5 have the above-mentioned depth Da.
The depth is the sum of Db and Db. When incident light 11 h4 in the X direction is incident on this crossed diffraction grating, the first diffraction grating 3a diffracts the light with a polarized component vibrating mainly in the y direction, and two first-order diffracted lights 16 and 17 are obtained. Further, the first diffraction grating 3b diffracts the polarized light component vibrating mainly in two directions, thereby obtaining two first-order diffracted lights 18 and 19. The light that is not diffracted goes straight and passes through (transmitted light 1
2).

上記第1の回折格子を形成する方法としては、イオン(
■゛)交換法、Ti熱拡散法など任意の方法が行える。
As a method for forming the first diffraction grating, ions (
■゛) Any method such as the exchange method or Ti thermal diffusion method can be used.

また本実施例では上記2つの第1の回折格子3aと3b
との深さを互いに異ならせているが、上記2つの第1の
回折格子の形成方法を変えることによって、それぞれ直
交する偏光成分を回折させてもよい。さらに上記第1の
回折格子は上記光学的異方性基板に溝を設け、上記溝に
所定の屈折率の充填材料を充填して形成してもよい。
Furthermore, in this embodiment, the two first diffraction gratings 3a and 3b
Although the depths of the two first diffraction gratings are different from each other, polarization components orthogonal to each other may be diffracted by changing the method of forming the two first diffraction gratings. Further, the first diffraction grating may be formed by providing a groove in the optically anisotropic substrate and filling the groove with a filling material having a predetermined refractive index.

この実施例において、偏光分離の消光比を大きくするた
めには、1つの上記第1の回折格子(たとえば3a)は
入射光の常光成分に対しては上記光学的異方性基板との
屈折率差が大きく、かつ、異常光成分に対しては屈折率
差が小さく、さらに、他の上記第1の回折格子(たとえ
ば3b)は入射光の異常光成分に対しては上記光学的異
方性基板との屈折率差が大きく、かつ、常光成分に対し
ては屈折率差が小さいことが必要である。
In this embodiment, in order to increase the extinction ratio of polarization separation, one of the first diffraction gratings (for example, 3a) has a refractive index that is different from that of the optically anisotropic substrate for the ordinary light component of the incident light. The refractive index difference is large and the refractive index difference is small for the extraordinary light component, and furthermore, the other first diffraction grating (for example, 3b) has the above-mentioned optical anisotropy for the extraordinary light component of the incident light. It is necessary to have a large refractive index difference with the substrate and a small refractive index difference with respect to the ordinary light component.

第2図および第3図は本発明の交差回折格子の第2の実
施例を示す概略図であって、光学的異方性基板1に第1
の回折格子3a、 3bが形成され、さらに上記光学的
異方性基板上に、それぞれ上記第1の回折格子3a、3
bと同一方向に第2の回折格子4a、4bが積層されて
いる。第2図は本実施例の交差回折格子の概略斜視図で
、上記基板の光学軸2は−yX方向第2図図示)、第1
または第2の回折格子3a、4aは2方向(第2図図示
)、第1または第2の回折格子3b、 4bはX方向に
設定されている。そして、上記基板に設けられた第1の
回折格子3a、3bは異常光成分に対しては屈折率が基
板よりも高く、常光成分に対しては基板よりも低くなっ
ている。ここで、上記第2の回折格子4bは第1の回折
格子3b上が高くなっており、常光成分に対する位相差
を零にする条件で形成されている。また上記第2の回折
格子4aは第1の回折格子3a上が低くなっており、異
常光成分に対する位相差を零にする条件で形成されてい
る。第3a図ないし第3d図はそれぞれ本実施例の交差
回折格子を第2図の1−11■−■、[[l−[11、
■−■線で切断した概略断面図である。第3a図ないし
第3d図において、D、は第1の回折格子3bo′:J
深さ、D、は第1の回折格子3aの深さ、D、は上記3
aと3bとの交差部層5の深さである。またSlは第2
の回折格子4bの頂部6と第2の回折格子4aの頂部7
との段差、S、は上記4bの底部8と上記4aの底部9
との段差、S3は上記4aの頂部7と底部9との段差、
S4は上記4bの頂部6と底部8との段差である。そし
て、上記り、ないしD3およびSlないしS4は、上記
光学的異方性基板と上記第1の回折格子3aまたは3b
との間の、常光成分または異常光成分に対する屈折率差
、さらに、上記第2の回折格子4a、4bを形成する透
明膜層の屈折率に応じて、上記条件を満たすように適宜
設定すればよい。
2 and 3 are schematic diagrams showing a second embodiment of the crossed diffraction grating of the present invention, in which a first
Diffraction gratings 3a, 3b are formed on the optically anisotropic substrate, and the first diffraction gratings 3a, 3b are formed on the optically anisotropic substrate, respectively.
Second diffraction gratings 4a and 4b are stacked in the same direction as b. FIG. 2 is a schematic perspective view of the crossed diffraction grating of this embodiment, and the optical axis 2 of the substrate is in the -yX direction (as shown in the second figure), and the first
Alternatively, the second diffraction gratings 3a, 4a are set in two directions (as shown in FIG. 2), and the first or second diffraction gratings 3b, 4b are set in the X direction. The first diffraction gratings 3a and 3b provided on the substrate have a refractive index higher than that of the substrate for extraordinary light components and lower than that of the substrate for ordinary light components. Here, the second diffraction grating 4b is elevated above the first diffraction grating 3b, and is formed under the condition that the phase difference with respect to the ordinary light component is zero. Further, the second diffraction grating 4a is lowered above the first diffraction grating 3a, and is formed under the condition that the phase difference with respect to the extraordinary light component is zero. Figures 3a to 3d show the cross diffraction gratings of this embodiment, 1-11■-■, [[l-[11,
It is a schematic cross-sectional view taken along the line ■-■. In Figures 3a to 3d, D is the first diffraction grating 3bo':J
The depth, D, is the depth of the first diffraction grating 3a, and D is the depth of the first diffraction grating 3a.
This is the depth of the layer 5 at the intersection of a and 3b. Also, Sl is the second
The top 6 of the second diffraction grating 4b and the top 7 of the second diffraction grating 4a
The step, S, is between the bottom 8 of the above 4b and the bottom 9 of the above 4a.
S3 is the step between the top 7 and bottom 9 of 4a,
S4 is a step between the top 6 and bottom 8 of 4b. The above-mentioned through D3 and Sl through S4 are the optically anisotropic substrate and the first diffraction grating 3a or 3b.
The refractive index difference for the ordinary light component or the extraordinary light component between the good.

この交差回折格子にX方向(第2図図示)の入射光11
が入射すると、第1の回折格子3aおよび第2の回折格
子4aによりX方向に振動する偏光成分の光のみが回折
され 2つの1次回折光16.17が得られる。さらに
第1の回折格子3bおよび第2の回折格子4bにより2
方向に振動する偏光成分の光のみが回折され2つの1次
回折光18.19が得られる。回折されなかった光は直
進して通過する(透過光12)。
Incident light 11 in the X direction (shown in Figure 2) enters this crossed diffraction grating.
When incident, only the polarized light component vibrating in the X direction is diffracted by the first diffraction grating 3a and the second diffraction grating 4a, and two first-order diffracted lights 16 and 17 are obtained. Further, the first diffraction grating 3b and the second diffraction grating 4b
Only the light of the polarized component vibrating in the direction is diffracted, and two first-order diffracted lights 18 and 19 are obtained. The light that is not diffracted goes straight and passes through (transmitted light 12).

以上説明したように、本発明の交差回折格子によって、
(−光成分の異なる回折光と透過光が得られる。
As explained above, the crossed diffraction grating of the present invention allows
(- Diffracted light and transmitted light with different light components can be obtained.

なお、上記第2の回折格子の格子形状をブレーズ状にす
ることによって、上記2つの1次回折光16.17(ま
たはI8.19)の強度を異ならせることができ、■方
の回折光16(または17)および18(または19)
のみを得ることも可能である。
By making the grating shape of the second diffraction grating blazed, the intensities of the two first-order diffracted lights 16.17 (or I8.19) can be made different, and the diffracted light 16 ( or 17) and 18 (or 19)
It is also possible to obtain only

なお、この発明の交差回折格子の第1または第2の回折
格子の交差角は00以上90’以下の任意の角度が設定
できる。また基板としては透明性を有する任意の光学的
異方性基板が用いられる。そしてX軸またはZ軸のニオ
ブ酸リチウム結晶板が上記第1の回折格子の製造性か良
いので好適に用いられる。上記第2の回折格子を形成す
る透明膜層としてはMgF*、3i0を等の誘電体膜、
高分子樹脂膜等任意である。
Note that the intersection angle of the first or second diffraction grating of the crossed diffraction grating of the present invention can be set to any angle from 00 to 90'. Further, as the substrate, any transparent optically anisotropic substrate can be used. An X-axis or Z-axis lithium niobate crystal plate is preferably used because the first diffraction grating can be manufactured easily. The transparent film layer forming the second diffraction grating may include a dielectric film such as MgF*, 3i0, etc.
A polymer resin film or the like is optional.

上記基板に対する第1の回折格子の屈折率は、常光成分
と異常光成分との両方に対して高くても、一方に対して
は高く他方に対しては低くても、さらに両方に対して低
くてもよい。第4図は本発明の交差回折格子の第3の実
施例を示す概略斜視図であって、この実施例の第1の回
折格子3a、 3bの屈折率は常光成分に対しても異常
光成分に対しても、基板1よりも高くなっている。した
がって第2の回折格子4a、4bはそれぞれ上記第1の
回折格子3a、 3bが形成されている部分上が凹部に
なるように設けられている。そして、上記第1の回折格
子の深さおよび上記第2の回折格子の高さは、格子3a
および4aにより異常光成分に対する位相差を零にする
条件および格子3bおよび4bにより常光成分に対する
位相差を零にするように適宜設定すればよい。
The refractive index of the first diffraction grating for the substrate may be high for both the ordinary light component and the extraordinary light component, high for one and low for the other, or even low for both. You can. FIG. 4 is a schematic perspective view showing a third embodiment of the crossed diffraction grating of the present invention, and the refractive index of the first diffraction gratings 3a and 3b of this embodiment is different from the ordinary light component as well as the extraordinary light component. It is also higher than the substrate 1. Therefore, the second diffraction gratings 4a and 4b are provided so that the portions where the first diffraction gratings 3a and 3b are formed are concave portions, respectively. The depth of the first diffraction grating and the height of the second diffraction grating are determined by the grating 3a.
The conditions for making the phase difference for the extraordinary light component zero by 4a and the conditions for making the phase difference for the ordinary light component zero by using the gratings 3b and 4b may be set as appropriate.

(実施例1) 以下、本発明の1つの実施例について詳細に説明する。(Example 1) Hereinafter, one embodiment of the present invention will be described in detail.

両面を研磨したXカットニオブ酸リチウム基板のz軸方
向に401ピツチのアルミニウム膜のパターンを設けた
。この基板を安息香酸溶融液に浸すことにより、Li゛
をHoに置換するイオン交換を行って、基板とは屈折率
の異なる40umピッチの第1の回折格子3aを基板の
Z軸方向に形成した。ここで、上記第1の回折格子の深
さDI(イオン交換深さ〉は2,3μmである。次に、
上記第1の回折格子3aを形成した面の基板のY軸方向
に同様に40μmピッチのアルミニウム膜パターンを設
けた。そして同様にイオン交換を行うことによって40
μmピッチの第1の回折格子3bを形成した(イオン交
換深さり、は2.3μmである)。したがって上記第1
の回折格子3aと3bとは直交する方向に形成されてお
り、交差部は格子深さが大きく上記り、は4.6μ−で
あり、交差部以外では格子深さは2.3μ醜である。な
おニオブ酸リチウム基板の屈折率は波長0.633μ−
で、異常光成分に対しては2.200、常光成分に対し
ては2.236であり、上記イオン交換によって異常光
成分に対する屈折率は0.13増加し、常光成分に対し
ては0.04減少する。
An aluminum film pattern of 401 pitches was provided in the z-axis direction of an X-cut lithium niobate substrate whose both sides were polished. By immersing this substrate in a benzoic acid melt, ion exchange was performed to replace Li with Ho, and a first diffraction grating 3a with a pitch of 40 um and a refractive index different from that of the substrate was formed in the Z-axis direction of the substrate. . Here, the depth DI (ion exchange depth) of the first diffraction grating is 2.3 μm. Next,
Similarly, an aluminum film pattern with a pitch of 40 μm was provided in the Y-axis direction of the substrate on the surface on which the first diffraction grating 3a was formed. Then, by performing ion exchange in the same way, 40
A first diffraction grating 3b with a μm pitch was formed (ion exchange depth was 2.3 μm). Therefore, the first
The diffraction gratings 3a and 3b are formed in orthogonal directions, and the grating depth is large at the intersection, which is 4.6 μ-, and the grating depth outside the intersection is 2.3 μ. . Note that the refractive index of the lithium niobate substrate is 0.633 μ-
The refractive index is 2.200 for the extraordinary light component and 2.236 for the ordinary light component, and the refractive index for the extraordinary light component increases by 0.13 due to the above ion exchange, and the refractive index for the ordinary light component increases by 0.13. 04 decrease.

上記第1の回折格子を形成した上記基板上に感光性樹脂
からなる透明膜層を積層して以下の方法で第2の回折格
子を形成した。まず、クロチルメタクリレートとメチル
メタクリレートとの共重合体1部、m−ベンゾイルベン
ゾフェノン0.8部カラなる感光性樹脂を2,5μmの
厚さだけスピンコードした。つぎに、上記第1の回折格
子3aが形成されていない部分を遮光した、40u−ピ
ッチのフォトマスクを通して250W水銀ランプで7分
間露光した。
A transparent film layer made of a photosensitive resin was laminated on the substrate on which the first diffraction grating was formed, and a second diffraction grating was formed by the following method. First, 1 part of a copolymer of crotyl methacrylate and methyl methacrylate and 0.8 parts of m-benzoylbenzophenone were spin-coded to a thickness of 2.5 μm. Next, exposure was performed for 7 minutes using a 250W mercury lamp through a 40u-pitch photomask that shielded the portion where the first diffraction grating 3a was not formed.

さらに上記第1の回折格子3bが形成された部分を遮光
した、404mピッチのフォトマスクを通して同じ水銀
ランプで25分間露光した。この基板を95℃、012
a@Hgの雰囲気下で4時間加熱し未反応のベンゾイル
ベンゾフェノンを取り除いた。
Furthermore, exposure was performed for 25 minutes using the same mercury lamp through a photomask with a pitch of 404 m, which shielded the portion where the first diffraction grating 3b was formed. This board was heated to 95°C, 012°C.
The mixture was heated in an atmosphere of a@Hg for 4 hours to remove unreacted benzoylbenzophenone.

以上により第2図の概略斜視図に示す交差回折格子が得
られた。なお、上記Slは0.14μm、上記S。
As a result of the above, the crossed diffraction grating shown in the schematic perspective view of FIG. 2 was obtained. In addition, the above-mentioned Sl is 0.14 μm, and the above-mentioned S.

はQ、 43μs、上記S、は0.43ua+、上記S
4は0.14μmであった。
is Q, 43μs, above S, is 0.43ua+, above S
4 was 0.14 μm.

第2図は上記により作製した交差回折格子の概略斜視図
を示している。光学的異方性基板lの光学軸2は−y方
向(第2図図示)、上記基板内に形成された第1の回折
格子3aの方向は2方向(第2図図示)である。また第
1の回折格子3bの方向はy方向である。上記交差回折
格子に、He −Neレーザ光を基板に対して垂直にX
方向(第2図図示)から入射させると、2方向の第1の
回折格子3aと第2の回折格子4aとによる回折光16
、【7の偏光成分はy方向であり、またy方向の第1の
回折格子3bと第2の回折格子4bとによる回折光18
.19の偏光方向は2方向であった。つまり上記交差回
折格子は偏光ビームスプリッタとしての特性を有してい
る。また上記交差回折格子からは透過光12′″も出射
しており、2方向の回折格子3a、4aからの±1次回
折光強度:y方向の回折格子3b、4bからの±1次回
折光強度二上記透過光強度の比は2:2:lであるので
、上記交差回折格子は3分割のビームスプリッタとして
も機能する。
FIG. 2 shows a schematic perspective view of the crossed diffraction grating produced as described above. The optical axis 2 of the optically anisotropic substrate 1 is in the -y direction (as shown in FIG. 2), and the directions of the first diffraction grating 3a formed in the substrate are in two directions (as shown in FIG. 2). Further, the direction of the first diffraction grating 3b is the y direction. A He-Ne laser beam is applied to the crossed diffraction grating in a direction perpendicular to the substrate.
When the light is incident from the direction (as shown in FIG. 2), diffraction light 16 is generated by the first diffraction grating 3a and the second diffraction grating 4a in two directions.
, [7 is the polarized light component in the y direction, and the diffracted light 18 due to the first diffraction grating 3b and the second diffraction grating 4b in the y direction
.. No. 19 had two polarization directions. In other words, the crossed diffraction grating has characteristics as a polarizing beam splitter. Transmitted light 12'' is also emitted from the crossed diffraction grating, and the intensity of the ±1st-order diffracted light from the diffraction gratings 3a and 4a in the two directions is equal to the intensity of the ±1st-order diffracted light from the diffraction gratings 3b and 4b in the y direction. Since the ratio of the transmitted light intensity is 2:2:l, the crossed diffraction grating also functions as a three-split beam splitter.

第5図は上記交差回折格子を用いた光磁気ヘッドの概略
構成図である。第5図の半導体レーザ41から出射され
たレーザ光りは、コリメートレンズ42、ビームスプリ
ッタ43および対、物レンズ44を通過した後、光磁気
記録媒体(ディスク)21に集光され、その反射光L1
がビームスプリッタ43に再び入射し反射され、サーボ
検出のための円柱レンズ40を通り、上記交差回折格子
10へ向かい、4つの回折光L2、L3、L4、L5と
1つの透過光L6とに分割される。透過光L6はサーボ
検出のための光電変換素子(検出器)22に入りサーボ
検出信号23を得る。
FIG. 5 is a schematic diagram of a magneto-optical head using the above-mentioned crossed diffraction grating. The laser light emitted from the semiconductor laser 41 in FIG. 5 passes through a collimating lens 42, a beam splitter 43, and a pair of object lenses 44, and then is focused on a magneto-optical recording medium (disk) 21, and its reflected light L1
enters the beam splitter 43 again and is reflected, passes through the cylindrical lens 40 for servo detection, heads toward the crossed diffraction grating 10, and is split into four diffracted lights L2, L3, L4, L5 and one transmitted light L6. be done. The transmitted light L6 enters a photoelectric conversion element (detector) 22 for servo detection and obtains a servo detection signal 23.

一方回折光し2〜L5はそれぞれ光電変換素子24〜2
7に入る。ここで上記交差回折格子の1つの方向の回折
格子3a、 4aに゛よる回折光L2. L3はそれぞ
れ光電変換素子(検出器)24.25に入り、強度信号
28.29が得られる。また他の方向の回折格子3b、
 4bによる回折光L4、L5はそれぞれ光電変換素子
28.29に入り、強度信号30.31が得られる。上
記強度信号28.29(30,31)を加算回路32(
33)に入れることにより1つの格子からの相信号34
(35)を得る。
On the other hand, diffracted light 2 to L5 are photoelectric conversion elements 24 to 2, respectively.
Enter 7. Here, the diffracted light L2. L3 enters photoelectric conversion elements (detectors) 24 and 25, respectively, and intensity signals 28 and 29 are obtained. Also, a diffraction grating 3b in another direction,
The diffracted lights L4 and L5 by 4b enter the photoelectric conversion elements 28.29, respectively, and an intensity signal 30.31 is obtained. The above intensity signals 28, 29 (30, 31) are added to the adding circuit 32 (
33) by putting the phase signal 34 from one grating into
(35) is obtained.

この和信号を差動増幅回路36で増幅し、光磁気デイス
クに記録された情報に基づく差信号37を得る。
This sum signal is amplified by a differential amplifier circuit 36 to obtain a difference signal 37 based on information recorded on the magneto-optical disk.

なお上記回折光1,2〜L5の出射角度の違いは大きく
ないので、上記光電変換素子24〜27は小型の基板上
に設けられる。
Note that since the difference in the emission angles of the diffracted lights 1 and 2 to L5 is not large, the photoelectric conversion elements 24 to 27 are provided on a small substrate.

以下にこの光磁気ヘッドの動作原理を説明する。The operating principle of this magneto-optical head will be explained below.

第6図は交差回折格子IOの配設角度を示し、第5図の
ビームスプリッタ43から反射した反射光Llの進行方
向を第6図のX方向に設定して示している。交差回折格
子lOは、たとえば、回折格子3a(4a)(z−z方
向)と回折格子3b(4b)  (yyX方向が直交す
る方向に設定されており、格子3a (4a)とX方向
とのなす角度φlと格子3b(4b)とX方向のなす角
度φ2とはともに90°に設定されている。したがって
、反射光LLの偏光がxy面に対して、θ=45°傾斜
して交差回折格子10に入射した場合には、回折格子3
a(4a)と3b(4b)とで回折される光(それぞれ
L2とL3との和、L4とL5との和)の光量が相等し
くなる。
FIG. 6 shows the arrangement angle of the crossed diffraction grating IO, and shows the traveling direction of the reflected light Ll reflected from the beam splitter 43 in FIG. 5 set to the X direction in FIG. For example, the crossed diffraction grating IO is set in a direction in which the diffraction grating 3a (4a) (zz direction) and the diffraction grating 3b (4b) (yyX direction are orthogonal to each other, and the grating 3a (4a) and the Both the angle φl and the angle φ2 between the grating 3b (4b) and the X direction are set to 90°.Therefore, the polarization of the reflected light LL is inclined at θ=45° with respect to the xy plane, resulting in cross diffraction. When incident on the grating 10, the diffraction grating 3
The amounts of light diffracted by a (4a) and 3b (4b) (the sum of L2 and L3, and the sum of L4 and L5, respectively) become equal.

ここで、上記出射光りを反射した光磁気ディスク21の
部分が磁化していない場合は、第6図の実線で示すよう
に、反射光L1の偏光がxy面に対してθ=45°傾斜
して、反射光L1が交差回折格子lOへ向かうように設
定する。この場合は、両格子3a(4a) 、3b (
4b)に対する偏光が同一であるため、第5図の和信号
34.35に差が生じない。一方、上記出射光りを反射
した光磁気ディスク21の部分が磁化している場合は、
カー効果により偏光面がΔ回転され、第6図の破線で示
すように、反射光L1の偏光がxy面に対して45°よ
りも小さく (または大きく)傾斜して、反射光Llが
交差回折格子IOへ向かう。この場合は、両回折格子3
a (4a) 、3b(4b)に対する偏光が異なるた
め、第5図の和信号34.35が第7図のように相反し
て変動する。したがって、和信号34.35の差である
差信号37は第7図のように変動し、光磁気ディスク2
1の情報が読み取られる。
Here, if the part of the magneto-optical disk 21 that reflects the emitted light is not magnetized, the polarization of the reflected light L1 is inclined at θ=45° with respect to the xy plane, as shown by the solid line in FIG. Then, the reflected light L1 is set to be directed toward the intersecting diffraction grating IO. In this case, both lattices 3a (4a), 3b (
Since the polarizations for 4b) are the same, there is no difference in the sum signal 34.35 in FIG. On the other hand, if the part of the magneto-optical disk 21 that reflects the emitted light is magnetized,
Due to the Kerr effect, the plane of polarization is rotated by Δ, and as shown by the broken line in Figure 6, the polarization of the reflected light L1 is tilted smaller (or larger) than 45° with respect to the xy plane, and the reflected light L1 undergoes cross-diffraction. Head to the grid IO. In this case, both diffraction gratings 3
Since the polarizations for a (4a) and 3b (4b) are different, the sum signal 34.35 in FIG. 5 varies contradictoryly as shown in FIG. 7. Therefore, the difference signal 37, which is the difference between the sum signals 34.35, fluctuates as shown in FIG.
1 information is read.

[発明の効果] 以上説明したように、この出顆の各請求項の発明によれ
ば、交差回折格子は、光学的異方性基板の光学軸を含む
1つの面に互いに交差する2つの格子が設けられており
、上記2つの格子はそれぞれ主に互いに直交する偏光成
分に対する屈折率が上記光学的異方性基板とは異なって
いるので、入射光の偏光方向によって光が分離され、か
つ入射光の一部は透過される。したがって小型の交差回
折格子1つで多くの情報が得られる。
[Effects of the Invention] As explained above, according to the invention of each claim of this condyle, the crossed diffraction grating consists of two gratings that intersect with each other in one plane including the optical axis of the optically anisotropic substrate. The two gratings have different refractive indexes for polarized light components that are orthogonal to each other than the optically anisotropic substrate, so that the light is separated depending on the polarization direction of the incident light, and Some of the light is transmitted. Therefore, a lot of information can be obtained with one small crossed diffraction grating.

特に請求項(4)の交差回折格子は、上記光学的異方性
基板の光学軸を含む面に、互いに交差する2つの第1の
回折格子が深さ方向に設けられ、上記第1の回折格子と
同一方向に透明膜層からなる第2の回折格子を設けるこ
とによって、第1の回折格子による、それぞれ互いに直
交する偏光成分に対する位相差を相殺しているので、交
差回折格子の偏光分離の消光比が向上する。
In particular, in the crossed diffraction grating of claim (4), two first diffraction gratings that intersect with each other are provided in the depth direction on a plane including the optical axis of the optically anisotropic substrate, and the first diffraction grating By providing the second diffraction grating made of a transparent film layer in the same direction as the grating, the phase difference of the polarized light components perpendicular to each other due to the first diffraction grating is canceled out, so that the polarization separation of the crossed diffraction grating is improved. Extinction ratio is improved.

この発明の交差回折格子においては、請求項(5)に従
って、上記長板がX軸またはZ軸のニオブ酸リチウム結
晶板であり、上記ニオブ酸リチウム結晶板の1つの主面
にH゛イオン交換ることにより2つの第1の回折格子を
形成すると、製造性が良いので好ましい。
In the crossed diffraction grating of the present invention, according to claim (5), the long plate is an X-axis or Z-axis lithium niobate crystal plate, and one main surface of the lithium niobate crystal plate has H ion exchange. It is preferable to form the two first diffraction gratings by doing this, since it has good manufacturability.

本出願にかかる交差回折格子を備えた請求項(6)の偏
波回転検出装置は、1つの交差回折格子で多(の情報量
を得ているので装置が小型になる。
The polarization rotation detection device according to claim (6), which includes a crossed diffraction grating according to the present application, obtains a large amount of information with one crossed diffraction grating, so the device can be made small.

請求項(7)の発明によると、1つの交差回折格子によ
って光磁気記録媒体の情報検出信号およびサーボ用信号
が得られるので、部品点数が少なくなるとともに、光磁
気ヘッドが小型になる。
According to the invention of claim (7), since the information detection signal and the servo signal for the magneto-optical recording medium are obtained by one crossed diffraction grating, the number of parts is reduced and the magneto-optical head is made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の交差回折格子の第1の実施例の概略斜
視図、第2図は本発明の交差回折格子の第2の実施例の
概略斜視図、第3a図ないし第3d図は上記第2の実施
例の部分断面図であって、第3a図はI−1線の部分断
面図、第3b図は■■線の部分断面図、第3c図はII
I−I[[線の部分断面図、第4c図はW−IV線の部
分断面図、第4図は本発明の交差回折格子の第3の実施
例の概略斜視図、第5図は本発明の交差回折格子を用い
た光磁気ヘッドの概略構成図、第6図は交差回折格子の
配置角度を示す斜視図、第7図は交差回折格子を用いた
光磁気ヘッドの特性図、第8図ないし第10図は本発明
の交差回折格子の作用を説明するための概略斜視図、第
11図は複屈折の大きな媒質を用いた偏光光学素子の概
略図、第12図は従来の光磁気ヘッドの概略構成図であ
る。 l   ・・・光学的異方性基板、 2  ・・・光学軸、 3a、3b・・・第1の回折格子、 4a、4b・・・第2の回折格子(透明膜層)、10 
  ・・・交差回折格子 11  ・・・入射光、 12  ・・・透過光、 16〜19・・・回折光、 21   ・・・光磁気記録媒体、 22、24〜27・・・充電変換素子(光検出器)、4
1    ・・・半導体レーザ(レーザ光源)、L  
 〜・レーザ光、 L2〜L5 ・・・回折光、 L6   ・・・透過光。 3a 、 3b 16.17 18.19 光学的異方性基板 光学軸 第1の回折格子 入射光  12:  透過光 3oによる回折光 3bによる回折光 第2図 第3o図 4a、4b  +  第2の回折格子 第 図 第 図 第 図 θ 第 図 半導体レーザ(レーザ光源) 第 図 第 ○ 図 第 図 平成1年5月9
FIG. 1 is a schematic perspective view of a first embodiment of a crossed diffraction grating of the present invention, FIG. 2 is a schematic perspective view of a second embodiment of a crossed diffraction grating of the present invention, and FIGS. 3a to 3d are FIG. 3a is a partial sectional view taken along line I-1, FIG. 3b is a partial sectional view taken along line ■■, and FIG. 3c is a partial sectional view taken along line II.
FIG. 4c is a partial sectional view taken along the line I-I[[, FIG. A schematic configuration diagram of a magneto-optical head using the crossed diffraction grating of the invention, FIG. 6 is a perspective view showing the arrangement angle of the crossed diffraction grating, FIG. 7 is a characteristic diagram of the magneto-optical head using the crossed diffraction grating, and FIG. 10 through 10 are schematic perspective views for explaining the action of the crossed diffraction grating of the present invention, FIG. 11 is a schematic diagram of a polarizing optical element using a medium with large birefringence, and FIG. 12 is a conventional magneto-optical device. FIG. 2 is a schematic configuration diagram of a head. l... Optically anisotropic substrate, 2... Optical axis, 3a, 3b... First diffraction grating, 4a, 4b... Second diffraction grating (transparent film layer), 10
... Cross diffraction grating 11 ... Incident light, 12 ... Transmitted light, 16-19 ... Diffraction light, 21 ... Magneto-optical recording medium, 22, 24-27 ... Charge conversion element ( photodetector), 4
1... Semiconductor laser (laser light source), L
~・Laser light, L2-L5...Diffracted light, L6...Transmitted light. 3a, 3b 16.17 18.19 Optically anisotropic substrate optical axis First diffraction grating Incident light 12: Diffracted light by transmitted light 3o Diffracted light by 3b Fig. 2 Fig. 3o Fig. 4a, 4b + second diffraction Lattice Diagram Diagram Diagram Diagram θ Diagram Semiconductor Laser (Laser Light Source) Diagram Diagram ○ Diagram Diagram May 9, 1999

Claims (7)

【特許請求の範囲】[Claims] (1)光学的異方性基板の光学軸を含む1つの面に互い
に交差する2つの格子が設けられており、上記2つの格
子はそれぞれ主に互いに直交する偏光成分に対する屈折
率が上記光学的異方性基板とは異なつていることを特徴
とする交差回折格子。
(1) Two gratings that intersect with each other are provided on one surface including the optical axis of the optically anisotropic substrate, and each of the two gratings has a refractive index for polarized light components that are orthogonal to each other. A crossed diffraction grating characterized by being different from an anisotropic substrate.
(2)上記光学的異方性基板の光学軸を含む1つの面に
、互いに交差する2つの第1の回折格子が深さ方向に設
けられていることを特徴とする請求項1記載の交差回折
格子。
(2) The intersection according to claim 1, characterized in that two first diffraction gratings that intersect with each other are provided in the depth direction on one surface including the optical axis of the optically anisotropic substrate. Diffraction grating.
(3)上記2つの第1の回折格子の深さが互いに異なつ
ていることを特徴とする請求項2記載の交差回折格子。
(3) The crossed diffraction grating according to claim 2, wherein the depths of the two first diffraction gratings are different from each other.
(4)上記光学的異方性基板の光学軸を含む1つの面に
、互いに交差する2つの第1の回折格子が深さ方向に設
けられており、上記第1の回折格子と同一方向に透明膜
層からなる第2の回折格子が積層されており、上記第2
の回折格子は上記第1の回折格子による、それぞれ互い
に直交する偏光成分に対する位相差を相殺するように形
成されていることを特徴とする請求項1記載の交差回折
格子。
(4) Two first diffraction gratings intersecting each other are provided in the depth direction on one surface including the optical axis of the optically anisotropic substrate, and the two first diffraction gratings are provided in the same direction as the first diffraction grating. A second diffraction grating made of a transparent film layer is laminated, and the second diffraction grating is laminated.
2. The crossed diffraction grating according to claim 1, wherein the diffraction grating is formed so as to cancel the phase difference between the polarization components orthogonal to each other due to the first diffraction grating.
(5)上記光学的異方性基板がX軸またはZ軸のニオブ
酸リチウム結晶板であり、上記第1の回折格子は、上記
ニオブ酸リチウム結晶板の1つの主面にH^+イオン交
換により設けられていることを特徴とする請求項2また
は4記載の交差回折格子。
(5) The optically anisotropic substrate is an X-axis or Z-axis lithium niobate crystal plate, and the first diffraction grating is formed by H^+ ion exchange on one main surface of the lithium niobate crystal plate. The crossed diffraction grating according to claim 2 or 4, characterized in that it is provided by.
(6)請求項1記載の交差回折格子と、上記交差回折格
子により得られる回折光を検出することによつて入射光
の偏光状態を検出する検出器とを備えた偏波回転検出装
置。
(6) A polarization rotation detection device comprising the crossed diffraction grating according to claim 1 and a detector that detects the polarization state of incident light by detecting the diffracted light obtained by the crossed diffraction grating.
(7)レーザ光源からのレーザ光を光磁気記録媒体に集
光させて、その反射光または通過光により情報の読み取
りを行う光磁気ヘッドにおいて、光学的異方性基板の光
学軸を含む1つの面に互いに交差する2つの格子が設け
られており、上記2つの格子はそれぞれ主に互いに直交
する偏光成分に対する屈折率が上記光学的異方性基板と
は異なつており、 上記光磁気記録媒体からの反射光または通過光を受けて
、透過光および回折光を出射する交差回折格子と、 上記透過光を受けてトラッキング状態またはフォーカス
状態のいずれか一方または両方を検出する光検出器と、
上記回折光を受けて上記光磁気記録媒体の情報を読み取
る光検出器とを備えた光磁気ヘッド。
(7) In a magneto-optical head that focuses laser light from a laser light source onto a magneto-optical recording medium and reads information using reflected light or transmitted light, one Two gratings that intersect with each other are provided on the surface, and each of the two gratings has a refractive index different from that of the optically anisotropic substrate mainly for polarized light components that are orthogonal to each other. a crossed diffraction grating that receives reflected light or transmitted light and emits transmitted light and diffracted light; a photodetector that receives the transmitted light and detects either a tracking state or a focus state, or both;
and a photodetector that receives the diffracted light and reads information on the magneto-optical recording medium.
JP33363288A 1988-12-28 1988-12-28 Cross diffraction grating and polarized wave rotation detecting device using same Pending JPH02178604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33363288A JPH02178604A (en) 1988-12-28 1988-12-28 Cross diffraction grating and polarized wave rotation detecting device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33363288A JPH02178604A (en) 1988-12-28 1988-12-28 Cross diffraction grating and polarized wave rotation detecting device using same

Publications (1)

Publication Number Publication Date
JPH02178604A true JPH02178604A (en) 1990-07-11

Family

ID=18268218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33363288A Pending JPH02178604A (en) 1988-12-28 1988-12-28 Cross diffraction grating and polarized wave rotation detecting device using same

Country Status (1)

Country Link
JP (1) JPH02178604A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367403A (en) * 1992-04-08 1994-11-22 Matsushita Electric Industrial Co., Ltd. Optical element and method of fabricating the same
US5694247A (en) * 1994-05-02 1997-12-02 U.S. Philips Corporation Optical transmissive component with anti-reflection gratings
US6191890B1 (en) * 1996-03-29 2001-02-20 Interuniversitair Micro-Elektronica Centrum Vzw Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity
US6661830B1 (en) 2002-10-07 2003-12-09 Coherent, Inc. Tunable optically-pumped semiconductor laser including a polarizing resonator mirror
JP2005050708A (en) * 2003-07-29 2005-02-24 Samsung Sdi Co Ltd Substrate for optical elements and organic electroluminescence element as well as organic electroluminescence display device
JP2011191787A (en) * 2011-06-09 2011-09-29 Asahi Glass Co Ltd Isolator and voltage-variable attenuator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367403A (en) * 1992-04-08 1994-11-22 Matsushita Electric Industrial Co., Ltd. Optical element and method of fabricating the same
US5455712A (en) * 1992-04-08 1995-10-03 Matsushita Electric Industrial Co., Ltd. Optical element and method of fabricating the same
US5694247A (en) * 1994-05-02 1997-12-02 U.S. Philips Corporation Optical transmissive component with anti-reflection gratings
US6191890B1 (en) * 1996-03-29 2001-02-20 Interuniversitair Micro-Elektronica Centrum Vzw Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity
US6661830B1 (en) 2002-10-07 2003-12-09 Coherent, Inc. Tunable optically-pumped semiconductor laser including a polarizing resonator mirror
JP2005050708A (en) * 2003-07-29 2005-02-24 Samsung Sdi Co Ltd Substrate for optical elements and organic electroluminescence element as well as organic electroluminescence display device
JP2011191787A (en) * 2011-06-09 2011-09-29 Asahi Glass Co Ltd Isolator and voltage-variable attenuator

Similar Documents

Publication Publication Date Title
KR0144569B1 (en) Optical elements and optical pick-up device comprising it
JPH0651112A (en) Duplex diffraction grating beam splitter
JP3374573B2 (en) Optical pickup and optical guide member
JP2544830B2 (en) Method and apparatus for detecting biased state of light wavefront
JPH07130022A (en) Optical head device and optical element
JPH02178604A (en) Cross diffraction grating and polarized wave rotation detecting device using same
US6556532B2 (en) Optical pickup device
JP2710809B2 (en) Crossed diffraction grating and polarization rotation detector using the same
JPS6117103A (en) Polarizing beam splitter
JPH02259702A (en) Polarization diffraction element
JPH03225636A (en) Optical head device
JPH1068820A (en) Polarization diffraction element and optical head device formed by using the same
JPH08287510A (en) Optical pickup device
JPH0792319A (en) Optical element and optical device using the same
JPH11353728A (en) Magneto-optical head
JPH02183125A (en) Polarized light detector and optical head
JPH06274927A (en) Optical device, optical head and magneto-optical storage device
JPH03178064A (en) Optical head device
JPH0391133A (en) Optical information recording and reproducing device
JPH0785523A (en) Magneto-optical disk device
JP2006012202A (en) Optical path correcting apparatus and optical pickup using the same
JPH04298837A (en) Polarizing beam splitter and magneto-optical head device
JPH0312603A (en) Polarized light diffracting element and optical pickup device including the same
JP2000011424A5 (en)
JPH07169128A (en) Optical pickup device