JPH0217763B2 - - Google Patents

Info

Publication number
JPH0217763B2
JPH0217763B2 JP55120309A JP12030980A JPH0217763B2 JP H0217763 B2 JPH0217763 B2 JP H0217763B2 JP 55120309 A JP55120309 A JP 55120309A JP 12030980 A JP12030980 A JP 12030980A JP H0217763 B2 JPH0217763 B2 JP H0217763B2
Authority
JP
Japan
Prior art keywords
temperature
waste heat
boiler
water
heat boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55120309A
Other languages
Japanese (ja)
Other versions
JPS5743102A (en
Inventor
Motohiko Sue
Hiroshi Horiie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP55120309A priority Critical patent/JPS5743102A/en
Publication of JPS5743102A publication Critical patent/JPS5743102A/en
Publication of JPH0217763B2 publication Critical patent/JPH0217763B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は異なる温度レベルを有する複数の排ガ
ス熱源をできる限り有効に電力として回収するた
めに設置される廃熱ボイラ、フラツシヤ混圧式蒸
気タービン及び発電機等から構成される廃熱回収
装置に関するものである。 製鉄、セメントあるいは化学プラント等におい
て排出される廃ガスのもつ熱と、例えば水の如き
媒体を熱交換して蒸気を発生させこの蒸気をター
ビンに導きタービンを駆動し発電機等の被駆動体
を回転させることは古くから行われてきた。ま
た、最近では省エネルギの観点から従来見過され
ていた200℃付近の排ガスをも熱回収の対象とな
つてきており、いくつかの異つた温度レベルの排
ガスを組合せて熱回収しようとする必要が生じて
きた。 この様に異つた温度レベルをもつ排ガスの熱を
廃熱ボイラで回収して発生する蒸気によりタービ
ンを駆動し発電機を回すことにより発電を行い電
力としてエネルギを取り出す方法として、従来第
1図及び第3図の方法が行われてきた。第2図は
第1図に対する排ガスの温度変化と水側の温度変
化の状態を、また第4図は第3図に対する排ガス
と水側の温度変化の状態を示したものである。 従来の熱回収の方法について第1図と第2図を
関連づけながら説明する。 第1図におけるBlは温度レベルの低い排ガス
を熱回収する廃熱ボイラ、即ち低圧廃熱ボイラで
あり、Bhは温度レベルの高い排ガスを熱回収す
る廃熱ボイラ、即ち高圧廃熱ボイラである。また
1lは低圧廃熱ボイラの節炭器、2lは低圧廃熱
ボイラの蒸発器、3lは低圧廃熱ボイラの汽水ド
ラムであり、1h,2h,3hは夫々、高圧廃熱
ボイラの節炭器、蒸発器及び汽水ドラムである。 給水ポンプ6により低圧廃熱ボイラBl及び高
圧廃熱ボイラBhにtw1の温度で送られた給水は
夫々のボイラの節炭器1l及び1hで排ガスと熱
交換した結果、低圧廃熱ボイラBlの節炭器1l
の出口ではtsの温度に、また高圧廃熱ボイラBh
の節炭器1hの出口では温度Ts迄加熱されて飽
和水となり、夫々のボイラの汽水ドラム3l及び
3hに入る。この場合、温度tsよりも温度Tsの方
を高くしうることができるのは当然である。汽水
ドラム3l及び3hに貯つた熱水は蒸発器2l及
び2hに入り、排ガスにより加熱されて夫々温度
ts及びTs一定の状態で蒸発し、温度ts及びTs12
応する飽和圧力ps及びPsの飽和蒸気となつて再び
汽水ドラム3l及び3hに送られ汽水ドラム内で
水滴が分離された後、低圧psの飽和蒸気は混圧式
蒸気タービン4の途中段に高圧Psの飽和蒸気は混
圧式蒸気タービン4の入口に導かれる。 一方、低圧廃熱ボイラBlに温度tg1で入つた排
ガスは蒸発器2lで熱を奪われて温度tg2迄下が
り続いて節炭器1lで熱を奪われtg3の温度とな
り、節炭器1l、即ち低圧廃熱ボイラBlを出て
ゆく。高圧廃熱ボイラBhに入る温度Tg1の排ガス
も低圧廃熱ボイラBlの場合と同様に蒸発器2l、
節炭器1hを通過する間にTg2、Tg3と温度が下
がり高圧廃熱ボイラBhを出てゆく。 混圧式蒸気タービン4に入つた蒸気は膨張して
仕事を当該タービン4に与え圧力Pzの低圧蒸気と
なつて復水器5に入り、復水器で冷却されて温度
tzの低温の凝縮水となり復水ポンプ(ここでは給
水ポンプ)6で低圧廃熱ボイラBl及び高圧廃熱
ボイラBhにおくられる循環をくりかえす。通常、
復水器5とボイラBl、あるいはBhの間の給水系
統に抽気エゼクタクーラやグランドコンデンサが
設けられ、ここで給水は若干加熱されるためボイ
ラ入口では温度tzより若干高い温度となることが
多い。また本説明では簡単のため低圧廃熱ボイラ
Bl及び高圧廃熱ボイラBhの発生蒸発は飽和蒸気
としたが要すれば夫々のボイラに過熱器を設け飽
和蒸気を過熱することもある。 次に第3図の方法について説明する。 第3図に於る機器の各称とこれに対応する符号
は第1図と同じであるが機器構成として低圧廃熱
ボイラBlの汽水ドラム3lから高圧廃熱ボイラ
Bhに給水するに高圧廃熱ボイラ用給水ポンプ7
が設けられているのが異る。 第3図の方法と第1図の方法と異るのは第1図
の方法の場合、給水ポンプ6により夫々低圧廃熱
ボイラBlと高圧廃熱ボイラBhに送水されたが、
第3図の方法では、先ず給水ポンプ6により給水
を低圧廃熱ボイラBlに送り、節炭器1l内で温
度tw1からts迄加熱し、汽水ドラム3lから高圧ボ
イラBhの蒸発量に見合う熱水を抽出し高圧廃熱
ボイラ用給水ポンプ7によつて高圧廃熱ボイラ
Bhに送つていることである。即ち低圧廃熱ボイ
ラBlに入つた温度tw1の給水は節炭器1l内で温
度ts迄高められ汽水ドラム3lに入るが、汽水ド
ラム3lの熱水は低圧廃熱ボイラBlの蒸発器2
lに供給される分と、高圧廃熱ボイラBhへ供給
される分とに分かれる。低圧廃熱ボイラBlの蒸
発器2lに入つた熱水は第1図の方法と同様、温
度tsのままで飽和蒸気となるが、高圧廃熱ボイラ
Bhに入つた熱水は節炭器1hでTsの温度迄加熱
され、続いて蒸発器2hで温度Tc一定のままで
飽和蒸気となる。高圧廃熱ボイラBhへ温度Tg1
入つた排ガスは蒸発器2h及び節炭器1hを通過
する間に温度Tg2及びTg3へと低下して当該ボイ
ラBhを出てゆく。一方、低圧廃熱ボイラ1lに
温度tg1で入つた排ガスは蒸発器2lを通る間に
温度tg2に下がり節炭器1lに入るが節炭器1l
ではここを通過する給水量が第1図の方法より多
いため、節炭器1lの出口の排ガス温度は第1図
の場合より低い温度tg3迄下がることとなる。 上記に示した従来の方法の欠点と本発明による
優れたる点を説明する前に廃熱ボイラによる熱回
収と温度の関係について述べる。 第5図は廃熱回収を行う場合の蒸気発電プラン
トのサイクル図であり、第6図は第5図に対応す
るガスと水の温度変化状態である。 次に第5図及び第6図を関連づけながら説明す
る。 高温の流体で水の如き媒体を加熱して飽和蒸気
を発生させる廃熱ボイラの場合、加熱流体の温度
と被加熱流体の温度との差が最小となるピンチポ
イント温度差Δは節炭器1の入口もしくは出口に
おいて生じることが容易にわかり、500℃程度以
下の中低温の排ガスで60℃程度以下の水と熱交換
して飽和蒸気を発生する場合のピンチポイント温
度差Δはガス側の節炭器入口の温度tg2と水側の
節炭器出口の温度tsとの差となる。即ち節炭器1
のガス入口温度tg2、即ち蒸発器2のガス出口温
度tg2はts+Δとなり、蒸発器2で水に与える熱量
Q1と蒸発量Gsは次の如く表わしうる。 Q1=CpGg(tg1−tg2)=CpGg(tg1−ts−Δ) −(1) Gs=Q1/(is−iw) −(2) ここに、Cp;ガスの比熱、Gg;ガス流量、
is;温度tsの飽和蒸気エンタルピ、iw;温度ts
飽和水エンタルピ ピンチポイント温度差Δを一定としてボイラの
蒸発圧力、即ち蒸発温度tsを上げてゆけば蒸発器
2のガス出口温度tg2も上がつてくることとなり、
上記(1)式でわかる様に蒸発器2におけるガスの授
熱量Q1は少なくなる。その結果、蒸発量Gsも減
少することが上記(2)式から容易にわかる。 しかしながらタービン内部での断熱熱落差は当
然蒸発圧力が高くなれば大きくなる。従つてター
ビン通過流量、即ち蒸発量とタービン内部の断熱
熱落差との積として表わされるタービン出力はあ
る蒸発圧力のとき最大となる。 一方、節炭器1の排ガス出口温度tg3は節炭器
1に於ける熱平衡より次式で表わされる。 tg3=tg2−Gw(iw−tw1)/CpGg −(3) ここに、Gw;節炭器通過流量(ボイラへの給
水量) 節炭器1の通過流量と蒸発器2の蒸発量とが等
しい場合、(3)式のGwはGsと書ける。従つて蒸発
量Gsが減少すれば(3)式の第2項は小さくなり排
ガス出口温度tg3は大きくなる。また節炭器1へ
の給水温度tw1を上げた場合も(3)式の第2項は小
さくなり温度tg3は大きくなる。 蒸発量Gsと給水量Gwが等しい場合、タービン
出力が最大となる蒸発圧力Psoに対して排ガス出
口温度はただ一つ決まるが、蒸発量Gsと給水量
Gwの値が異なる場合、給水量Gwを増してゆく
と(3)式の第2項は大きくなり節炭器出口温度tg3
は低下する。即ち第6図におけるtg3になる。 この様に節炭器1の通過流量Gwを蒸発量Gsよ
り多くして温度ts迄加熱した後汽水ドラム3から
Gw−Gsなる量の熱水を抽出してフラツシヤ9に
導きフラツシユさせフラツシユ蒸気を発生させ、
この発生した蒸気を蒸気タービン4の途中段に混
気させれば、タービン出力は混気流量に見合う分
だけ増加する。さらに、フラツシヤ9内での未フ
ラツシユ熱水を混合タンク10に入れて復水器5
から廃熱ボイラBに至る給水を直接混合すれば廃
熱ボイラBに入る給水の温度はtw1からtw1に上
昇する。しかしながら、この給水温度は廃熱ボイ
ラBのガス出口温度tg3からピンチポイント温度
差Δを差引いた値tg3−Δより高くすることはで
きないのは当然である。 第6図において水側温度変化の実線で示した状
態は汽水ドラム3から熱水を抽出し、廃熱ボイラ
Bへの給水を加熱した場合であり、破線は汽水ド
ラム3から熱水を抽出せず、かつ給水をも加熱し
ない場合、一点破線は汽水ドラム3から熱水を抽
出するが給水を加熱しない場合を示したものであ
る。 以上説明したタービン出力の変化状態を示した
ものが第7図及び第8図である。 即ち、第7図はボイラへの給水温度をパラメー
タとしてボイラ出口ガス温度に対するタービン出
力の関係を示したものであり、給水温度tw1
tw2、tw3に対し、最大タービン出力をうるボイラ
出口温度Tg31、Tg32、Tg33が存在する。 第8図はボイラ出口ガス温度に対するタービン
出力及び蒸発温度の関係を示したものである。既
に説明したように給水量Gwと蒸発量Gsが等しい
場合、タービン出力は第8図の実線で示す様にな
りボイラ出口ガス温度tg31のとき蒸発温度ts1とな
り最大タービン出力L21を得ることができる。さ
らに最大タービン出力となる蒸発温度ts1の状態
で汽水ドラムから温度ts1の熱水を抽出しフラツ
シヤでフラツシユ蒸気を発生させてタービンに混
気し、未フラツシユ熱水でボイラへの給水を加熱
した場合前述した様にタービン出力は増加しボイ
ラ出口ガス温度は低下して、ボイラ出口ガス温度
とボイラ給水温度との差がピンチポイント温度差
になつたとき最大のタービン出力をうる。この状
態を第8図の破線に示す。即ちボイラ出口ガス温
度tg32のときタービン出力L22を得ることとなる。 次に汽水ドラムから抽出した熱水の全量をフラ
ツシヤに導かずその一部を他の機器、例えば第3
図に示した高圧廃熱ボイラBh等、に送水せしめ
た場合、当然その分だけボイラ出口ガス温度は低
くなつて第8図の一点破線で示す様になる。 第1図、第3図で示した従来の方法を採用する
場合の短所を第7図、第8図でもつて説明する。
もし、ボイラ出口のガス温度を任意に選べる場
合、第1図の方法を適用し、高圧廃熱ボイラ、低
圧廃熱ボイラへ夫々低温の給水温度tw1にて給水
し、夫々のボイラ出口のガス温度をTg31及びtg31
迄下げることにより、夫々のボイラから蒸気を発
生させて、出力L11及びL21を得ることができる。
また、時には廃熱ボイラの出口ガス温度は決めら
れる場合があり、特に高圧廃熱ボイラの出口ガス
温度は主プロセスの他の系統に供される。例え
ば、セメントプラントにおける原料加熱等、のた
めかなり高温で規制される場合が多い。 この決められたボイラ出口ガス温度をTg32とす
るとき、もし当該ボイラへの給水温度を低温の
tw1に保てば第7図でわかる様に当該ボイラの発
生蒸気で得られるタービン出力はL12〔kw〕と大
幅に減少する。従つてTg32なる温度に対応して最
大出力が得られる給水温度tw2にすることができ
れば当該ボイラの発生蒸気で得られるタービン出
力はL11〔kw〕を保つことができる。これに対処
する方法として第3図に示した如く高圧廃熱ボイ
ラへの給水を低圧廃熱ボイラの節炭器で温度tw2
迄加熱することが考えられる。 しかしながら、高圧廃熱ボイラの最適給水温度
tw2は必ずしも低圧廃熱ボイラの最適蒸発温度ts1
になるとは限らず場合により、低圧廃熱ボイラの
蒸発温度をtw2に選べば当該ボイラの発生蒸気に
よるタービン出力はL24〔kw〕となり最大出力L21
〔kw〕から大幅に減少することもある。さらに、
第1図及び第2図に示した従来の方法では、フラ
ツシユ蒸気を使用していないのでその分だけ出力
が減少することは第8図からも明らかである。 本発明は、この様に従来の方法による欠点を解
決するために考案されたものであり、与えられた
排ガス条件を最大限迄有効に利用するものであ
る。 第9図は本発明のシステムの実施一例を示した
ものである。 本発明を第9図及び第7図、第8図を使用しつ
つ説明する。 高圧廃熱ボイラBhに入るガス温度はTg1であり
出口温度はTg32で決められているとすると第7図
に示した様に当該ボイラの節炭器1hへの最適給
水温度はtw2である。一方、低圧廃熱ボイラBlに
入るガス温度はtg1とすると当該ボイラの最適蒸
発温度はts1である。もし温度ts1とtw2が等しい場
合高圧廃熱ボイラBhの給水は低圧廃熱ボイラBl
の汽水ドラム3lから抽出した熱水を直接給水す
ればよく、またts1<tw2の場合汽水ドラム3lか
ら抽出した熱水を高圧廃熱ボイラBhに給水する
途中に脱気器等の加熱器を設けて温度tw2迄加熱
すればよく問題はない。逆にts1>tw2の場合、高
圧廃熱ボイラBhの発生蒸気により最大出力を得
るには低圧廃熱ボイラBlの汽水ドラム3lから
抽出した温度ts1、流量Gwの熱水を温度tw2迄下げ
る必要がある。従つて、汽水ドラム3lから温度
tsの熱水をフラツシヤ9に導き、フラツシヤ器内
圧を温度tw2に相当する飽和圧力Pfに保てば、圧
力Pfの飽和蒸気Gfと温度tw2の熱水に分離される。
この熱水を高圧廃熱ボイラBhの節炭器1hに導
き圧力Ph、温度Th、流量Ghの高圧蒸気を発生さ
せて混圧式蒸気タービン4の入口に送り、タービ
ンを駆動させれば第7図L11〔kw〕の出力を得る
ことができる。一方、フラツシヤ9の温度tw2
る未フラツシユ熱水Gw−Gfの内、高圧廃熱ボイ
ラBhに供給する流量Ghを差引いた流量Gw−Gh
−Gfでもつて、復水器6から送られてくる復水
を混合タンク10内で加熱し、温度tw1として低
圧廃熱ボイラBlの節炭器1lに給水する。この
給水量は当該ボイラBlからの蒸発量Glと汽水ド
ラム3lから抽出する量Gwとの和Gl+Gwであ
り温度tw1は当該ボイラBlからのガス出口温度
tg3からピンチポイント点温度差Δを差引いたも
のに等しい。低圧廃熱ボイラBlに入つたGl+Gw
の給水は節炭器1l中で当該ボイラBlの最適蒸
発温度ts1迄加熱され汽水ドラム3lに入り、こ
こからGwなる量の熱水を抽出してフラツシヤ9
に送ると共に残りのGlなる量の飽和水は蒸発器
2lで加熱されて温度ts1に対応する飽和圧力Ps1
となり、混圧式蒸気タービン4の途中段に混入さ
せる。また上述したフラツシヤで発生した圧力
Pfのフラツシユ蒸気も混圧式蒸気タービン4の
途中段に混入させる。この様に低圧廃熱ボイラ
Blから圧力Ps1温度ts1の蒸気を発生させ、フラツ
シヤ9から圧力Pfの蒸気を発生させてこれ等の
蒸気をタービンに導きタービンを駆動させること
により第8図におけるL23〔kw〕のタービン出力
を得ことができる。L23〔kw〕は第8図からわか
る様にL21〔kw〕よりもΔL〔kw〕分増加してい
る。 以上説明した様に本発明を適用すれば全タービ
ン出力L11+L23〔kw〕を得ることができ、この出
力は従来の方法に比べ少なくともΔL〔kw〕多い
出力となり、場合によればΔL′=〔(L11+L23)−
(L12+L21)〕分多い出力となる。 計算一例の結果は次の通りである。
The present invention relates to a waste heat recovery device comprising a waste heat boiler, a flasher mixed pressure steam turbine, a generator, etc. installed in order to recover electricity as efficiently as possible from a plurality of exhaust gas heat sources having different temperature levels. be. The heat of waste gas discharged from steel, cement, or chemical plants is exchanged with a medium such as water to generate steam, which is then guided to a turbine to drive the turbine and drive driven objects such as generators. Rotating has been practiced since ancient times. In addition, recently, exhaust gas at temperatures around 200℃, which had previously been overlooked, has become a target for heat recovery from the perspective of energy conservation, and there is a need to recover heat by combining exhaust gases at several different temperature levels. has arisen. Conventionally, the heat of exhaust gases with different temperature levels is recovered in a waste heat boiler, and the generated steam drives a turbine and rotates a generator to generate electricity and extract energy as electricity. The method shown in Figure 3 has been used. FIG. 2 shows the state of the temperature change of the exhaust gas and the temperature change of the water side with respect to FIG. 1, and FIG. 4 shows the state of the temperature change of the exhaust gas and the water side with respect to FIG. A conventional heat recovery method will be explained with reference to FIGS. 1 and 2. In FIG. 1, Bl is a waste heat boiler that recovers heat from exhaust gas at a low temperature level, ie, a low-pressure waste heat boiler, and Bh is a waste heat boiler that recovers heat from exhaust gas at a high temperature level, ie, a high-pressure waste heat boiler. In addition, 1l is the economizer of the low pressure waste heat boiler, 2l is the evaporator of the low pressure waste heat boiler, 3l is the brackish water drum of the low pressure waste heat boiler, and 1h, 2h, and 3h are the economizers of the high pressure waste heat boiler, respectively. , evaporator and brackish water drum. The feed water sent to the low-pressure waste heat boiler Bl and the high-pressure waste heat boiler Bh at a temperature of t w1 by the feed water pump 6 exchanges heat with the exhaust gas in the economizers 1l and 1h of each boiler, and as a result, the water of the low-pressure waste heat boiler Bl Economizer 1l
At the outlet of t s temperature, also high pressure waste heat boiler Bh
At the outlet of the economizer 1h, the water is heated to a temperature T s to become saturated water, which enters the brackish water drums 3l and 3h of the respective boilers. In this case, it is natural that the temperature T s can be higher than the temperature t s . The hot water stored in the brackish water drums 3l and 3h enters the evaporators 2l and 2h, where they are heated by the exhaust gas and their respective temperatures are reduced.
It evaporated under constant conditions of t s and T s , became saturated steam with saturated pressures ps and P s corresponding to temperatures t s and T s12 , and was sent again to the brackish water drums 3l and 3h, where water droplets were separated. Thereafter, the saturated steam at low pressure Ps is guided to the intermediate stage of the mixed pressure steam turbine 4, and the saturated steam at high pressure Ps is guided to the inlet of the mixed pressure steam turbine 4. On the other hand, the exhaust gas that entered the low-pressure waste heat boiler Bl at a temperature t g1 loses heat in the evaporator 2L and drops to a temperature t g2 , then loses heat in the economizer 1L and reaches a temperature t g3 , and the energy saving device 1l, that is, exits the low-pressure waste heat boiler Bl. The exhaust gas at temperature T g1 entering the high-pressure waste heat boiler Bh is also transferred to the evaporator 2l, as in the case of the low-pressure waste heat boiler Bl.
While passing through the economizer 1h, the temperature drops to T g2 and T g3 and leaves the high pressure waste heat boiler Bh. The steam entering the mixed pressure steam turbine 4 expands and imparts work to the turbine 4, becoming low-pressure steam with a pressure Pz , entering the condenser 5, where it is cooled and the temperature is lowered.
It becomes condensed water at a low temperature of t z and is sent to the low-pressure waste heat boiler Bl and the high-pressure waste heat boiler Bh by the condensate pump (here, the feed water pump) 6, and the circulation is repeated. usually,
A bleed ejector cooler and a ground condenser are installed in the water supply system between the condenser 5 and the boiler Bl or Bh, and the feed water is slightly heated here, so the temperature at the boiler inlet is often slightly higher than the temperature t z . . In addition, for the sake of simplicity, this explanation uses a low-pressure waste heat boiler.
Bl and the high-pressure waste heat boiler Bh generate and evaporate saturated steam, but if necessary, each boiler may be provided with a superheater to superheat the saturated steam. Next, the method shown in FIG. 3 will be explained. The equipment names and corresponding symbols in Figure 3 are the same as in Figure 1, but the equipment configuration is from the brackish water drum 3l of the low pressure waste heat boiler Bl to the high pressure waste heat boiler.
Water supply pump 7 for high pressure waste heat boiler to supply water to Bh
The difference is that there is a The difference between the method in FIG. 3 and the method in FIG. 1 is that in the method in FIG.
In the method shown in Fig. 3, feed water is first sent to the low-pressure waste heat boiler Bl by the feed water pump 6, heated in the economizer 1l from temperature tw1 to ts , and then heated from the brackish water drum 3l to the amount of evaporation from the high-pressure boiler Bh. The hot water is extracted and supplied to the high pressure waste heat boiler by the high pressure waste heat boiler feed water pump 7.
This is what I am sending to Bh. That is, the feed water at a temperature t w1 that enters the low-pressure waste heat boiler Bl is raised to a temperature t s in the economizer 1l and enters the brackish water drum 3l, but the hot water in the brackish water drum 3l is transferred to the evaporator 2 of the low-pressure waste heat boiler Bl.
The amount is divided into the amount supplied to the high pressure waste heat boiler Bh and the amount supplied to the high pressure waste heat boiler Bh. The hot water that enters the evaporator 2L of the low-pressure waste heat boiler Bl becomes saturated steam at the same temperature as the method shown in Fig. 1, but the hot water that enters the evaporator 2L of the low-pressure waste heat boiler
The hot water that has entered Bh is heated to a temperature of T s in the energy saver 1h, and then becomes saturated steam in the evaporator 2h while keeping the temperature T c constant. The exhaust gas entering the high-pressure waste heat boiler Bh at a temperature T g1 decreases in temperature to T g2 and T g ' 3 while passing through the evaporator 2h and the economizer 1h, and leaves the boiler Bh. On the other hand, the exhaust gas that entered the low-pressure waste heat boiler 1L at a temperature t g1 decreases to a temperature t g2 while passing through the evaporator 2L and enters the energy saver 1L, but the exhaust gas enters the energy saver 1L.
Since the amount of water that passes through this is larger than in the method shown in FIG. 1, the temperature of the exhaust gas at the outlet of the economizer 1L is lowered to a temperature t g ' 3 lower than in the case of FIG. 1. Before explaining the drawbacks of the conventional method and the advantages of the present invention as described above, the relationship between heat recovery by a waste heat boiler and temperature will be described. FIG. 5 is a cycle diagram of a steam power generation plant when waste heat recovery is performed, and FIG. 6 is a diagram of temperature changes of gas and water corresponding to FIG. 5. Next, the explanation will be made in conjunction with FIGS. 5 and 6. In the case of a waste heat boiler that heats a medium such as water with a high-temperature fluid to generate saturated steam, the pinch point temperature difference Δ where the difference between the temperature of the heating fluid and the temperature of the heated fluid is the minimum is the energy saver 1. It is easy to see that this occurs at the inlet or outlet of the gas, and the pinch point temperature difference Δ when generating saturated steam by exchanging heat with medium-low temperature exhaust gas of about 500°C or less with water of about 60°C or less is the gas side node. This is the difference between the temperature t g2 at the inlet of the coal burner and the temperature t s at the outlet of the water economizer. That is, economizer 1
The gas inlet temperature t g2 of , that is, the gas outlet temperature t g2 of evaporator 2 is t s + Δ, and the amount of heat given to water by evaporator 2 is
Q 1 and the amount of evaporation Gs can be expressed as follows. Q 1 = CpGg (t g1 - t g2 ) = CpGg (t g1 - t s - Δ) - (1) Gs = Q 1 / (is - iw) - (2) where, Cp; specific heat of gas, Gg ;Gas flow rate,
is; saturated steam enthalpy at temperature t s ; iw; saturated water enthalpy at temperature t s If the pinch point temperature difference Δ is kept constant and the evaporation pressure of the boiler, that is, the evaporation temperature t s is increased, the gas outlet temperature of evaporator 2, t g2 will also rise,
As can be seen from equation (1) above, the amount of heat Q 1 transferred to the gas in the evaporator 2 decreases. As a result, it can be easily seen from the above equation (2) that the evaporation amount Gs also decreases. However, the adiabatic heat drop inside the turbine naturally increases as the evaporation pressure increases. Therefore, the turbine output, which is expressed as the product of the flow rate passing through the turbine, that is, the amount of evaporation and the adiabatic heat drop inside the turbine, becomes maximum at a certain evaporation pressure. On the other hand, the exhaust gas outlet temperature t g3 of the economizer 1 is expressed by the following equation based on the thermal balance in the economizer 1. t g3 = t g2 - Gw (iw - t w1 ) / CpGg - (3) where, Gw: Flow rate passing through the economizer (amount of water supplied to the boiler) Flow rate passing through the economizer 1 and evaporation amount in the evaporator 2 If they are equal, Gw in equation (3) can be written as Gs. Therefore, if the evaporation amount Gs decreases, the second term in equation (3) decreases, and the exhaust gas outlet temperature t g3 increases. Also, when the water supply temperature t w1 to the energy saver 1 is increased, the second term of equation (3) becomes smaller and the temperature t g3 becomes larger. When the evaporation amount Gs and the water supply amount Gw are equal, only one exhaust gas outlet temperature is determined for the evaporation pressure Pso that maximizes the turbine output, but the evaporation amount Gs and the water supply amount
When the values of Gw are different, as the water supply amount Gw is increased, the second term of equation (3) becomes larger and the economizer outlet temperature t g3
decreases. That is, it becomes t g ' 3 in FIG. In this way, the flow rate Gw passing through the economizer 1 is made larger than the amount of evaporation Gs, and after heating to the temperature t s , the brackish water is discharged from the drum 3.
Extract the amount of hot water Gw−Gs and guide it to the flasher 9 to flash it to generate flash steam,
If this generated steam is mixed in the middle stage of the steam turbine 4, the turbine output increases by an amount commensurate with the flow rate of the mixed air. Furthermore, the unflushed hot water in the flusher 9 is put into the mixing tank 10 and the condenser 5
If the feed water flowing from to the waste heat boiler B is directly mixed, the temperature of the feed water entering the waste heat boiler B will rise from tw1 to tw'1 . However, it is a matter of course that this feed water temperature cannot be made higher than the value t g ' 3 −Δ obtained by subtracting the pinch point temperature difference Δ from the gas outlet temperature t g ' 3 of the waste heat boiler B. In Figure 6, the state of the water side temperature change shown by the solid line is when hot water is extracted from the brackish water drum 3 and the water supplied to the waste heat boiler B is heated, and the broken line is when hot water is extracted from the brackish water drum 3. In the case where the supply water is not heated either, the dotted line shows the case where hot water is extracted from the brackish water drum 3 but the supply water is not heated. FIGS. 7 and 8 show the states of change in the turbine output explained above. That is, FIG. 7 shows the relationship between the turbine output and the boiler outlet gas temperature using the boiler feed water temperature as a parameter, and the feed water temperature t w1 ,
For t w2 and t w3 , there are boiler outlet temperatures T g31 , T g32 , and T g33 that provide the maximum turbine output. FIG. 8 shows the relationship between turbine output and evaporation temperature with respect to boiler outlet gas temperature. As already explained, when the water supply amount Gw and the evaporation amount Gs are equal, the turbine output is as shown by the solid line in Fig. 8, and when the boiler outlet gas temperature t g31 is the evaporation temperature t s1 , the maximum turbine output L 21 can be obtained. Can be done. Furthermore, hot water at temperature t s1 is extracted from the brackish water drum at the evaporation temperature t s1 , which is the maximum turbine output, and flash steam is generated in the flasher, mixed with the turbine, and the unflushed hot water heats the feed water to the boiler. In this case, as described above, the turbine output increases and the boiler outlet gas temperature decreases, and the maximum turbine output is obtained when the difference between the boiler outlet gas temperature and the boiler feed water temperature reaches the pinch point temperature difference. This state is shown by the broken line in FIG. That is, when the boiler outlet gas temperature t g32 , the turbine output L 22 is obtained. Next, instead of directing the entire amount of hot water extracted from the brackish water drum to the flasher, a portion of it is transferred to other equipment, such as a third
When water is fed to a high-pressure waste heat boiler Bh or the like shown in the figure, the boiler outlet gas temperature naturally decreases by that amount, as shown by the dotted line in Figure 8. The disadvantages of adopting the conventional method shown in FIGS. 1 and 3 will be explained with reference to FIGS. 7 and 8.
If the gas temperature at the boiler outlet can be selected arbitrarily, apply the method shown in Figure 1, supply water to the high-pressure waste heat boiler and the low-pressure waste heat boiler at a low feed water temperature t w1 , and reduce the gas temperature at the outlet of each boiler. Temperature T g31 and T g31
By lowering the power up to 100 degrees, steam can be generated from the respective boilers to obtain outputs L 11 and L 21 .
Also, sometimes the outlet gas temperature of a waste heat boiler is determined, in particular the outlet gas temperature of a high pressure waste heat boiler is provided to other systems of the main process. For example, it is often regulated at a fairly high temperature for heating raw materials in cement plants. When this determined boiler outlet gas temperature is T g32 , if the water supply temperature to the boiler is set to a low temperature.
If t w1 is maintained, the turbine output obtained from the steam generated by the boiler will be significantly reduced to L 12 [kw], as shown in Figure 7. Therefore, if the feed water temperature t w2 can be set to obtain the maximum output corresponding to the temperature T g32 , the turbine output obtained from the steam generated by the boiler can be maintained at L 11 [kw]. As a way to deal with this problem, as shown in Figure 3, the water supply to the high pressure waste heat boiler is controlled by the economizer of the low pressure waste heat boiler at a temperature of t w2.
It is possible to heat it up to However, the optimum feed water temperature for high pressure waste heat boilers
t w2 is not necessarily the optimum evaporation temperature of the low-pressure waste heat boiler t s1
However, depending on the case, if the evaporation temperature of the low-pressure waste heat boiler is selected to be t w2 , the turbine output from the steam generated by the boiler will be L 24 [kw], and the maximum output will be L 21
[kw] may be significantly reduced. moreover,
It is clear from FIG. 8 that the conventional method shown in FIGS. 1 and 2 does not use flash steam, so the output is reduced accordingly. The present invention was devised in order to solve the drawbacks of the conventional methods, and to utilize the given exhaust gas conditions to the maximum extent possible. FIG. 9 shows an embodiment of the system of the present invention. The present invention will be explained using FIG. 9, FIG. 7, and FIG. 8. Assuming that the gas temperature entering the high-pressure waste heat boiler Bh is T g1 and the outlet temperature is determined by T g32 , the optimum water supply temperature to the economizer 1h of the boiler is t w2 , as shown in Figure 7. be. On the other hand, if the gas temperature entering the low-pressure waste heat boiler Bl is t g1 , the optimum evaporation temperature of the boiler is t s1 . If the temperatures t s1 and t w2 are equal, the feed water of the high pressure waste heat boiler Bh is the same as that of the low pressure waste heat boiler Bl.
The hot water extracted from the brackish water drum 3 liters may be directly supplied, and if t s1 < t w2 , a heater such as a deaerator may be used while the hot water extracted from the brackish water drum 3 liters is being supplied to the high-pressure waste heat boiler Bh. There is no problem as long as the temperature is set up and heated to a temperature t w2 . Conversely, when t s1 > t w2 , in order to obtain the maximum output from the steam generated by the high-pressure waste heat boiler Bh, the hot water extracted from the brackish water drum 3l of the low-pressure waste heat boiler Bl at a temperature t s1 and a flow rate Gw must be heated to a temperature t w2 need to be lowered to. Therefore, the temperature from 3 liters of brackish water drum
If the hot water at t s is led to the flasher 9 and the internal pressure of the flasher is maintained at the saturated pressure Pf corresponding to the temperature t w2 , it will be separated into saturated steam Gf at the pressure Pf and hot water at the temperature t w2 .
This hot water is introduced into the economizer 1h of the high-pressure waste heat boiler Bh to generate high-pressure steam with a pressure Ph, temperature Th, and flow rate Gh, which is sent to the inlet of the mixed pressure steam turbine 4 to drive the turbine. An output of L 11 [kw] can be obtained. On the other hand, the flow rate Gw−Gh obtained by subtracting the flow rate Gh supplied to the high-pressure waste heat boiler Bh from the unflushed hot water Gw−Gf, which is the temperature t w2 of the flusher 9
-Gf, the condensate sent from the condenser 6 is heated in the mixing tank 10, and the water is supplied to the economizer 1l of the low-pressure waste heat boiler Bl at a temperature of t w ' 1 . The amount of water supplied is the sum Gl + Gw of the evaporation amount Gl from the boiler Bl and the amount Gw extracted from the brackish water drum 3L, and the temperature t w1 is the gas outlet temperature from the boiler Bl.
It is equal to t g3 minus the pinch point temperature difference Δ. Gl+Gw entered the low pressure waste heat boiler Bl
The feed water is heated in the energy saver 1l to the optimum evaporation temperature ts1 of the boiler Bl concerned and enters the brackish water drum 3l, from which hot water in an amount Gw is extracted and sent to the flasher 9.
At the same time, the remaining saturated water in an amount of Gl is heated in an evaporator 2L to reach a saturation pressure Ps 1 corresponding to a temperature t s1.
Therefore, it is mixed into the middle stage of the mixed pressure steam turbine 4. In addition, the pressure generated by the above-mentioned flash
Pf flash steam is also mixed into the intermediate stage of the mixed pressure steam turbine 4. In this way, a low pressure waste heat boiler
By generating steam at pressure Ps 1 and temperature t s1 from Bl, generating steam at pressure Pf from the flasher 9, and guiding these steams to the turbine to drive the turbine, the turbine of L 23 [kw] in Fig. 8 is created. You can get the output. As can be seen from FIG. 8, L 23 [kw] is greater than L 21 [kw] by ΔL [kw]. As explained above, by applying the present invention, a total turbine output of L 11 +L 23 [kw] can be obtained, which is at least ΔL [kw] more than the conventional method, and in some cases, ΔL′ = [(L 11 +L 23 )−
(L 12 + L 21 )] will result in more output. The results of an example calculation are as follows.

【表】【table】

【表】 但し、タービン効率×発電機効率×機械効
率=75%とした。
この結果では、回収電力は6176〔kw〕となり、
第3図の従来の方法による回収電力5805〔kw〕よ
り371〔kw〕多く得られる。 本発明は2個の排ガス熱源のみならずそれ以上
の個数の排ガス熱源に対しても適用でき、高圧廃
熱ボイラ、低圧廃熱ボイラに入るガス温度及び
夫々、あるいはどれか任意のボイラの出口ガス温
度及び、夫々のボイラへのガス流量の値により低
圧廃熱ボイラの汽水ドラムから熱水を抽出してフ
ラツシヤに導く代りに高圧廃熱ボイラの汽水ドラ
ムから熱水を抽出してフラツシヤに導く方法及び
各廃熱ボイラの汽水ドラムから熱水を抽出してフ
ラツシヤに導く方法についても同様のことがいえ
るのはいう迄もない。
[Table] However, turbine efficiency x generator efficiency x mechanical efficiency = 75%.
In this result, the recovered power is 6176 [kw],
This yields 371 [kw] more power than the 5805 [kw] recovered using the conventional method shown in Fig. 3. The present invention is applicable not only to two exhaust gas heat sources but also to a larger number of exhaust gas heat sources, and the temperature of the gas entering the high pressure waste heat boiler, the low pressure waste heat boiler, and the outlet gas of each or any boiler can be A method of extracting hot water from the brackish water drum of a high pressure waste heat boiler and guiding it to the flasher instead of extracting hot water from the brackish water drum of the low pressure waste heat boiler and guiding it to the flasher depending on the temperature and gas flow rate values to each boiler. Needless to say, the same can be said about the method of extracting hot water from the brackish water drum of each waste heat boiler and guiding it to the flusher.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第3図は発電プラント用廃熱回収装
置の従来例を示すサイクル図、第2図及び第4図
は第1図及び第3図に対応するガス側と水側の温
度変化状態(tg、tw)を表わす図、第5図は一般
の廃熱回収装置のサイクル図、第6図は第5図に
対応するガス側tgと水側twの温度変化の状態を表
わす図、第7図はボイラ給水温度twをパラメータ
として高圧ボイラ出口ガス温度をかえた場合のタ
ービン出力の変化を表わす図表、第8図は低圧ボ
イラ出口温度をかえた場合のタービン出力の変化
とフラツシユシステムを採用した場合のタービン
出力の変化を表わす図表、第9図は本発明による
廃熱回収装置の実施例を示すサイクル図である。 B……廃熱ボイラ、Bh……高圧廃熱ボイラ、
Bl……低圧廃熱ボイラ、1,1h,1l……節
炭器、2,2h,2l……蒸発器、3,3h,3
l……汽水ドラム、4……混圧式蒸気タービン、
5……復水器、6,7……給水ポンプ、8……発
電機、9……フラツシヤ、10……混合タンク。
Figures 1 and 3 are cycle diagrams showing conventional examples of waste heat recovery equipment for power generation plants, and Figures 2 and 4 are temperature change states on the gas side and water side corresponding to Figures 1 and 3. (t g , t w ), Fig. 5 is a cycle diagram of a general waste heat recovery device, and Fig. 6 shows the state of temperature change on the gas side t g and water side t w corresponding to Fig. 5. Fig. 7 is a chart showing the change in turbine output when the high pressure boiler outlet gas temperature is changed using the boiler feed water temperature tw as a parameter, and Fig. 8 is a chart showing the change in the turbine output when the low pressure boiler outlet temperature is changed. FIG. 9 is a cycle diagram showing an embodiment of the waste heat recovery device according to the present invention. B...waste heat boiler, Bh...high pressure waste heat boiler,
Bl...Low pressure waste heat boiler, 1, 1h, 1l...Economy device, 2, 2h, 2l...Evaporator, 3, 3h, 3
l... Brackish water drum, 4... Mixed pressure steam turbine,
5... Condenser, 6, 7... Water pump, 8... Generator, 9... Flushsha, 10... Mixing tank.

Claims (1)

【特許請求の範囲】[Claims] 1 温度レベルの異なる複数の廃熱ボイラと、該
廃熱ボイラのうち、低位温度レベルの廃熱ボイラ
の汽水ドラムからの熱水を抽出して蒸気を発生せ
しめるフラツシヤと、前記各廃熱ボイラ及びフラ
ツシヤからの蒸気を動力とする混圧式蒸気タービ
ンとより成り、前記フラツシヤの未フラツシヤ熱
水の一部を高位温度レベルの廃熱ボイラの給水に
利用し、他を低位温度レベルの廃熱ボイラの給水
加熱に用いるようにしたことを特徴とする廃熱回
収装置。
1 A plurality of waste heat boilers with different temperature levels, a flusher that extracts hot water from the brackish water drum of the waste heat boiler with a lower temperature level among the waste heat boilers to generate steam, and each of the waste heat boilers and It consists of a mixed-pressure steam turbine powered by steam from the flasher, and part of the unflushed hot water from the flasher is used to feed the waste heat boiler at a higher temperature level, and the rest is used to feed the waste heat boiler at a lower temperature level. A waste heat recovery device characterized in that it is used for heating water supply.
JP55120309A 1980-08-29 1980-08-29 Waste heat recovery apparatus Granted JPS5743102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55120309A JPS5743102A (en) 1980-08-29 1980-08-29 Waste heat recovery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55120309A JPS5743102A (en) 1980-08-29 1980-08-29 Waste heat recovery apparatus

Publications (2)

Publication Number Publication Date
JPS5743102A JPS5743102A (en) 1982-03-11
JPH0217763B2 true JPH0217763B2 (en) 1990-04-23

Family

ID=14783040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55120309A Granted JPS5743102A (en) 1980-08-29 1980-08-29 Waste heat recovery apparatus

Country Status (1)

Country Link
JP (1) JPS5743102A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2607693B2 (en) * 1989-08-18 1997-05-07 ユニチカ株式会社 Agricultural covering sheet
JP5879195B2 (en) 2012-05-10 2016-03-08 株式会社アマダホールディングス Band saw blade guide device

Also Published As

Publication number Publication date
JPS5743102A (en) 1982-03-11

Similar Documents

Publication Publication Date Title
JP2540646B2 (en) Operating method of combined cycle power plant and combined cycle power plant
EP2772618B1 (en) Power generating facility
US6269626B1 (en) Regenerative fuel heating system
US20080289313A1 (en) Direct heating organic rankine cycle
JP2001271612A (en) Apparatus and method for reheating gas turbine cooling steam and high-pressure steam turbine exhaust steam in combined cycle power generating apparatus
RU2153081C1 (en) Combined-cycle-plant and its operating process
JP2000199407A (en) System for supplying auxiliary steam in combined cycle system and method for the same
JP2564448B2 (en) Cement waste heat recovery power generation facility combined with gas turbine
RU2062332C1 (en) Combined-cycle plant
JP2010038163A (en) System and assemblies for hot water extraction to pre-heat fuel in combined cycle power plant
JP2010038162A (en) System and assembly for preheating fuel in combined cycle power plant
JPH09203304A (en) Compound power generating system using waste as fuel
JP2003106163A (en) Gas and air combined turbine facility and power plant and operating method thereof
JPH0217763B2 (en)
US20180171827A1 (en) Method to integrate regenerative rankine cycle into combined cycle applications using an integrated heat recovery steam generator
JP2003329201A (en) Exhaust heat recovery boiler, combined power generation method and device
US4393657A (en) Method for recovering waste heat as motive power
JP2000110511A (en) Cogeneration method and its system
JP4466914B2 (en) Combined power plant and starting method
KR200421921Y1 (en) Power plant auxiliary steam apparatus with the electric power apparatus for waste pressure recovery
JPS59219603A (en) Reheating boiler for factory
JPS6157446B2 (en)
JP2002371861A (en) Steam injection gas turbine generator
JPS61108814A (en) Gas-steam turbine composite facility
JP2020029977A (en) Temporary piping system for blowing-out of boiler and method for blowing out boiler