JPH02176625A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH02176625A
JPH02176625A JP32939088A JP32939088A JPH02176625A JP H02176625 A JPH02176625 A JP H02176625A JP 32939088 A JP32939088 A JP 32939088A JP 32939088 A JP32939088 A JP 32939088A JP H02176625 A JPH02176625 A JP H02176625A
Authority
JP
Japan
Prior art keywords
liquid crystal
display
voltage
electrodes
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32939088A
Other languages
Japanese (ja)
Other versions
JP2548979B2 (en
Inventor
Yoshiro Koike
善郎 小池
Akihiro Mochizuki
昭宏 望月
Yoshikazu Toyama
嘉一 遠山
Shunsuke Kobayashi
駿介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63329390A priority Critical patent/JP2548979B2/en
Publication of JPH02176625A publication Critical patent/JPH02176625A/en
Application granted granted Critical
Publication of JP2548979B2 publication Critical patent/JP2548979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To easily make a gradational display by enclosing a liquid crystal which has negative dielectric constant anisotropy between substrates where orienting films which perform vertical orienting operation are formed at least on electrodes. CONSTITUTION:This display device is provided with the transparent substrates 1 and 2, the electrodes 3 and 4 for displaying, the orienting films 5 and 6, a switching element 8, and the liquid crystal 7 which has the negative dielectric constant anisotropy. Then when a voltage V for displaying which is applied between the display electrodes 3 and 4 is 0V, the orienting films 5 and 6 orient the liquid crystal 7 vertically. Further, when V1 is applied as the voltage V for displaying, a part of the liquid crystal 7 rotates in a horizontal direction and when the voltage V for displaying is raised to V2 (>V1), the liquid crystal between the electrodes 3 and 4 rotates almost in the horizontal direction. Namely, the liquid crystal orientation state changes continuously corresponding to the voltage for displaying. Consequently, the gradational display is facilitated.

Description

【発明の詳細な説明】 〔概要〕 薄膜I・ランジスタ等のスイッチング素子を画素対応に
設けたアクティブマトリクス型の液晶表示装置に関し、 視角特性を改善することを目的とし、 対向配置した透明基板と、該透明基板上に形成した表示
用電極と、少なくとも該表示用電極上に形成した配向膜
と、該配向膜により分子配向が制御された液晶と、前記
表示用電極間に表示用の電圧を印加する為のスイッチン
グ素子とを有する液晶表示装置に於いて、前記液晶は、
負の誘電率異方性を有し、且つ該液晶の屈折率異方性Δ
nと、該液晶を注入するギャップ長dとの積を、Δn・
d−(m+V2)  X  (0,5〜0.6)  (
但し、mは整数)とし、前記配向膜は、前記液晶の分子
配向を、電圧無印加時に少なくとも前記表示電極上に於
いて垂直配向状態とし、電圧印加時に水平一方向の配向
状態に変化させる構成とした。
[Detailed Description of the Invention] [Summary] Regarding an active matrix type liquid crystal display device in which switching elements such as thin film transistors and transistors are provided in correspondence with pixels, the present invention relates to an active matrix type liquid crystal display device in which switching elements such as thin film transistors and transistors are provided corresponding to pixels. Applying a voltage for display between a display electrode formed on the transparent substrate, an alignment film formed at least on the display electrode, a liquid crystal whose molecular orientation is controlled by the alignment film, and the display electrode. In a liquid crystal display device having a switching element for
has negative dielectric anisotropy, and the refractive index anisotropy Δ of the liquid crystal
The product of n and the gap length d for injecting the liquid crystal is Δn・
d-(m+V2) X (0.5~0.6) (
However, m is an integer), and the alignment film has a configuration in which the molecular alignment of the liquid crystal is vertically aligned at least on the display electrode when no voltage is applied, and is changed to a horizontal alignment state when a voltage is applied. And so.

〔産業上の利用分野〕[Industrial application field]

本発明は、薄膜トランジスタ等のスイッチング素子を画
素対応に設けたアクティブマトリクス型の液晶表示装置
に関するものである。
The present invention relates to an active matrix liquid crystal display device in which switching elements such as thin film transistors are provided corresponding to pixels.

画素対応に薄膜トランジスタ(T P T)等のスイッ
チング素子を設けたアクティブマトリクス型の液晶表示
装置は、任意の画素を任意の印加電圧で選択駆動できる
から、高表示品質が得られる利点がある。更に、カラー
フィルタを設けることにより、容易にフルカラー化が可
能となり、小型のカラーテレビジョンに適用されている
。しかし、視角特性が充分でないので、その改善が要望
されている。
Active matrix liquid crystal display devices in which switching elements such as thin film transistors (TPTs) are provided for each pixel have the advantage of providing high display quality because any pixel can be selectively driven with any applied voltage. Further, by providing a color filter, full color can be easily achieved, and this is applied to small color televisions. However, since the viewing angle characteristics are not sufficient, there is a demand for improvement.

〔従来の技術〕[Conventional technology]

従来例の液晶表示装置に於いては、TN(ツィステッド
・ネマチック)液晶が比較的多く使用されている。この
ような液晶表示装置に於いては、例えば、第9図に示す
ように、対向配置した基板の中の下基板の配向膜を実線
矢印の方向にラヒングした場合、それと直交するように
、上基板の配向膜を点線矢印方向にラヒングして、液晶
の分子配向を90度ツイストさせ、両側に配置する偏光
板の偏光軸を二重実線矢印と二重点線矢印で示すように
直交して配置するものである。このような直交ニコルの
場合はノーマリホワイトとなる。又偏光軸を平行に配置
する平行ニコルの場合はノーマリブラックとなる。
In conventional liquid crystal display devices, TN (twisted nematic) liquid crystal is relatively often used. In such a liquid crystal display device, for example, as shown in FIG. 9, when the alignment film of the lower substrate of the opposing substrates is laminated in the direction of the solid arrow, the upper The alignment film on the substrate is laminated in the direction of the dotted arrow to twist the molecular orientation of the liquid crystal 90 degrees, and the polarizing axes of the polarizing plates placed on both sides are arranged perpendicularly as shown by the double solid arrow and double dotted arrow. It is something to do. In the case of such orthogonal Nicols, the image is normally white. Furthermore, in the case of parallel Nicols, in which the polarization axes are arranged in parallel, the light becomes normally black.

平行ニコルの場合の液晶の屈折率異方性Δnとこの液晶
を封入するギャップ長dとの積、Δn・dにより透過率
が異なるものとなり、例えば、第1O図に示す特性とな
る。即ち、Δn−d≠0.51.0.1.5・・・の条
件に於いて透過率が最小となるが、Δn−dの値が大き
くなるに従って視角特性及び応答特性が劣ることになる
。従って、通常は、Δn−d:Q、5となるようにギャ
ップ長dを選択するごとになる。その場合の視角特性を
第11回に示す。即ち、左右方向の視角特性は点線曲線
で示すように中心から±20度の位置に於いてコントラ
ストが70%程度以下に低下し、上下方向の視角特性は
実線曲線で示すように、左右方向の視角特性に比較して
更に低いものとなる。
The transmittance varies depending on the product Δn·d of the refractive index anisotropy Δn of the liquid crystal in the case of parallel Nicols and the gap length d that encloses the liquid crystal, and has, for example, the characteristics shown in FIG. 1O. In other words, the transmittance is minimum under the condition of Δn-d≠0.51.0.1.5, but as the value of Δn-d increases, the viewing angle characteristics and response characteristics deteriorate. . Therefore, normally, the gap length d is selected so that Δn-d:Q,5. The viewing angle characteristics in that case are shown in Part 11. In other words, the contrast in the horizontal direction decreases to about 70% or less at positions ±20 degrees from the center, as shown by the dotted line curve, and the contrast in the vertical direction decreases to about 70% or less at positions ±20 degrees from the center, as shown by the solid line curve. This is even lower than the viewing angle characteristics.

この場合、Δn−dを0.5以下にすれば、視角特性は
第11図に示す場合より改善されるが、第10図からも
判るように、透過率特性が低下し、所望のコントラスト
が得られないものとなり、又白黒表示の場合に色付表示
となる場合が生じる。
In this case, if Δn-d is set to 0.5 or less, the viewing angle characteristics will be improved compared to the case shown in FIG. 11, but as can be seen from FIG. 10, the transmittance characteristics will decrease and the desired contrast will not be achieved. In addition, in the case of black and white display, the display may become colored.

更に小さいΔn−dにより白黒表示を可能とする液晶モ
ードとして、強誘電性液晶が知られている。例えば、第
12図に示す複屈折型の場合、基板61.62に形成し
た電極63.64間に液晶68を封入し、両側に偏光板
65.66を配置して、電極63.64間に表示用電圧
67を印加するものであり、複屈折効果により常光と異
常光とが干渉し、表示用電圧を電極63.64間に印加
して分子の配向方向を変化させると干渉条件が変わり、
白黒の表示を行わゼることができる。
Ferroelectric liquid crystal is known as a liquid crystal mode that enables black and white display with an even smaller Δn-d. For example, in the case of the birefringent type shown in FIG. 12, a liquid crystal 68 is sealed between electrodes 63 and 64 formed on a substrate 61 and 62, polarizing plates 65 and 66 are arranged on both sides, and A display voltage 67 is applied, and ordinary light and extraordinary light interfere due to the birefringence effect, and when the display voltage is applied between the electrodes 63 and 64 to change the orientation direction of molecules, the interference conditions change.
It is possible to perform black and white display.

又液晶68の分子配向を右側に示すように出射側の偏光
板65の偏光軸方向(実線矢印)とし、入射側の偏光板
66の偏光軸方向(点線矢印)とすると、表示用電圧6
7を印加しない時は暗状態となり、表示用電圧67を印
加して液晶分子の配向方向を変化させると、明状態とな
る。
If the molecular orientation of the liquid crystal 68 is set to the direction of the polarization axis of the polarizing plate 65 on the output side (solid line arrow) and the direction of the polarization axis of the polarizing plate 66 on the input side (dotted line arrow) as shown on the right side, then the display voltage 6
When voltage 7 is not applied, the display becomes dark, and when display voltage 67 is applied to change the alignment direction of the liquid crystal molecules, the display becomes bright.

又第13図に示すゲストホスト型の場合は、基板71.
72に形成した電極73.74間に2色性の色素を混合
した液晶77を封入し、基板71の外側に偏光板75を
配置し、電極73.74間に表示用電圧76を印加する
ものであり、その場合の液晶77は、液晶分子77aと
色素分子77bとからなり、この色素分子77bは、右
側に示すように、液晶分子77aに平行に配向する性質
があり、電界印加により液晶分子77aの配向を変化さ
せると、色素分子77bの配向方向も変化し、色素分子
77bの配向方向によって着色したりしなかったりする
ことになるがら、表示用電圧76の印加により表示を行
うことができる。
In the case of the guest-host type shown in FIG. 13, the substrate 71.
A liquid crystal 77 mixed with a dichroic dye is sealed between electrodes 73 and 74 formed on the substrate 72, a polarizing plate 75 is placed outside the substrate 71, and a display voltage 76 is applied between the electrodes 73 and 74. In this case, the liquid crystal 77 is composed of liquid crystal molecules 77a and dye molecules 77b.As shown on the right side, the dye molecules 77b have a property of being aligned parallel to the liquid crystal molecules 77a, and when an electric field is applied, the liquid crystal molecules When the orientation of the dye molecules 77a is changed, the orientation direction of the dye molecules 77b also changes, and although coloring may or may not occur depending on the orientation direction of the dye molecules 77b, display can be performed by applying the display voltage 76. .

又偏光板75の偏光軸を実線矢印方向とした時に、表示
用電圧76を印加しない場合は暗状態となり、表示用電
圧76を印加して液晶77の分子配向方向を変化させる
と、明状態となる。
When the polarization axis of the polarizing plate 75 is set in the direction of the solid line arrow, if the display voltage 76 is not applied, the state will be dark, and if the display voltage 76 is applied to change the molecular orientation direction of the liquid crystal 77, the state will be the bright state. Become.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述のように、従来例のTN液晶を用いた液晶表示装置
は、Δn−dを小さくして視角特性を改善しようとして
も、透過率特性が低下するから、0.5以下に小さくす
ることは困難である。
As mentioned above, in a liquid crystal display device using a conventional TN liquid crystal, even if an attempt is made to improve the viewing angle characteristics by reducing Δn-d, the transmittance characteristics will decrease, so it is impossible to reduce it to 0.5 or less. Have difficulty.

又第12図及び第13図に示す強誘電性液晶を用いた従
来例に於いては、視角特性が優れているものの、双安定
状態を利用して表示を行う為、階調表示が困難であり、
更に機械的な衝撃に弱く、安定な表示が困難であるとい
う欠点がある。
Furthermore, although the conventional examples using ferroelectric liquid crystals shown in Figs. 12 and 13 have excellent viewing angle characteristics, it is difficult to display gradation because the display is performed using a bistable state. can be,
Furthermore, it has the disadvantage that it is susceptible to mechanical shock, making stable display difficult.

本発明は、視角特性を改善することを目的とするもので
ある。
The present invention aims to improve viewing angle characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の液晶表示装置は、TPT等のスイッチング素子
を設けたアクティブマトリクス型の液晶表示装置であり
、第1図を参照して説明する。
The liquid crystal display device of the present invention is an active matrix type liquid crystal display device provided with switching elements such as TPT, and will be explained with reference to FIG.

対向配置した透明基板1,2と、この透明基板1.2上
に形成した表示用電極3.4と、少なくとも表示用電極
3,4上に形成した配向膜5,6と、この配向膜5,6
により分子配向が制御される液晶7と、表示用電極3.
4間に表示用の電圧を印加する為のTPT等のスイッチ
ング素子8とを有する液晶表示装置に於いて、液晶7は
、負の誘電率異方性を有し、この液晶7の屈折率異方性
Δnと、この液晶7を注入するギャップ長dとの積を、
Δn−d −(m+V2) X (0,5〜0.6)と
し、配向膜5,6は、液晶7の分子配向を、電圧無印加
時に少なくとも表示電極3.4上に於いて垂直配向状態
とし、電圧印加時に水平一方向の配向状態に変化させる
構成としたものである。
Transparent substrates 1 and 2 arranged opposite to each other, display electrodes 3.4 formed on the transparent substrates 1.2, alignment films 5 and 6 formed at least on the display electrodes 3 and 4, and the alignment film 5. ,6
A liquid crystal 7 whose molecular orientation is controlled by a display electrode 3.
In a liquid crystal display device having a switching element 8 such as TPT for applying a display voltage between 4 and 4, the liquid crystal 7 has negative dielectric constant anisotropy, and the refractive index anisotropy of this liquid crystal 7 The product of the orientation Δn and the gap length d into which this liquid crystal 7 is injected is
Δn−d −(m+V2) The structure is such that the alignment state is changed to one horizontal direction when a voltage is applied.

〔作用〕[Effect]

第1図に於ける液晶の分子は誇大化して示すものであり
、表示用電極3.4間に印加する表示用の電圧■を0と
した時(電圧無印加時)に、配向膜5,6により、液晶
7は左側に示すように垂直配向状態となっており、表示
用の電圧Vを■蔦とすることにより、中央部に示すよう
に一部の液晶7は水平一方向に回転し、更に表示用の電
圧■を高くしてV、、(>v、)とすることにより、右
側に示すように電極3.4間の液晶は殆ど水平一方向に
回転する。即ち、表示用電圧に対応して液晶配向状態が
連続的に変化するから階調表示が可能となる。
The molecules of the liquid crystal in FIG. 1 are exaggerated, and when the display voltage ■ applied between the display electrodes 3 and 4 is set to 0 (when no voltage is applied), the alignment film 5, 6, the liquid crystal 7 is vertically aligned as shown on the left, and by setting the display voltage V to 1, some of the liquid crystals 7 are rotated horizontally in one direction as shown in the center. By further increasing the display voltage (2) to V, (>v,), the liquid crystal between the electrodes 3 and 4 rotates almost horizontally in one direction, as shown on the right side. That is, since the liquid crystal alignment state changes continuously in response to the display voltage, gradation display is possible.

又液晶7を垂直配向状態とし、表示用電圧■を印加する
ことにより、水平面内の一方向に配向方向が変化するよ
うにし、偏光板の偏光軸をこの一方向に対して45度傾
斜させ、且つ直交ニコルとした場合、透過光強度Iが 1=Iosin2(g−ΔH’−d/λ)となる。ここ
で、Δn′は液晶分子の変形の程度に応じて最大のΔn
(液晶分子本来の屈折率異方性)まで変化する実効的な
屈折率異方性であり、λは光の波長である。従って、液
晶分子が完全に水平方向に変化した場合にΔn゛−Δn
となり、この時の透過率を最大とするように、ギヤ・ノ
ブ長dを選定すれば、即ち、mを任意の整数、λを光の
波長として、Δn−d= ((1/2)+m)  λと
すれば良いことになり、表示用電圧印加により白となる
。又平行ニコルとすれば、表示用電圧印加により黒とな
る。又m=oとすると、Δn−d−λ/2となるから、
従来例のTN液晶を用いた場合の最小値のΔn−d−λ
に比較して、1/2とすることができる。
Further, the liquid crystal 7 is brought into a vertical alignment state, and the alignment direction is changed in one direction in the horizontal plane by applying a display voltage (2), and the polarization axis of the polarizing plate is tilted at 45 degrees with respect to this one direction. In addition, in the case of crossed Nicols, the transmitted light intensity I becomes 1=Iosin2(g-ΔH'-d/λ). Here, Δn' is the maximum Δn depending on the degree of deformation of liquid crystal molecules.
(the refractive index anisotropy inherent to liquid crystal molecules), and λ is the wavelength of light. Therefore, when the liquid crystal molecules change completely horizontally, Δn゛−Δn
If the gear knob length d is selected so as to maximize the transmittance at this time, Δn-d= ((1/2)+m ) It is sufficient to set it to λ, and it becomes white when a display voltage is applied. If parallel Nicols are used, the color becomes black when a display voltage is applied. Also, if m = o, then Δn-d-λ/2, so
Minimum value Δn-d-λ when using conventional TN liquid crystal
It can be reduced to 1/2 compared to .

又視角特性は、Δn−dを小さくするに従って改善され
るものであり、前述のようにΔn−dを従来例に比較し
て1/2とすることにより、視角特性を改善することが
できる。
The viewing angle characteristics are improved as Δn-d is reduced, and as described above, the viewing angle characteristics can be improved by reducing Δn-d to 1/2 compared to the conventional example.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例について詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の実施例の断面図であり、1112はガ
ラス等の透明基板、13.14はITO等の透明の電極
、15.16は配向膜、17は液晶、18はTFT (
薄膜トランジスタ)、1920は偏光板、Gはゲート、
Dはドレイン、Sはソースを示す。
FIG. 2 is a cross-sectional view of an embodiment of the present invention, in which 1112 is a transparent substrate such as glass, 13.14 is a transparent electrode such as ITO, 15.16 is an alignment film, 17 is a liquid crystal, and 18 is a TFT (
thin film transistor), 1920 is a polarizing plate, G is a gate,
D indicates a drain, and S indicates a source.

スイッチング素子を構成するTFT18は、直交配置し
、交点は相互に絶縁されたデータバスラインとスキャ、
ンハスライン(図示せず)の交点に配置され、TPT]
8のドレインDがデータバスラインに、ゲー1− Gが
スキャンハスラインにそれぞれ接続され、ソースSが表
示用の電極14に接続されている。
The TFTs 18 constituting the switching element are arranged orthogonally, and the intersection points are connected to data bus lines and scan lines which are insulated from each other.
TPT]
The drain D of 8 is connected to the data bus line, the gate 1-G is connected to the scan bus line, and the source S is connected to the display electrode 14.

又?夜晶17は負の誘電率異方性を有するものを用いる
ものである。一般に液晶は、シッフ基、アゾ基、アゾキ
シ基、エステル基等を中央基とし、ベンゼン環を介して
アルキル基、アルコキン基5シ了ノ基等が結合されてい
るものであり、この中のシアン基を持たない液晶の大部
分が負の誘電率異方性を有するものである。このような
負の誘電率異方性を有する液晶としては、例えば、アル
キル・シクロヘキシル・カーボニトリル系(メルク社製
)の液晶が知られている。
or? The night crystal 17 used has negative dielectric anisotropy. In general, liquid crystals have a Schiff group, azo group, azoxy group, ester group, etc. as a central group, and an alkyl group, an alkoxy group, etc. are bonded through a benzene ring. Most liquid crystals without groups have negative dielectric anisotropy. As a liquid crystal having such negative dielectric constant anisotropy, for example, an alkyl cyclohexyl carbonitrile type liquid crystal (manufactured by Merck & Co., Ltd.) is known.

又配向膜1.5.16は、垂直配向作用を有する例えば
シランカップリング剤等を添加して用いるものであり、
液晶分子を誇大化して示すように、電極13.14間に
電圧を印加しない時に垂直配向状態とするものである。
In addition, the alignment film 1.5.16 is used by adding, for example, a silane coupling agent having a vertical alignment effect,
As shown in an exaggerated manner, the liquid crystal molecules are vertically aligned when no voltage is applied between the electrodes 13 and 14.

又電極13.14間に電圧を印加した時に、水平面内の
同一方向に液晶分子の配向方向が変化するように、若干
の水平配向作用を持たせているものである。この同一方
向の水平配向作用はラビング処理により得ることができ
るものであり、対向配置した透明基板11゜12上の配
向膜15,16に於けるラビング方向は反対方向とする
ものである。
Further, when a voltage is applied between the electrodes 13 and 14, the liquid crystal molecules have a slight horizontal alignment effect so that the alignment direction of the liquid crystal molecules changes in the same direction in the horizontal plane. This horizontal alignment effect in the same direction can be obtained by a rubbing process, and the rubbing directions of the alignment films 15 and 16 on the transparent substrates 11 and 12 arranged opposite to each other are opposite directions.

又透明基板11.12の外側に、偏光板1920を配置
し、配向膜15,1.6に於けるラビング方向に対して
偏光軸を45度傾斜させ、直交ニコル或いは平行ニコル
とするものである。
In addition, a polarizing plate 1920 is arranged outside the transparent substrate 11.12, and the polarization axis is inclined at 45 degrees with respect to the rubbing direction in the alignment films 15 and 1.6, so that the polarization axis is crossed Nicols or parallel Nicols. .

前述のような構成の液晶表示装置に於いて、スキャンパ
スラインを順次選択してスキャンパルスを印加し、それ
と同時にデータバスラインに表示情報に従った表示用電
圧を印加すると、スキャンパルスがゲー1−Gに印加さ
れたTPT18がオン状態となり、データバスラインに
印加された表示用電圧は、オン状態のTFT18のドレ
インDからソースSを介して電極14に印加され、対向
する電極13を例えば接地すれば、電極13.14間に
表示用電圧が印加され、その電圧値に対応して液晶分子
の配向方向が垂直から水平方向に変化するから、階調表
示も可能となる。
In a liquid crystal display device having the above-mentioned configuration, if the scan path lines are sequentially selected and a scan pulse is applied, and at the same time a display voltage according to the display information is applied to the data bus line, the scan pulse becomes The TPT 18 applied to -G is turned on, and the display voltage applied to the data bus line is applied from the drain D of the turned-on TFT 18 to the electrode 14 via the source S, and the opposing electrode 13 is grounded, for example. Then, a display voltage is applied between the electrodes 13 and 14, and the alignment direction of the liquid crystal molecules changes from vertical to horizontal in accordance with the voltage value, so that gradation display is also possible.

例えば、第3図(a)に示すように、直交ニコルの場合
の偏光板19.20の偏光軸が直交し、液晶17の分子
は紙面と垂直に配向されており、透過光はほぼ零である
。そして、電極13.14間に電圧を印加すると、fb
)に示すように、偏光板1920の偏光軸に対して45
度の方向に液晶17の分子が紙面と水平となる方向に回
転する。それによって、透過光は最大となる。
For example, as shown in FIG. 3(a), in the case of crossed Nicols, the polarization axes of the polarizing plates 19 and 20 are perpendicular to each other, the molecules of the liquid crystal 17 are oriented perpendicular to the plane of the paper, and the transmitted light is almost zero. be. Then, when a voltage is applied between electrodes 13 and 14, fb
), 45° relative to the polarization axis of the polarizing plate 1920.
The molecules of the liquid crystal 17 rotate in a direction parallel to the plane of the paper. The transmitted light is thereby maximized.

前述の配向膜15,16を、例えば、ポリビニールアル
コール3 w t%の水溶液に、垂直配向作用のあるシ
ランカップリング剤(オクタデシルジメチルアンモニウ
ムクロライド)を1wt%添加して、電極13.14を
含む全面にスピンコードし、160℃で処理した後、ラ
ビング処理を施して形成した。このラビング処理は、前
述のように、透明基板11側の配向膜15と、透明基板
12側の配向膜16とに於いて反対方向とするものであ
る。その場合のプレチルト角を光学的に測定したところ
、約85度であった。
The above-mentioned alignment films 15 and 16 are prepared, for example, by adding 1 wt % of a silane coupling agent (octadecyldimethylammonium chloride) having a vertical alignment effect to an aqueous solution of 3 wt % of polyvinyl alcohol to form the electrodes 13 and 14. The entire surface was spin-coded, treated at 160° C., and then rubbed. As described above, this rubbing treatment is performed in opposite directions for the alignment film 15 on the transparent substrate 11 side and the alignment film 16 on the transparent substrate 12 side. When the pretilt angle in that case was optically measured, it was about 85 degrees.

このような配向膜15.16を存する透明基板11、.
1.2間に、エステル系とエタン系とを主成分とする液
晶を注入した。この混合液晶の誘電率異方性Δεは−2
、屈折率異方性Δnは0.05であった。そして、Δn
−d=0.275となるように、ギヤ・2ブ長dを5.
5μmに設定した。
A transparent substrate 11, .
During 1.2, a liquid crystal containing ester and ethane as main components was injected. The dielectric anisotropy Δε of this mixed liquid crystal is −2
, the refractive index anisotropy Δn was 0.05. And Δn
-d = 0.275, gear 2 blade length d is 5.
It was set to 5 μm.

この液晶表示装置の視角特性は、第4図に示すものとな
った。即ち、左右方向の視角特性と上下方向の視角特性
とは類似したものとなり、且つ第11図に示す従来例の
視角特性と比較すれば明らかなように、視角特性が改善
されている。
The viewing angle characteristics of this liquid crystal display device were as shown in FIG. That is, the viewing angle characteristics in the left-right direction and the viewing angle characteristics in the up-down direction are similar, and as is clear from the comparison with the viewing angle characteristics of the conventional example shown in FIG. 11, the viewing angle characteristics are improved.

又透過率特性は、第5図の点線曲線へに示すものとなり
、実線曲線Bで示す従来例の特性に比較して傾斜が緩く
なり、階調表示が容易であることが判る。即ち、従来例
に於いては、ΔVの電圧で明状態から暗状態に変化し、
本発明の実施例に於いては、Δ■゛で明状態から暗状態
に変化する。
Further, the transmittance characteristics are as shown by the dotted line curve in FIG. 5, and the slope is gentler than that of the conventional example shown by the solid line curve B, and it can be seen that gradation display is easy. That is, in the conventional example, the bright state changes to the dark state with a voltage of ΔV,
In the embodiment of the present invention, the bright state changes to the dark state at Δ■゛.

従って、Δ■くΔ■1であるから、階調表示の為の電圧
の設定が容易となる。
Therefore, since Δ■ minus Δ■1, it becomes easy to set the voltage for gradation display.

従来例のTN液晶を用いた場合と、本発明の実施例の負
の誘電率異方性の液晶を用いた場合とに於ける比較特性
を第1表に示す。
Table 1 shows comparative characteristics between the case where a conventional TN liquid crystal is used and the case where a liquid crystal with negative dielectric anisotropy according to an embodiment of the present invention is used.

第  1  表 液晶の比抵抗は、表示用電圧を効率良く液晶、に印加す
る為に大きいことが望ましいものであり、本発明の実施
例に於いては、従来例に比較して1桁大きい比抵抗とな
った。又書込効率は、液晶に印加される実効電圧の表示
用電圧に対する割合であり、本発明に於いては、表示用
電圧の総てが実効電圧となる。又ラビング時の静電気は
小さい方が望ましいものであり、本発明の実施例に於い
ては水平配量作用を僅か生しさせる為であるから、弱い
ラビングで済むことになり、それによって、10■前後
の低い値となるから、TFT18の静電破壊防止の点か
ら有利となる。
Table 1 It is desirable that the specific resistance of the liquid crystal be large in order to efficiently apply display voltage to the liquid crystal, and in the embodiment of the present invention, the specific resistance is one order of magnitude larger than that of the conventional example. It became resistance. Further, the writing efficiency is the ratio of the effective voltage applied to the liquid crystal to the display voltage, and in the present invention, the entire display voltage is the effective voltage. Furthermore, it is desirable that the static electricity during rubbing be small, and in the embodiment of the present invention, since the horizontal dispensing effect is slightly generated, weak rubbing is sufficient. Since the values are low, this is advantageous in terms of preventing electrostatic damage to the TFT 18.

又像の焼付は、一定の表示パターンを連続して表示した
場合に、画面切替時に於いてそのパターンが残像として
残るか否かの性能であり、液晶の△ε/εに依存し、本
発明の実施例に於いては、1時間(IH)以上経過して
も残像となることはなかった。
Image retention is the performance of whether or not the pattern remains as an afterimage when the screen is switched when a certain display pattern is displayed continuously, and it depends on the △ε/ε of the liquid crystal. In the example, no afterimage occurred even after one hour (IH) or more had elapsed.

前述のような点から、液晶17の屈折率異方性Δnと、
液晶17を注入するギャップ長dとの積のΔn dを、
0.25 <Δn−d<0.3の範囲とすることが好適
であった。
From the above points, the refractive index anisotropy Δn of the liquid crystal 17,
The product Δn d of the gap length d for injecting the liquid crystal 17 is
The range of 0.25<Δn−d<0.3 was suitable.

又mを任意の整数、λを光の波長として、Δn・d#(
m十%)Xo、55となるように設定することが好適で
あった。従って、m=Qとすると、Δn−d=0.27
5となり、前述の実施例の場合の条件となる。従って、
本発明に於いては、屈折率異方性Δnとギヤ、7プ長d
との積を、Δn−d−(m++A)X (0,5〜0.
6)の範囲とするものである。
Also, where m is an arbitrary integer and λ is the wavelength of light, Δn・d#(
m10%) Xo, it was suitable to set it to 55. Therefore, if m=Q, Δn-d=0.27
5, which is the condition for the above-mentioned embodiment. Therefore,
In the present invention, the refractive index anisotropy Δn, gear, and length d
The product of Δn-d-(m++A)X (0,5~0.
6).

第6図fal、 (b)は本発明の第1の実施例の配向
膜の製造方法の説明図であり、(a)に示すように、透
明基板31上に表示用の電極32を形成する。この電極
32は、第2図に於ける電極13.14に対応するもの
である。この電極32を含む全面に垂直配向作用を有す
る配向膜33を形成し、(b)に示すようにラビングブ
ラシ34等により1方向にラビングする。それによって
、液晶分子は、垂直配向となると共に、電圧印加時にラ
ビング方向に従った水平一方向に回転する方向が定まり
、均一でコントラストの高い表示が可能となる。
FIG. 6 (b) is an explanatory diagram of the method for manufacturing an alignment film according to the first embodiment of the present invention, in which, as shown in (a), display electrodes 32 are formed on a transparent substrate 31. . This electrode 32 corresponds to electrodes 13, 14 in FIG. An alignment film 33 having a vertical alignment effect is formed on the entire surface including the electrode 32, and rubbed in one direction with a rubbing brush 34 or the like as shown in FIG. 3B. As a result, the liquid crystal molecules are vertically aligned, and the direction in which they rotate in one horizontal direction according to the rubbing direction when a voltage is applied is determined, making it possible to display uniformly and with high contrast.

第7図(al〜tc+は本発明の第2の実施例の配向膜
の製造方法の説明図であり、(a)に示すように、透明
基板41上に表示用の電極42を形成し、この電極42
を含む全面にポリイミド等の水平配量作用を有する配向
膜43を形成する。そして、(blに示すように、ラビ
ングブラシ44等により1方向にラビングし、次に(C
1に示すように、配向膜43上に垂直配向作用を有する
前述のシランカップリング剤等からなる配向膜45を形
成する。この場合は、垂直配向作用を有する配向膜45
により液晶分子は垂直配向となり、配向膜43による水
平配量作用により、電圧印加時の液晶分子の水平配向方
向が規制されるものとなる。
FIG. 7 (al to tc+ are explanatory diagrams of the method for manufacturing an alignment film according to the second embodiment of the present invention; as shown in FIG. 7(a), a display electrode 42 is formed on a transparent substrate 41, This electrode 42
An alignment film 43 made of polyimide or the like having a horizontal dispensing effect is formed on the entire surface including the wafer. Then, as shown in (bl), rubbing is performed in one direction with a rubbing brush 44, etc., and then (C
As shown in FIG. 1, an alignment film 45 made of the above-mentioned silane coupling agent or the like having a vertical alignment effect is formed on the alignment film 43. In this case, an alignment film 45 having a vertical alignment effect is used.
As a result, the liquid crystal molecules become vertically aligned, and the horizontal alignment direction of the liquid crystal molecules when voltage is applied is regulated by the horizontal alignment effect of the alignment film 43.

第8図は本発明の第3の実施例の配向膜の配置説明図で
あり、51はスキャンハスライン、52はデータバスラ
インであり、直交配置された交点は図示を省略した絶縁
層により絶縁されている。
FIG. 8 is an explanatory diagram of the arrangement of alignment films according to the third embodiment of the present invention, in which 51 is a scan line, 52 is a data bus line, and the orthogonally arranged intersections are insulated by an insulating layer (not shown). has been done.

又53はゲートG、ドレインD、ソースSからなるTF
T、54は表示用の電極、55は垂直配向作用を有する
配向膜である。この垂直配向作用を有する配向膜55を
、電極54上にのみ形成し、その他の部分は通常の水平
配量作用を有する配向膜とすることができる。このよう
な配向膜55を選択的に形成するには、スクリーン印刷
やエツチング技術を利用すれば良いことになる。
Further, 53 is a TF consisting of a gate G, a drain D, and a source S.
T and 54 are electrodes for display, and 55 is an alignment film having a vertical alignment function. The alignment film 55 having the vertical alignment effect can be formed only on the electrode 54, and the other portions can be made into an alignment film having a normal horizontal alignment effect. In order to selectively form such an alignment film 55, screen printing or etching technology may be used.

そして、この配向膜55上の液晶は垂直配向となり、又
その周辺の液晶は、配向膜55以外の配向膜のラビング
方向に従った方向の水平配向となり、電極54に電圧を
印加した時に、垂直配向の液晶は、それに隣接する水手
配向の液晶の配向方向に従って変化することになるから
、配向膜55は水平配向の為のラビングを行う必要がな
いものとなる。
The liquid crystal on this alignment film 55 becomes vertically aligned, and the liquid crystal around it becomes horizontally aligned in the direction following the rubbing direction of the alignment film other than the alignment film 55, and when a voltage is applied to the electrode 54, the liquid crystal around it becomes vertically aligned. Since the aligned liquid crystal changes in accordance with the alignment direction of the water-oriented liquid crystal adjacent thereto, the alignment film 55 does not need to be rubbed for horizontal alignment.

本発明は、前述の実施例にのみ限定されるものではな(
、例えば、配向膜についても既に知られている垂直配向
作用を有する材料を用いて構成できることは勿論であり
、又カラーフィルタを設けてフルカラー表示を行わせる
ことも可能である。
The present invention is not limited only to the above-mentioned embodiments (
For example, the alignment film can of course be constructed using a known material having a vertical alignment effect, and it is also possible to provide a full color display by providing a color filter.

又第2図又は第8図に示す電極配置に於いて、同一の透
明基板上のスキャンハスラインとデータバスラインとの
うちのデータバスラインを、他方の透明基板上に設けた
構成の液晶表示装置に対しても本発明を適用することが
できるものである。
In addition, in the electrode arrangement shown in FIG. 2 or FIG. 8, a liquid crystal display having a structure in which the scan bus line and the data bus line are provided on the same transparent substrate, and the data bus line is provided on the other transparent substrate. The present invention can also be applied to devices.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、負の誘電率異方性を有
する液晶7を、少なくとも電極3,4上に於いて垂直配
向作用を有する配向膜5,6を形成した基板1,2間に
封入したものであり、TPT等のスイッチング素子8を
介して電極3,4間に印加する電圧に対応して、液晶分
子が連続的に水平一方向に配向方向を変化させるから、
印加電圧の選定により階調表示を容易に行わせることが
できる。
As explained above, in the present invention, the liquid crystal 7 having negative dielectric constant anisotropy is placed between the substrates 1 and 2 on which alignment films 5 and 6 having a vertical alignment effect are formed at least on the electrodes 3 and 4. The liquid crystal molecules continuously change their alignment direction in one horizontal direction in response to the voltage applied between the electrodes 3 and 4 via the switching element 8 such as TPT.
Gradation display can be easily performed by selecting the applied voltage.

又屈折率異方性△nとギャップ長dとの積を、mを整数
として、Δn−d−(m+%) X (0,5〜0.6
)の範囲となるように設定するもので、それにより、m
=Qとした場合は、従来例のTN液晶を用いた場合のΔ
n−dの1/2に選定することが可能となり、それによ
って視角特性を改善することができる利点がある。
In addition, the product of the refractive index anisotropy Δn and the gap length d, where m is an integer, is Δn−d−(m+%) X (0.5 to 0.6
), so that m
= Q, Δ when using the conventional TN liquid crystal
It becomes possible to select 1/2 of n-d, which has the advantage of improving viewing angle characteristics.

又表示用電圧として、中間レベルの電圧を印加した時に
、波長による透過率の差が生じるから、カラーフィルタ
を用いないでカラー表示を行うことが可能となる。従っ
て、投写型表示装置として利用することも可能となる。
Furthermore, when an intermediate level voltage is applied as a display voltage, a difference in transmittance occurs depending on the wavelength, so it is possible to perform color display without using a color filter. Therefore, it can also be used as a projection display device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、第2図は本発明の実施例
の断面図、第3図(a+、 (b+は直交ニコルの場合
の説明図、第4図は本発明の実施例の視角時性曲線図、
第5図は透過率特性曲線図、第6図(al、(b)及び
第7図fal〜(C)は本発明の実施例の配向膜の製造
方法の説明図、第8図は本発明の実施例の配向膜配置説
明図、第9図は従来例のTN液晶の配向処理方向及び偏
光軸の説明図、第10図は平行ニコルの場合のΔn−d
と透過率との関係曲線図、第11図は従来例の視角特性
曲線図、第12図は従来例の複屈折型の説明図、第13
図は従来例のゲストホスト型の説明図である。 1.2は透明基板、3,4は電極、5.6は配向膜、7
は液晶、8はスイッチング素子である。
Fig. 1 is an explanatory diagram of the principle of the present invention, Fig. 2 is a sectional view of an embodiment of the present invention, Fig. 3 is an explanatory diagram in the case of crossed Nicols (a+, (b+), and Fig. 4 is an embodiment of the present invention). visual temporal curve diagram,
FIG. 5 is a transmittance characteristic curve diagram, FIG. 6 (al, (b) and FIG. 7 fal to (C) are explanatory diagrams of the method for manufacturing an alignment film according to an embodiment of the present invention, and FIG. 8 is a diagram of the present invention. FIG. 9 is an explanatory diagram of the orientation processing direction and polarization axis of a conventional TN liquid crystal, and FIG. 10 is an illustration of Δn-d in the case of parallel Nicols.
FIG. 11 is a viewing angle characteristic curve diagram of a conventional example, FIG. 12 is an explanatory diagram of a birefringence type of a conventional example, and FIG.
The figure is an explanatory diagram of a conventional guest-host type system. 1.2 is a transparent substrate, 3 and 4 are electrodes, 5.6 is an alignment film, and 7
8 is a liquid crystal, and 8 is a switching element.

Claims (1)

【特許請求の範囲】 対向配置した透明基板(1,2)と、該透明基板(1,
2)上に形成した表示用電極(3,4)と、少なくとも
該表示用電極(3,4)上に形成した配向膜(5,6)
と、該配向膜(5,6)により分子配向が制御された液
晶(7)と、前記表示用電極(3,4)間に表示用の電
圧を印加する為のスイッチング素子(8)とを有する液
晶表示装置に於いて、 前記液晶(7)は、負の誘電率異方性を有し、且つ該液
晶(7)の屈折率異方性Δnと、該液晶(7)を注入す
るギャップ長dとの積を、Δn・d=(m+1/2)×
(0.5〜0.6)(但し、mは整数)とし、 前記配向膜(5,6)は、前記液晶(7)の分子配向を
、電圧無印加時に少なくとも前記表示電極(3,4)上
に於いて垂直配向状態とし、電圧印加時に水平一方向の
配向状態に変化させる構成とした ことを特徴とする液晶表示装置。
[Claims] Transparent substrates (1, 2) arranged opposite to each other;
2) Display electrodes (3, 4) formed on the display electrodes (3, 4) and alignment films (5, 6) formed at least on the display electrodes (3, 4).
, a liquid crystal (7) whose molecular orientation is controlled by the alignment film (5, 6), and a switching element (8) for applying a display voltage between the display electrodes (3, 4). In the liquid crystal display device, the liquid crystal (7) has negative dielectric anisotropy, and the refractive index anisotropy Δn of the liquid crystal (7) and the gap into which the liquid crystal (7) is injected The product with the length d is Δn・d=(m+1/2)×
(0.5 to 0.6) (where m is an integer), and the alignment film (5, 6) adjusts the molecular alignment of the liquid crystal (7) at least to the display electrodes (3, 4) when no voltage is applied. ) A liquid crystal display device characterized in that the liquid crystal display device is configured to have a vertically aligned state at the top thereof, and to change to a horizontally unidirectionally aligned state when a voltage is applied.
JP63329390A 1988-12-28 1988-12-28 Liquid crystal display Expired - Lifetime JP2548979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63329390A JP2548979B2 (en) 1988-12-28 1988-12-28 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63329390A JP2548979B2 (en) 1988-12-28 1988-12-28 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH02176625A true JPH02176625A (en) 1990-07-09
JP2548979B2 JP2548979B2 (en) 1996-10-30

Family

ID=18220900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63329390A Expired - Lifetime JP2548979B2 (en) 1988-12-28 1988-12-28 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2548979B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997012275A1 (en) * 1995-09-26 1997-04-03 Chisso Corporation Homeotropic sprayed-nematic liquid crystal display device
EP0964048A1 (en) 1998-06-10 1999-12-15 Chisso Corporation Liquid crystalline compound having negative dielectric anisotropy value, liquid crystal composition containing the liquid crystal compound, and liquid crystal display element produced utilizing the liquid crystal composition
EP0967261A1 (en) 1998-06-25 1999-12-29 Chisso Corporation Liquid crystal compound having negative dielectric anisotropy, liquid crystal composition containing said liquid crystal compound and liquid crystal display device using said composition
US6141075A (en) * 1996-02-28 2000-10-31 Fujitsu Limited Liquid crystal display device operating in a vertically aligned mode
US6642981B1 (en) 1996-09-30 2003-11-04 Fujitsu Display Technologies Corporation Liquid crystal display device operating in a vertically aligned mode including at least one retardation film
JP2005099236A (en) * 2003-09-24 2005-04-14 Fuji Photo Film Co Ltd Liquid crystal display device
US7214835B2 (en) 2002-09-27 2007-05-08 Dainippon Ink & Chemicals, Inc. 1,7,8-Trifluoronaphthalene-2-naphthol, and method for producing liquid crystal compound using same
EP1978381A1 (en) 2002-11-25 2008-10-08 FUJIFILM Corporation Anti-reflection film, polarizing plate and liquid crystal display device
US7435458B2 (en) 1999-10-21 2008-10-14 Konica Corporation Optical film and liquid crystal display using the same
EP2105767A1 (en) 2008-03-28 2009-09-30 Fujifilm Corporation Transparent support, optical film, polarizing plate and image display device
US7760293B2 (en) 2005-08-22 2010-07-20 Fujifilm Corporation Optically compensatory film and polarizing plate and liquid crystal display using same
EP2219051A1 (en) 2002-08-15 2010-08-18 Fujifilm Corporation Antireflection film, polarizing plate and image display device
US7876502B2 (en) 2005-04-22 2011-01-25 Fujifilm Corporation Optical film, polarizing plate and liquid crystal display
US7951430B2 (en) 2005-03-03 2011-05-31 Fujifilm Corporation Cellulose acylate film, polarizing plate and liquid crystal display device
WO2011118845A1 (en) 2010-03-26 2011-09-29 Fujifilm Corporation Polyester resin, and optical materials, films and image display devices using the same
US8211515B2 (en) 2004-12-28 2012-07-03 Fujifilm Corporation Optical compensation sheet, process for producing the same, and polarizing plate and liquid crystal display device using the same
TWI392907B (en) * 2004-09-22 2013-04-11 Fujifilm Corp Liquid crystal display device
WO2013183684A1 (en) * 2012-06-06 2013-12-12 Dic株式会社 Liquid-crystal optical modulation element
WO2018151295A1 (en) 2017-02-17 2018-08-23 富士フイルム株式会社 Liquid crystal display device
US10317598B2 (en) 2013-06-26 2019-06-11 Fujifilm Corporation Optical film, polarization plate, transparent conductive film, surface protection film, and liquid crystal display apparatus having negative birefringence
WO2021131792A1 (en) 2019-12-26 2021-07-01 富士フイルム株式会社 Light absorption anisotropic layer, laminate, optical film, image display device, back light module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005309290A (en) 2004-04-26 2005-11-04 Sumitomo Chemical Co Ltd Combined polarizer, its manufacturing method and liquid crystal display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180326A (en) * 1986-02-04 1987-08-07 Seiko Epson Corp Liquid crystal video display

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180326A (en) * 1986-02-04 1987-08-07 Seiko Epson Corp Liquid crystal video display

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061116A (en) * 1995-09-26 2000-05-09 Chisso Corporation Homeotropic sprayed-nematic liquid crystal display device
WO1997012275A1 (en) * 1995-09-26 1997-04-03 Chisso Corporation Homeotropic sprayed-nematic liquid crystal display device
US6141075A (en) * 1996-02-28 2000-10-31 Fujitsu Limited Liquid crystal display device operating in a vertically aligned mode
US7995175B2 (en) 1996-09-30 2011-08-09 Sharp Kabushiki Kaisha Liquid crystal display device
US6642981B1 (en) 1996-09-30 2003-11-04 Fujitsu Display Technologies Corporation Liquid crystal display device operating in a vertically aligned mode including at least one retardation film
US7075609B2 (en) 1996-09-30 2006-07-11 Sharp Kabushiki Kaisha Liquid crystal display device comprising p-type liquid crystal layer operating in vertically aligned mode including first and second retardation films
US7379140B2 (en) 1996-09-30 2008-05-27 Sharp Kabushiki Kaisha Liquid crystal display device operating in a vertically aligned mode comprising an optically biaxial retardation film
US7548294B2 (en) 1996-09-30 2009-06-16 Sharp Kabushiki Kaisha Liquid crystal display device operating in a vertically aligned mode
US7808592B2 (en) 1996-09-30 2010-10-05 Sharp Kabushiki Kaisha Liquid crystal display device operating in a vertical aligned mode having particular optical biaxial retardation film
EP0964048A1 (en) 1998-06-10 1999-12-15 Chisso Corporation Liquid crystalline compound having negative dielectric anisotropy value, liquid crystal composition containing the liquid crystal compound, and liquid crystal display element produced utilizing the liquid crystal composition
EP0967261A1 (en) 1998-06-25 1999-12-29 Chisso Corporation Liquid crystal compound having negative dielectric anisotropy, liquid crystal composition containing said liquid crystal compound and liquid crystal display device using said composition
US7791696B2 (en) 1999-10-21 2010-09-07 Konica Corporation Optical film and liquid crystal display using the same
US7435458B2 (en) 1999-10-21 2008-10-14 Konica Corporation Optical film and liquid crystal display using the same
US7880840B2 (en) 1999-10-21 2011-02-01 Konica Corporation, A Corporation Of Japan Method for producing vertical alignment liquid crystal display
EP2219051A1 (en) 2002-08-15 2010-08-18 Fujifilm Corporation Antireflection film, polarizing plate and image display device
US7214835B2 (en) 2002-09-27 2007-05-08 Dainippon Ink & Chemicals, Inc. 1,7,8-Trifluoronaphthalene-2-naphthol, and method for producing liquid crystal compound using same
EP1978381A1 (en) 2002-11-25 2008-10-08 FUJIFILM Corporation Anti-reflection film, polarizing plate and liquid crystal display device
JP2005099236A (en) * 2003-09-24 2005-04-14 Fuji Photo Film Co Ltd Liquid crystal display device
TWI392907B (en) * 2004-09-22 2013-04-11 Fujifilm Corp Liquid crystal display device
US8211515B2 (en) 2004-12-28 2012-07-03 Fujifilm Corporation Optical compensation sheet, process for producing the same, and polarizing plate and liquid crystal display device using the same
US7951430B2 (en) 2005-03-03 2011-05-31 Fujifilm Corporation Cellulose acylate film, polarizing plate and liquid crystal display device
US7876502B2 (en) 2005-04-22 2011-01-25 Fujifilm Corporation Optical film, polarizing plate and liquid crystal display
US7760293B2 (en) 2005-08-22 2010-07-20 Fujifilm Corporation Optically compensatory film and polarizing plate and liquid crystal display using same
TWI421597B (en) * 2005-08-22 2014-01-01 Fujifilm Corp Optical film, optically compensatory film and polarizing plate and liquid crystal display using same
EP2105767A1 (en) 2008-03-28 2009-09-30 Fujifilm Corporation Transparent support, optical film, polarizing plate and image display device
WO2011118845A1 (en) 2010-03-26 2011-09-29 Fujifilm Corporation Polyester resin, and optical materials, films and image display devices using the same
WO2013183684A1 (en) * 2012-06-06 2013-12-12 Dic株式会社 Liquid-crystal optical modulation element
US9771517B2 (en) 2012-06-06 2017-09-26 Dic Corporation Liquid-crystal optical modulation element
US10317598B2 (en) 2013-06-26 2019-06-11 Fujifilm Corporation Optical film, polarization plate, transparent conductive film, surface protection film, and liquid crystal display apparatus having negative birefringence
WO2018151295A1 (en) 2017-02-17 2018-08-23 富士フイルム株式会社 Liquid crystal display device
WO2021131792A1 (en) 2019-12-26 2021-07-01 富士フイルム株式会社 Light absorption anisotropic layer, laminate, optical film, image display device, back light module

Also Published As

Publication number Publication date
JP2548979B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
JP3322197B2 (en) Liquid crystal display
JPH02176625A (en) Liquid crystal display device
US5621558A (en) Liquid crystal electro-optical device having alignment films for perpendicular alignment
US6678027B2 (en) Fringe field switching mode LCD
JPH052166A (en) Liquid crystal display device
JP3144329B2 (en) Liquid crystal display device
JP3497986B2 (en) Driving method of liquid crystal display element and liquid crystal display device
KR20010004524A (en) Liquid crystal display device
JPH10161077A (en) Liquid crystal display device
JP3404467B2 (en) Liquid crystal display
JPH0643452A (en) Liquid crystal display device
KR19990027489A (en) Vertically oriented twisted nematic liquid crystal display with ferroelectric liquid crystal
KR20020062223A (en) Liquid crystal device
KR100735272B1 (en) Optically compensated bend mode lcd
JP3365587B2 (en) Liquid crystal device
JP3239310B2 (en) Ferroelectric liquid crystal display device
JP2003344857A (en) Liquid crystal element and driving method of the same
JP3378038B2 (en) Driving method of electro-optical device
KR20000067118A (en) High aperture ratio and high transmittance LCD improved response time
JPH0335217A (en) Driving system for liquid crystal display device
JP3264044B2 (en) Liquid crystal display device
JPH01100517A (en) Liquid crystal display panel
JPH06324335A (en) Liquid crystal display element
JPH0895091A (en) Double refraction control type color liquid crystal display element using ferroelectric liquid crystal
JPH0895055A (en) Liquid crystal display device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13