JPH02171547A - Gas hot water feeder - Google Patents

Gas hot water feeder

Info

Publication number
JPH02171547A
JPH02171547A JP32870188A JP32870188A JPH02171547A JP H02171547 A JPH02171547 A JP H02171547A JP 32870188 A JP32870188 A JP 32870188A JP 32870188 A JP32870188 A JP 32870188A JP H02171547 A JPH02171547 A JP H02171547A
Authority
JP
Japan
Prior art keywords
heat
circuit side
heat circuit
mixing valve
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32870188A
Other languages
Japanese (ja)
Inventor
Toshimasa Maeda
俊昌 前田
Tsukasa Shigesumi
司 重住
Mototsugu Yano
矢野 素次
Yuji Ito
裕司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON YUPURO KK
JFE Steel Corp
Toto Ltd
Original Assignee
NIPPON YUPURO KK
Toto Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON YUPURO KK, Toto Ltd, Kawasaki Steel Corp filed Critical NIPPON YUPURO KK
Priority to JP32870188A priority Critical patent/JPH02171547A/en
Publication of JPH02171547A publication Critical patent/JPH02171547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

PURPOSE:To prevent a boiling state from being generated even if a thermal load is low by a method wherein a mixing valve is arranged at a connecting part between a first thermal circuit hot water feeding pipe and a second thermal circuit hot water feeding pipe, and when a thermal load is high, the first and second hot water feeding pipes are fully opened and in turn when the thermal load is low, the first hot water feeding circuit is fully opened and the second hot water feeding circuit is metered to its minimum degree. CONSTITUTION:A mixing valve 12 is comprised of a fixed disk 14 and a movable disk 16. The fixed disk 14 is provided with a first inlet 17 communicating with a first thermal circuit hot water feeding pipe 6a, a second inlet 18 communicating with a second thermal circuit hot water feeding pipe 6b and an outlet 19 communicating with a downstream hot water feeding pipe 6. Each of through-holes 20, 21 and 22 of the movable disk 16 communicate with each other at a rear side of the movable disk 16. When the second through-hole 21 is coincided with a high flow rate part 18a, the mixing valve 12 shows that the first through- hole 20 is coincided with the first inlet 17 so as to fully open the hot water feeding pipes 6a and 6b of the first thermal circuit (a) and the second thermal circuit (b). When the second through-hole 21 is coincided with a low flow rate part 18b, the first through-hole 20 is coincided with the first inlet 17 to fully open the first thermal circuit hot water feeding pipe 6a and then the second thermal circuit hot water feeding pipe 6b is metered to a low flow rate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はガス給湯殿、特にガス量により給湯温度を制御
するガス比例式のガス瞬間式給湯機で、熱回路を2つ接
続して2つの熱回路の最大能力の和に相当する能力を得
るようにしたガス給湯機に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a gas water heater, particularly a gas proportional gas instantaneous water heater that controls the hot water temperature by the amount of gas. This invention relates to a gas water heater that has a capacity equivalent to the sum of the maximum capacities of two heat circuits.

[従来の技術] 従来、この種のガス給湯機として、例えば実開昭61−
86642号公報のものが有る。
[Prior Art] Conventionally, as this type of gas water heater, for example,
There is one published in No. 86642.

この実開昭61−86642号公報のものは、ガス給温
112台、即ち2つの熱回路を並列に接続し、給水を2
つの熱回路に2分して供給し、この2分された給水を夫
々の熱回路で沸し上げるようになっている。
The device disclosed in Japanese Utility Model Application Publication No. 61-86642 has 112 gas heating units, that is, two heat circuits connected in parallel, and two water supply units.
The water is divided into two parts and supplied to two heat circuits, and the water is boiled in each heat circuit.

[発明が解決しようとする課題] 上記従来のガス給湯機は、給湯機としての最小能力が各
熱回路の最小能力の和に相当する号数となり、最小号数
が大きくなるため、小さい熱負荷時(例えば夏場におい
て低温の潟を小山給湯する場合等)には能力が大き過ぎ
て使用できないということがあり、使い勝手が悪い。
[Problem to be solved by the invention] In the conventional gas water heater described above, the minimum capacity as a water heater is a number corresponding to the sum of the minimum capacities of each heat circuit, and since the minimum number is large, a small heat load can be achieved. At times (for example, when supplying hot water to a low-temperature lagoon in the summer), the capacity may be too large to be used, making it inconvenient to use.

又、このような問題を避けるため、小さい熱負荷のとき
には一方の熱回路の熱源を閉ざす等の方法を採ることが
考えられるが、このような方法を採ると2つの熱回路に
流れる流」の和に対して必要な熱負荷を1つの熱回路に
より対応することになり加熱側の熱回路で沸騰が生ずる
恐れがある。
In addition, in order to avoid such problems, it is possible to take measures such as closing the heat source of one heat circuit when the heat load is small, but if such a method is adopted, the flow that flows into the two heat circuits will be reduced. Since the heat load required for the sum is handled by one heat circuit, boiling may occur in the heat circuit on the heating side.

本発明は、従来の技術が有するこのような問題点に鑑み
てなされたものであり、2つの熱回路を並列に接続して
、画然回路の最大能力の和に相当する能力を得ようとす
るガス給湯機において、必要熱負荷が小さいときには一
方の熱回路だけで熱量を与えるようにすることにより、
最小能力を一方の熱回路の最小能力に相当する能力まで
小さくし、しかも熱量を与える回路には給水の大部分を
流すことにより、熱負荷が小さいときにも沸騰が生じる
ことがないようにすることを目的とする。
The present invention was made in view of the above-mentioned problems of the conventional technology, and attempts to connect two thermal circuits in parallel to obtain a capability equivalent to the sum of the maximum capabilities of the circuits. In gas water heaters, when the required heat load is small, only one heat circuit can provide heat.
By reducing the minimum capacity to a capacity equivalent to the minimum capacity of one of the heat circuits and allowing most of the feed water to flow through the circuit that provides heat, boiling will not occur even when the heat load is small. The purpose is to

更に加えて、必要熱負荷が2つの熱回路の最大能力の和
を越えるとき、画然回路への給水を上記混合弁を利用し
て自動的に絞って、必要熱負荷を給l1llの能力範囲
内に収めるようにすることをも目的とする。
In addition, when the required heat load exceeds the sum of the maximum capacities of the two heat circuits, the water supply to the circuit is automatically throttled using the mixing valve described above to meet the required heat load within the capacity range of 11ll. The purpose is also to make it possible to keep it inside.

[課題を達成するための手段] 上記第1の目的を達成するために、本発明のガス給湯機
においては、第1の熱回路の給湯管路が第2の熱回路側
の給湯管路に連結する連結部に設けられた混合弁と、給
水管路が第1熱回路側と第2熱回路側に分岐する部分よ
り上流側において該給水管路に設けられた入水温度セン
サーと、上記分岐部より下流の第1熱回路側給水管路及
び第2熱回路側給水管路に夫々設けられる第1.第2流
i)センサーと、温度設定器と、温度設定器の設定温度
及び上記各センサーの検出値等に基づいて必要熱負荷を
演算する演算手段と、演算手段の演算値が所定基準値よ
り小さいときに上記混合弁の第2熱回路側の通路面積を
最小にすると共に第1熱回路側の通路面積を最大にし、
所定基準値より大きいときには混合弁の第1熱回路側及
び第2熱回路側双方の通路面積を最大にするように混合
弁を制御する混合弁制御手段と、演算手段の演算値が上
記所定基準値より小さいときに第1熱回路の熱源器を、
基準値より大きいときには第1.第2熱回路双方の熱源
器を夫々燃焼さ「ると共にその燃焼を所定の燃焼シーケ
ンスに基づいて制御する燃焼制御手段とを備えるもので
ある。
[Means for Achieving the Object] In order to achieve the first object, in the gas water heater of the present invention, the hot water supply pipe of the first heat circuit is connected to the hot water supply pipe of the second heat circuit. a mixing valve provided in the connecting portion to be connected; an inlet water temperature sensor provided in the water supply pipe on the upstream side of the part where the water supply pipe branches into the first heat circuit side and the second heat circuit side; and the branching water supply pipe. The first heat circuit is provided in the first heat circuit side water supply pipe and the second heat circuit side water supply pipe downstream from the first heat circuit. 2nd stream i) A sensor, a temperature setting device, a calculation means for calculating the required heat load based on the set temperature of the temperature setting device and the detection value of each of the above-mentioned sensors, and the calculation value of the calculation means is lower than a predetermined reference value. When the mixing valve is small, the passage area on the second heat circuit side of the mixing valve is minimized, and the passage area on the first heat circuit side is maximized,
When the value is larger than the predetermined reference value, the mixing valve control means controls the mixing valve so as to maximize the passage area on both the first heat circuit side and the second heat circuit side of the mixing valve, and the calculated value of the calculation means meets the predetermined reference value. When the value is smaller than the value, the heat source device of the first thermal circuit is
If it is larger than the reference value, the first. The second heat circuit is provided with combustion control means for burning the heat source devices of both the second heat circuits and controlling the combustion based on a predetermined combustion sequence.

また、上記第2の目的を達成するために、本発明ガス給
湯機においては上記構成に加えて、演痒手段の演算値が
、第1.第2熱回路の最大能力の和を越えるときに、混
合弁の第1熱回路側及び第2熱回路側双方の通路面積を
夫々最小にするように混合弁をυIIIIする能力オー
バーカット手段を備えるものである。
In order to achieve the second object, the gas water heater of the present invention has, in addition to the above configuration, a calculated value of the itching means. Capacity overcut means is provided for υIII of the mixing valve so as to minimize the passage area of both the first heating circuit side and the second heating circuit side of the mixing valve, respectively, when the sum of the maximum capacities of the second heating circuits is exceeded. It is something.

[作 用] 而して、本発明の上記第1の構成によれば、必要熱負荷
が所定基準値より小さいときには混合弁の第2熱回路側
の通路面積が最小に、第1熱回路側の通路面積が最大に
なり、給水の大部分が第1熱回路に流れ、該回路だけに
より熱量が与えられ、所定基!1!値より大きいときに
は混合弁の第1熱回路側及び第2熱回路側双方の通路面
積が最大になって給水は第1.第2熱回路にほぼ等分に
流れ、再熱回路で夫々熱量が与えられる。
[Function] According to the first configuration of the present invention, when the required heat load is smaller than the predetermined reference value, the passage area on the second heat circuit side of the mixing valve is minimized, and the passage area on the first heat circuit side is minimized. The passage area of is maximized, most of the feed water flows into the first heat circuit, and the amount of heat is provided only by this circuit, and the predetermined base temperature is increased. 1! When it is larger than the value, the passage area of both the first heat circuit side and the second heat circuit side of the mixing valve becomes maximum, and water is supplied from the first heat circuit side to the second heat circuit side. The heat flows approximately equally into the second heat circuit, and each heat amount is given in the reheat circuit.

また必要熱負荷が小さく、混合弁の第2熱回路側通路面
積が絞られても第2熱回路側にも若干の水が流れ、滞溜
水は生じない。
Further, the required heat load is small, and even if the passage area on the second heat circuit side of the mixing valve is narrowed, some water flows to the second heat circuit side, and no stagnant water is generated.

更に第2の構成によれば、必要熱負荷が第1゜第2回路
の最大能力の和を越えたとき、即ち給湯■の能力をオー
バーしたときには、混合弁の第1熱回路側及び第2熱回
路側夫々の通路面積が共に減少し、再熱回路への給水が
絞られる。
Furthermore, according to the second configuration, when the required heat load exceeds the sum of the maximum capacities of the first and second circuits, that is, when it exceeds the hot water supply capacity, the first and second heat circuits of the mixing valve The area of each passage on the heat circuit side is reduced, and the water supply to the reheat circuit is restricted.

従って、必要熱負荷は自動的に給湯機の能力範囲内に押
えられる。
Therefore, the required heat load is automatically kept within the capability of the water heater.

[実施例] 以下、本発明の実施例を図に基づいて説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

図面は第1図乃至第11図に請求項1記載のガス給湯機
の一実施例を、第12図乃至第22図に請求項2記載の
ガス給湯別の一実施例を夫々示しである。
The drawings show an embodiment of the gas water heater according to claim 1 in FIGS. 1 to 11, and another embodiment of the gas water heater according to claim 2 in FIGS. 12 to 22, respectively.

而して、先ず第1図乃至第11図に示す給<iについて
説明する。
First, the equation of feed <i shown in FIGS. 1 to 11 will be explained.

第2図において(A)は給湯機の機体で、内部には2つ
の熱回路(以下、第1熱回路(a)、第2熱回路(b、
)と云う)を備える。
In Fig. 2, (A) is the body of the water heater, and inside there are two heat circuits (hereinafter referred to as the first heat circuit (a), the second heat circuit (b),
).

上記第1.第2熱回路(a )(b )は夫々熱交換器
(1)(2)と、熱源器(3)(4)とからなり、熱源
器(3)(4)はガスバーナーである。
Above 1. The second heat circuits (a) and (b) each include heat exchangers (1) and (2), and heat source devices (3) and (4), and the heat source devices (3) and (4) are gas burners.

(5)は給水管路、(6)は給湯管路であり、給水管路
(5)は中途部において分岐して、その一方が第1熱回
路(a)の熱交換器(1)入口に、他方が第2熱回路(
b)の熱交換器(2)入口に夫々連絡する。
(5) is a water supply pipe, (6) is a hot water supply pipe, and the water supply pipe (5) branches in the middle, one of which is the inlet of the heat exchanger (1) of the first heat circuit (a). and the other is the second thermal circuit (
b) are respectively connected to the heat exchanger (2) inlet.

また、給湯管路(6)は第1熱回路(a)の熱交換器(
1)出口から延びる第1熱回路側給湯管路(6a)と、
第2熱回路(b)の熱交換器(2)出口から延びる第2
熱回路側給湯管路(6b)とが合流して機体(A)外に
延びている。
In addition, the hot water supply pipe (6) is connected to the heat exchanger (
1) a first heat circuit side hot water supply pipe (6a) extending from the outlet;
A second heat exchanger (2) extending from the heat exchanger (2) outlet of the second heat circuit (b)
It merges with the heat circuit side hot water supply pipe (6b) and extends outside the fuselage (A).

上記給水管路(5)には分岐部より上流側に給水温度セ
ンサー(7)、分岐部より下流の第1熱回路側(5a)
に第1流1センサー(8)、第2熱回路側(5b)に第
2流量センサー(9)を介設する。
The water supply pipe (5) has a water supply temperature sensor (7) upstream from the branch and a first heat circuit (5a) downstream from the branch.
A first flow sensor (8) is provided on the first flow side, and a second flow rate sensor (9) is provided on the second heat circuit side (5b).

また給湯管路(6)には第1熱回路側(6a)に第1給
湯温度センサー(10)、第2熱回路側(6b)に第2
給湯温度センサー(11)を夫々介設すると共に上記両
給湯管路(6a )(6b )の連結部に混合弁(12
)を設け、更にその下流に水量バルブ(13)を設ける
In addition, the hot water supply pipe (6) has a first hot water temperature sensor (10) on the first thermal circuit side (6a) and a second hot water temperature sensor (10) on the second thermal circuit side (6b).
A hot water supply temperature sensor (11) is provided respectively, and a mixing valve (12) is installed at the connecting portion of both hot water supply pipes (6a) (6b).
), and further a water flow valve (13) is provided downstream thereof.

上記給水温度センサー(7〉、第1.第2給瀉温度セン
サー(10)(11)は、例えばサーミスタからなり、
流量センサー(8)(9)は流量中に設けられ流水によ
り回転駆妨するW車の回転を回転1抛に取りつけた磁石
と、磁石の磁界を検知するホール素子等により電気信号
として取り出す従来周知の構造形態を有するものである
The above-mentioned water supply temperature sensor (7>, first and second water supply temperature sensors (10) and (11) are composed of, for example, a thermistor,
The flow rate sensors (8) and (9) are conventionally well-known sensors that are installed in the flow rate and detect the rotation of the W wheel, which is prevented from rotating by running water, as an electrical signal using a magnet attached to each rotation and a Hall element that detects the magnetic field of the magnet. It has the following structural form.

上記各センサー(7)(8)(9)(101(11)は
後)ホする制御装置(B)に夫々電気的に接続されてお
り、給水温度センサー(ア)は給湯機に給水される水の
温度TOを、第1.第2給瀉温度センサー(10)(1
1)は夫々第1熱回路(a)、第2熱回路(b)の熱交
換器(1)(2)から流出する瀉(水)の温度TH1,
TH2を、また第1.第2流量センサー(8)(9’)
は夫々第1熱回路(a)、第2熱回路(b)に供給され
る水の流fiFs1.FS2を夫々検出する。
Each of the above sensors (7), (8), (9) (101 (11) is later) is electrically connected to the control device (B), and the water supply temperature sensor (A) is connected to the water heater. The water temperature TO is set to 1. Second feed temperature sensor (10) (1
1) is the temperature TH1 of the water flowing out from the heat exchangers (1) and (2) of the first heat circuit (a) and the second heat circuit (b), respectively.
TH2 and 1st. Second flow sensor (8) (9')
are the water flows fiFs1., which are supplied to the first thermal circuit (a) and the second thermal circuit (b), respectively. FS2 is detected respectively.

上記各センサー(7)(8)(9)(10H11)の検
出値は制御装置(B)に入ツノされる。
The detected values of each of the above-mentioned sensors (7), (8), (9), and (10H11) are input to the control device (B).

混合弁(12)は第3図、第4図に示すように、弁要素
を固定デスク(14)と、該固定デスク(14)に水密
かつ摺動自在に重ね合わせられて、モーター(15)に
より回転駆動する可動デスク(16)とで構成し、上記
固定デスク(14)には、第1熱回路側給湯管路(6a
)に連絡する第1人口(17)、第2熱回路側給潟管路
(6b)に連絡する第2人口(18)、及び出口(19
)が貫通開穿されており、出口(19)が下流の給湯管
路(6)に連絡する。
As shown in FIGS. 3 and 4, the mixing valve (12) has a valve element mounted on a fixed disk (14), watertightly and slidably superimposed on the fixed disk (14), and a motor (15). a movable desk (16) that is rotationally driven by a
), the second population (18) connects to the second heat circuit side feed lagoon pipe (6b), and the exit (19).
) is drilled through and the outlet (19) communicates with the downstream hot water supply pipe (6).

また可動デスク(16)は第1人口(11)に対応する
第1通孔(20) 、第2人口(18)に対応する第2
通孔(21) 、出口(19)に対応する第3通孔(2
2)が開穿されており、これら各通孔(20)(21)
(22)は可動デスク(16)背後において相互に連絡
する。
The movable desk (16) also has a first through hole (20) corresponding to the first population (11) and a second through hole (20) corresponding to the second population (18).
The through hole (21), the third through hole (2) corresponding to the outlet (19)
2) are drilled, and each of these holes (20) (21)
(22) communicate with each other behind the movable desk (16).

上記第1.第2人口(17)(18)及び出口(19)
は同心円上に等間隔に配置されており、夫々周方向に延
びる長さが等しい円弧状に形成されるが、第2人口(1
8)は径方向の幅が第1人口(17)及び出口(19)
のそれと等しい大流量部(18a)と、この大流量部(
18a)に対して径方向の幅を極端に小さく形成した小
流m部(18b)を有し、両部(18a )(18b 
)は夫々第2人口(18)の周方向長さの1/2ずつを
占め、前記小流m部(18b)は出口(19)に近い側
に設けられている。
Above 1st. Second population (17) (18) and exit (19)
are arranged at equal intervals on concentric circles, and are formed in the shape of an arc with the same length extending in the circumferential direction, but the second population (1
8) has a radial width of the first population (17) and the exit (19)
A large flow part (18a) equal to that of the large flow part (18a), and a large flow part (18a)
It has a small flow part (18b) with an extremely small radial width compared to 18a), and both parts (18a) (18b
) each occupy 1/2 of the circumferential length of the second population (18), and the small stream m section (18b) is provided on the side closer to the outlet (19).

第1乃至第3通孔(20)(21)(22)は、第2人
口(18)の大流量部(18a)と同形、同寸、即ち第
1人口(17)及び出口(19)を周方向で2等分した
大きざ、形状に形成されており、第2通孔(21)を第
2人口(18)の大流m部(18a)に合致させた状態
において第1通孔(20)が第1人口(17)の出口側
半分に、また第3通孔(22)が出口(19)の第2人
口側半分に夫々合致するように同心円上に配置される。
The first to third through holes (20), (21, and 22) have the same shape and size as the large flow part (18a) of the second population (18), that is, the first population (17) and the outlet (19). It is formed in a size and shape that is divided into two equal parts in the circumferential direction, and when the second through hole (21) is aligned with the large flow part (18a) of the second population (18), the first through hole ( 20) are arranged concentrically so as to match the exit side half of the first port (17), and the third through hole (22) to match the second port side half of the exit (19), respectively.

而して、斯る混合弁(12)は第7図に示すように第2
通孔(21)が第2人口(18)の大流量部(18a)
に合致する位置(以下A位置という)に可動デスク(1
6)があるときには第1通孔(20)が第1人口(17
)に合致して第1熱回路(a)測用2熱回路(b)個人
々の給湯管路(6a )(6b )を共に全開とする。
Therefore, the mixing valve (12) is connected to the second valve as shown in FIG.
The through hole (21) is the large flow part (18a) of the second population (18)
A movable desk (1
6), the first through hole (20) is the first population (17
), both the first thermal circuit (a), the two measuring thermal circuits (b), and the individual hot water supply pipes (6a and 6b) are fully opened.

また、第8図に示すように第2通孔(21)が第2人口
(18)の小流m部(18b)に合致する位置(以下B
位置と云う)に可動デスク(16)があるときにも、第
1通孔(20)は第1人口(17)に合致し、第1熱回
路側給湯管路(6a)を全開する一方、第2熱回路側給
5tff路(6b)を小流Mに絞る。
In addition, as shown in FIG.
Even when the movable desk (16) is in the position (referred to as the position), the first passage hole (20) matches the first population (17), and while the first heat circuit side hot water supply pipe (6a) is fully opened, The second heat circuit side supply 5tff path (6b) is narrowed down to a small flow M.

尚、第3通孔(22)は可動デスク(16)がA。In addition, the movable desk (16) is A in the third through hole (22).

Bいずれの位置にあっても出口(19)に合致する。B Matches the exit (19) no matter which position it is in.

また、上記混合弁(12)は可動デスク位置検出用の位
置センサー(図示せず)を備え、該位置センサー及びモ
ーター(15)が制御装置t(B)に電気的に連絡して
おり、位置センサーは可動デスク(16)の位置を検出
する。上記位置センサーは、例えばホールIC,マイク
ロスイッチ、ポテンショメーター、ホトカプラー又はス
テッピングモータのステップ数積算等からなりその検出
信号は制御装置(B)に入力される。
Further, the mixing valve (12) is equipped with a position sensor (not shown) for detecting the position of the movable desk, and the position sensor and motor (15) are electrically connected to the control device t(B). A sensor detects the position of the movable desk (16). The position sensor is, for example, a Hall IC, a microswitch, a potentiometer, a photocoupler, or a step number integration of a stepping motor, and its detection signal is input to the control device (B).

そして、混合弁(12)はモーター(15)の駆動を介
して可動デスク(16)の位置が制御装置(B)により
制御される。
The position of the movable desk (16) in the mixing valve (12) is controlled by the control device (B) through the drive of the motor (15).

水量バルブ(13)はモーター(23)により駆動され
て開閉し、閉弁時においても流路を完全には閉鎖せず、
若干の流量を確保し得るような構造を有するものである
The water flow valve (13) is driven by a motor (23) to open and close, and even when the valve is closed, it does not completely close the flow path.
It has a structure that can ensure a certain amount of flow rate.

この水量バルブ(13)は、要求熱負荷が給湯機の能力
を越えたときにのみ閉弁するように制御装@(B)によ
り制御される。
This water flow valve (13) is controlled by a control device @(B) so as to close only when the required heat load exceeds the capacity of the water heater.

制御装置(B)は例えばマイクロコンピュータ−からな
り、主にマイクロプロセッサ−(24)。
The control device (B) consists of, for example, a microcomputer, mainly a microprocessor (24).

メモリー(25) 、インターフェース(26)とから
構成されており、上記各センサー(7)(8)(9)(
10)(11)の検出値及び温度設定器(C)で設定さ
れた設定温度がインターフェース(26)に入力される
It consists of a memory (25), an interface (26), and each of the above sensors (7) (8) (9) (
10) The detected value of (11) and the set temperature set by the temperature setting device (C) are input to the interface (26).

そして制御装ff1(B)は上記インターフェース(2
6)に入力された外部データーに基づき、メモリー(2
5)のROMに記憶されたプログラムに従った処理を行
い、混合弁°(12)のモーター(15)に対して出力
を発生して可動デスク(16)の位置を制御すると共に
第1.第2熱回路(a)(b)の熱源器(3)(4)の
ガス供給バルブ(27)(2g)に出力を発生又は消滅
させて該バルブ(27)(28)の開閉を制御する。
The control device ff1 (B) is connected to the above interface (2).
Based on the external data input to the memory (2)
5), and generates an output to the motor (15) of the mixing valve (12) to control the position of the movable desk (16). Generating or extinguishing output to the gas supply valves (27) (2g) of the heat source devices (3) and (4) of the second heat circuits (a) and (b) to control opening and closing of the valves (27) and (28). .

上記混合弁(12)及び熱源器(3H4)の制御につい
てROMに記憶させたプログラムをフローチャートで示
すと第9図乃至第11図のようになる。
Flowcharts of programs stored in the ROM for controlling the mixing valve (12) and heat source device (3H4) are shown in FIGS. 9 to 11.

ここで、第9図乃至第11図に従って、本給澹機の動作
を、例として第1.第2熱回路(a Hb >が夫々最
低能力2.5号、最大能力16号の場合について説明す
る。
Here, according to FIGS. 9 to 11, the operation of the present refilling machine will be described as an example. The case where the second thermal circuit (a Hb > has a minimum capacity of 2.5 and a maximum capacity of 16, respectively) will be described.

尚、図中において■〜■、0〜0.0〜0は夫々プログ
ラム中の各ステップを表わす。
In the figure, ``■'' to ``■'' and 0 to 0.0 to 0 represent each step in the program.

プログラムがスター1−すると、先ずステップ■でS=
0のフラッグを立てる。続いてステップ■で温度設定!
(C)で設定された設定温度TSを読み込み、ステップ
■で混合弁(12)のモーター(15)に駆動出力を発
生して、可動デスク(16)をA位置となし第1熱回路
側及び第2熱回路側夫々の給湯管路(6a )(6b 
)を夫々全開となす。
When the program stars 1-, S=
Set a flag of 0. Next, set the temperature in step ■!
The set temperature TS set in (C) is read, and in step (2), a drive output is generated to the motor (15) of the mixing valve (12), and the movable desk (16) is set to the A position, and the first thermal circuit side and Hot water supply pipes (6a) (6b) on the second heat circuit side
) are fully opened.

そしてステップ■で第1熱回路(a)側の流量FSI 
、第2熱回路(b)側の流量FS2 、給水温度TCの
読み込みを行い、ステップ■でFSl又はFS2≧Q1
(例えば1.254/分)かどうかを判断し、FSi又
はFS2≧QiJ/分のときには続いてステップ■でF
Sl +FS2≧QT(例えば2.5J/分)かどうか
を判断する。
Then, in step ■, the flow rate FSI on the first thermal circuit (a) side is
, the flow rate FS2 on the second thermal circuit (b) side, and the feed water temperature TC are read, and in step ■, FSL or FS2≧Q1
(for example, 1.254/min), and if FSi or FS2≧QiJ/min, then step
It is determined whether Sl +FS2≧QT (for example, 2.5 J/min).

一方ステップ■においてFSI又はFS2<Qlの場合
にはステップ■で別途消火シーケンスに従って熱源器を
消火するかステップ■に戻って待機する。ただし、スタ
ート直後においては、第1、第2熱回路(a )(b 
)はいずれも燃焼していないので、ステップ■に戻るこ
とになる。
On the other hand, if FSI or FS2<Ql in step (2), the heat source device is extinguished according to a separate extinguishing sequence in step (2), or the process returns to step (2) and waits. However, immediately after the start, the first and second thermal circuits (a) (b)
) are not burned, so we will return to step ■.

またステップ■においてFSI +FS2 <QTのと
きにも同様に消火シーケンスに従って消火するか、ステ
ップ■に戻って待機する。
Also, when FSI +FS2 <QT in step (2), the fire is extinguished in the same manner according to the extinguishing sequence, or the process returns to step (2) and waits.

ステップ■においてH31+FS2≧Qrのときにはス
テップ■で要求熱負荷HQを演算により求める。上記要
求熱負荷HQを求める演算式はHQ= (Ts−Tc)
X (FSI +FS2 )である。
When H31+FS2≧Qr in step (2), the required heat load HQ is calculated by step (2). The calculation formula for calculating the above required heat load HQ is HQ= (Ts-Tc)
X (FSI + FS2).

続いてステップ■でS=0かどうかを判断し、S−〇の
ときにはステップのでHQ≦HQT  (例えば175
Kcaf/分)かどうかを判断する。そしてHQ≦HQ
丁 にd/分の場合には第10図に示すサブルーチン0
に従った処理を行う。
Next, in step ■, it is determined whether S=0 or not, and when S-〇, HQ≦HQT (for example, 175
Kcaf/min). And HQ≦HQ
In the case of d/min, the subroutine 0 shown in FIG.
Process according to.

即ち、ステップって混合弁(12)の可動デスク(16
)位置がB位置であるかどうかを判断し、B位置である
ときには、ステップ0で第1熱回路(a)のガス供給バ
ルブ(27)を開弁じて第1熱回路(a)のみを燃焼さ
せ、その燃焼を別途所定の燃焼シーケンスに基づいて制
御すると共に、メインルーチンのステップ■に戻る。
That is, the step is the movable desk (16) of the mixing valve (12).
) Determine whether the position is the B position, and if it is the B position, open the gas supply valve (27) of the first thermal circuit (a) in step 0 to burn only the first thermal circuit (a). Then, the combustion is controlled based on a predetermined combustion sequence, and the process returns to step (3) of the main routine.

この際、第1熱回路(a)の燃焼は設定温度TSより若
干高温の湯を出湯するように熱量を制御する。
At this time, the heat amount of combustion in the first heat circuit (a) is controlled so that hot water slightly higher than the set temperature TS is drawn out.

上記燃焼シーケンスは設定温度Tsと給水温度センサの
検出値Tc及び各々流mセンサの検出値FS1 、FS
2から演算された要求熱負荷、又、設定温度TSと第1
.第2給湯温度センサ(10)(11)の検出値T)1
1 、 T)12との差に基づきガス回を制御する従来
周知のフィードフォワード+フィードバック制御からな
る。
The above combustion sequence is based on the set temperature Ts, the detected value Tc of the feed water temperature sensor, and the detected values FS1 and FS of the flow m sensor, respectively.
The required heat load calculated from 2, the set temperature TS and the first
.. Detection value T)1 of the second hot water supply temperature sensor (10) (11)
1, T) consists of conventionally well-known feedforward+feedback control that controls the gas cycle based on the difference between T) and 12.

また、ステップ0において混合弁(12)の可動デスク
(16)がB位置にないときにはステップ0で混合弁(
12)のモーター(15)に駆動電圧を印加して可動デ
スク(16)を8位置に回転させ、これをステップ0で
確認し、ステップって第1熱回路(a)を燃焼シーケン
スに基づいて燃焼制御すると共にメインルーチンのステ
ップ■に戻る。
In addition, when the movable desk (16) of the mixing valve (12) is not at the B position in step 0, the mixing valve (16) is not in the B position in step 0.
A drive voltage is applied to the motor (15) of 12) to rotate the movable desk (16) to the 8th position, this is confirmed in step 0, and the first heat circuit (a) is rotated based on the combustion sequence in step 0. Combustion is controlled and the process returns to step (2) of the main routine.

一方、前述のステップ■において5f−Oのときにはス
テップ0でHQ≦HQi(例えば125にcaf/分)
を判断し、HQ≦HQiのときにはステップ12でフラ
ッグをS=0として前記サブルーチンのに従った処理を
行い、HQ>HQ tのとぎには第11図に示すサブル
ーチン■に従った処理を行う。
On the other hand, when 5f-O in step ① described above, HQ≦HQi (for example, 125 caf/min)
When HQ≦HQi, the flag is set to S=0 in step 12, and the processing according to the subroutine described above is performed, and after HQ>HQt, the processing according to the subroutine ① shown in FIG. 11 is performed.

即ち、ステップ0において混合弁(12)の可動デスク
(16)がA位置にあるかどうかを確認し、八位置にあ
るときにはステップ0で即座に、第1゜第2熱回路(a
 )(b )の双方を燃焼させ、各熱回路(a Hb 
)の燃焼を夫々別途所定のシーケンスに従って制御する
が、ステップ0において混合弁(12)の可動デスク(
16)の位置がA位置にないときにはステップOで混合
弁(12)のモーター(15)に駆動電圧を印加して可
動デスク(16)をA位置へ回転させステップ0でそれ
を確認した後、前記ステップOに移行し、同時にメイン
ルーチンのステップ■に戻る。
That is, in step 0, it is checked whether the movable disk (16) of the mixing valve (12) is in the A position, and when it is in the 8 position, in step 0, the 1st and 2nd heat circuits (a
) and (b), each heat circuit (a Hb
) of the mixing valve (12) is controlled according to a predetermined sequence. In step 0, the movable desk (
16) is not at the A position, apply a driving voltage to the motor (15) of the mixing valve (12) in step O to rotate the movable desk (16) to the A position, and confirm this in step 0. The process moves to step O, and at the same time returns to step (2) of the main routine.

またステップ[株]において、1−IQ>HQTのとき
にはステップ■でフラッグをS=1として、ステップ■
でHQ≦HQiの判断を行い、HQ>HQTのときには
前記サブルーチン0に従った処理を行う。そしてHQ≦
HQiのときにはステップ■でフラッグをS−oとして
前記サブルーチン■に従った処理を行う。
Also, in step [stock], if 1-IQ>HQT, the flag is set to S=1 in step ■, and step ■
It is determined whether HQ≦HQi, and if HQ>HQT, processing according to subroutine 0 is performed. And HQ≦
In the case of HQi, the flag is set to S-o in step (2) and processing according to the subroutine (2) is performed.

以後、給湯が停止されるまで、この動作を繰り返す。After that, this operation is repeated until hot water supply is stopped.

次に、第12図乃至第22図に示す請求項2記載の給湯
機について説明する。
Next, a water heater according to a second aspect of the present invention shown in FIGS. 12 to 22 will be explained.

尚、先述の請求項1記載の給湯機の説明を重複する部分
については図面上同一物に同じ符号を付するに留め説明
を省略する。
It should be noted that the same reference numerals are given to the same parts in the drawings for parts that overlap with the description of the above-mentioned water heater according to claim 1, and the description thereof will be omitted.

この給湯機は、能力オーバー時、混合弁(12)により
給水量を絞るようにした点において、先に説明した請求
項1記載の給湯機と相違する。
This water heater differs from the water heater described above in that the amount of water supplied is reduced by the mixing valve (12) when the capacity is exceeded.

そのため、この給湯機は水量バルブ(13)を備えず、
その代りに混合弁(12)の固定デスク(14)の第1
.第2人口(17)(18)と出口(19) 、可動デ
スク(16)の第1乃至第3通孔(201(21) (
22)の形状を第14図乃至第15図に示す如き形状に
形成している。
Therefore, this water heater is not equipped with a water flow valve (13).
Instead, the first of the fixed desks (14) of the mixing valve (12)
.. The second population (17) (18) and the exit (19), the first to third through holes (201 (21)) of the movable desk (16) (
22) is formed into the shape shown in FIGS. 14 and 15.

即ち、第1.第2人口(17)(18)及び出口(19
)は同心円上において夫々周方向に延びる円弧状の孔で
第1.第2人口(17)(18)の周方向長さが同一と
なると共に出口(19)の周方向両端とデスク中心を結
ぶ線の延長が、夫々第1.第2人口(17)(18)の
周方向中心を通るように形成される。
That is, 1st. Second population (17) (18) and exit (19
) are circular arc-shaped holes extending in the circumferential direction on concentric circles, and the first. The circumferential lengths of the second population (17) and (18) are the same, and the extension of the line connecting both circumferential ends of the exit (19) and the center of the desk is the same as the first population. It is formed to pass through the circumferential center of the second population (17) (18).

また、第1人口(17)は周方向長さの2/3を占める
大流量部(17a)と、周方向長さの1/3に径方向幅
を上記大流量部(11)の径方向幅より極端に小さくし
て形成した小流量部(17b)を有し、該小流量部(1
7b)は出口(19)側によせて第1人口(11)の一
方に設けられている。
In addition, the first population (17) has a large flow rate part (17a) that occupies 2/3 of the circumferential length, and a radial width of the large flow rate part (11) that occupies 1/3 of the circumferential length. It has a small flow part (17b) formed to be extremely smaller than the width, and the small flow part (17b) is formed to be extremely smaller than the width.
7b) is provided on one side of the first population (11) on the exit (19) side.

第2人口(18)は周方向長さの1/3を占めて大流量
部(18a)が、また2/3を占めて上記第1人口(1
7)の小流量部(17b)と同様の小流1部(18b)
が夫々形成され、該小流量部(isb)は大流量部(1
8a)を挾んでその周方向両側に配置されている。
The second population (18) occupies 1/3 of the circumferential length, and the large flow part (18a) occupies 2/3, and the first population (18) occupies 2/3 of the circumferential length.
1 small flow part (18b) similar to the small flow part (17b) in 7)
are formed respectively, and the small flow part (ISB) is formed as a large flow part (ISB).
8a) on both sides in the circumferential direction.

一方可動デスクの第1.第2通孔(20) (21)は
第2人口(18)の大流h1部(18a)と同一形状、
同一寸法に形成され、第3通孔(22)は出口(19)
を2等分した大きさ形状に形成されており、第2通孔(
21)を第2人口(18)の大流量部(18a)に合致
せしめた状態において第1通孔(20)が第1人口(1
7)の大流量部(17a)の小流量部側半分に合致し、
かつ第3通孔(22)が出口(19)の中央部に合致す
るような位置関係に配設される。
On the other hand, the first movable desk. The second through hole (20) (21) has the same shape as the large flow h1 part (18a) of the second population (18),
The third through hole (22) is formed to have the same dimensions as the outlet (19).
It is formed in a shape that is divided into two equal parts, and the second through hole (
21) is aligned with the large flow part (18a) of the second population (18), and the first through hole (20) is aligned with the first population (18).
Matches the small flow part side half of the large flow part (17a) of 7),
Further, the third through hole (22) is arranged in a positional relationship such that it matches the center of the outlet (19).

而して、断る混合弁(12)は、可動デスク(16)が
第16図に示ずように、第2通孔(18)と第2人口(
21)の大流量部(18a)とが合致する位置(以下A
位置という)にあるときには、第1通孔(20)も第1
人口(17)の大流量部(17a )に合致して第1.
第2の熱回路夫々の側の給湯管路(6a)(6b)を双
方とも全開とする。
Therefore, the mixing valve (12) that is rejected is connected to the second through hole (18) and the second port (16) as shown in FIG.
21) where the large flow rate part (18a) matches (hereinafter referred to as A
position), the first through hole (20) is also in the first position.
The first one corresponds to the large flow area (17a) of the population (17).
The hot water supply pipes (6a) (6b) on each side of the second thermal circuit are both fully opened.

また第2通孔(21)が第17図に示すように第2人口
(18)の出口側小流量部(18b)に合致する位置(
以下B位置という)にあるときには、第1通孔(20)
は第1人口(17)の大流量部(17a)に合致して、
第1熱回路側給湯管路(6a)を全開する一方、第2熱
回路側給湯管路(6b)を小流量に絞る。
In addition, the position where the second through hole (21) matches the outlet side small flow rate part (18b) of the second port (18) as shown in FIG.
(hereinafter referred to as position B), the first through hole (20)
matches the large flow part (17a) of the first population (17),
While the first heat circuit side hot water supply pipe (6a) is fully opened, the second heat circuit side hot water supply pipe (6b) is narrowed down to a small flow rate.

更に第2通孔(21)が第18図に示すように第2入口
(18)の第1人口側小流量部(18b)に合致する位
置(以下C位置という)にあるときには、第1通孔(2
0)も第1人口(17)の小流量部(17b)に合致し
て第1.第2熱回路夫々の側の給湯管路(6a )(6
b )を双方とも小流量に絞る。
Furthermore, when the second passage hole (21) is located at a position (hereinafter referred to as position C) that matches the first population side small flow part (18b) of the second inlet (18) as shown in FIG. hole (2
0) also matches the small flow rate part (17b) of the first population (17), and the first. Hot water supply pipes (6a) (6) on each side of the second heat circuit
b) Both are reduced to a small flow rate.

制御装置(B)のメモリー(25)のROMには第19
図乃至第22図にフローチャートで示すようなプログラ
ムが記憶され、このプログラムに従って混合弁(12)
を制御する。
The 19th ROM in the memory (25) of the control device (B)
Programs as shown in the flowcharts in Figures to Figure 22 are stored, and according to this program the mixing valve (12)
control.

上記プログラムは第19図から分るように先に説明した
請求項1記載の給湯機のプログラムに要求熱負荷が給湯
機の能力範囲内にあるかどうか、即ち第1.第2熱回路
(a)(b)が夫々最低能力2゜5号、最大能力16号
の場合HQ≦800kca l /分であるかどうかを
判断するステップと、能力オーバー時の、即ち1−IQ
>)lQmax  (例えば800にd/分)のときの
処理を定めたサブルーチン■が付加されている。
As can be seen from FIG. 19, the program for the water heater according to claim 1 described above determines whether or not the required heat load is within the capacity range of the water heater. A step of determining whether HQ≦800 kcal/min when the second thermal circuits (a) and (b) have a minimum capacity of 2°5 and a maximum capacity of 16, respectively;
>) A subroutine (2) is added that defines processing when lQmax (for example, 800 d/min).

従って、この給湯機はステップ■まで及びステップ■で
S≠0のときのステップ■、■は先に説明した請求項1
記載の給湯機と全く同じ動作を行うがステップ■にHQ
≦l−I Q maXかどうかの判断が加わり、HQ 
> HQ maxのときにはサブルーチン■に従った処
理を行う。
Therefore, in this water heater, up to step ■ and when S≠0 in step ■, steps ■ and ■ are as claimed in claim 1 described above.
It works exactly the same as the water heater described, but there is no HQ in step ■.
≦l-I Q maX judgment is added, and HQ
> When HQ is max, processing according to subroutine (①) is performed.

即ち、ステップ[株]でHQ>)lQn+axのときに
はステップOにおいて混合弁(12)の可動板(16)
の位置を確認し、C位置にあるときには、ステップOで
第1.第2熱回路(a )(b )の双方を燃焼させて
その燃焼を所定の燃焼シーケンスに基づいて制御すると
共にメインルーチンのステップ■に戻り、C位置にない
ときには、ステップOで混合弁(12)に駆動電圧を印
加してC位置になるように可動デスク(16)を回転さ
せ、これをステップOで確認してステップOに進む。
That is, when HQ>)lQn+ax in step O, the movable plate (16) of the mixing valve (12)
, and if it is at position C, move to step O. Both of the second heat circuits (a) and (b) are combusted and the combustion is controlled based on a predetermined combustion sequence, and the process returns to step (2) of the main routine. ) to rotate the movable desk (16) to position C, confirm this in step O, and proceed to step O.

一方、前記ステップ■においてHQ≦HQ maxのと
きにはステップ■に進むがこれ以降は先に第9図乃至第
12図により説明した前記請求項1記載の給la磯のプ
ログラムのステップ[株]以下と全く同様に進行する。
On the other hand, when HQ≦HQ max in the step (2), the process proceeds to the step (2), but from this point onward, the steps [stock] and the following of the supply la iso program according to claim 1 described above with reference to FIGS. 9 to 12 are performed. It proceeds exactly the same way.

[効 果j 本発明は以上説明したように構成されているので、以下
に記載されるような効果を奏する。
[Effect j Since the present invention is configured as described above, it produces the effects described below.

(1)第1の熱回路側の給湯管路が第2の熱回路側の給
湯管路に連結する連結部にU合弁を設け、この混合弁に
より要求熱負荷が大きいときには、第1.第2双方の熱
回路の給湯管路を全開にし、要求熱負荷が小さいときに
は第1の熱回路の給湯回路を全開、第2の給湯回路の給
湯回路を最小に絞るようにしたので、2つの熱回路を並
列に接続したにもかかわらず、要求熱負荷が小さいとき
には、一方の熱回路だけを用いて沸かし上げることがで
き、最小能力を一方の熱回路の最小能力まで小さくする
ことができる。
(1) A U joint valve is provided at the connecting portion where the hot water supply pipe on the first heat circuit side is connected to the hot water supply pipe on the second heat circuit side, and when the required heat load is large by this mixing valve, the first. The hot water supply pipes of both second heat circuits are fully opened, and when the required heat load is small, the hot water supply circuit of the first heat circuit is fully opened, and the hot water supply circuit of the second hot water circuit is narrowed down to the minimum. Even though the heat circuits are connected in parallel, when the required heat load is small, boiling can be achieved using only one heat circuit, and the minimum capacity can be reduced to the minimum capacity of one heat circuit.

しかもその際には熱量を与える方の熱回路には給水の大
部分が流れるので、沸騰が生じる恐れがない。
Moreover, in this case, most of the supplied water flows through the heat circuit that provides the heat, so there is no risk of boiling.

(2)請求項2の給湯様は要求熱負荷が給湯機の能力を
越えるときにも混合弁で第1.第2熱回路の給湯管路の
通水面積を夫々絞るようにしたので、能力オーバーカッ
ト用の水量パルプを別途設ける必要がなく、構造が簡単
となり、コストの低減を計ることができる。
(2) In the hot water supply method according to claim 2, even when the required heat load exceeds the capacity of the water heater, the mixing valve is used to supply the first water. Since the water flow areas of the hot water supply pipes of the second heat circuit are respectively reduced, there is no need to separately provide a water volume pulp for overcutting the capacity, the structure is simple, and costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は請求項1記載のガス給湯機の構成を示づ機能ブ
ロック図、第2図は全体構成の概略を模式的に示す概略
構成図、第3図は本発明の主要な構成要素である混合弁
の一例を示す正面図で要部を破断して示しである。第4
図は側面図で要部を破断して示しである。第5図は混合
弁の固定デスクの底面図、第6図は可動デスクの底面図
、第7図、第8図は混合弁の作動状態を説明する説明図
、第9図乃至m11図は動作プログラムを示すフローチ
ャートである。第12図は請求項2記載のガス給湯機の
構成を示す機能ブ白ツク図、第13図は全体構成の概略
を模式的に示す概略構成図、第14図は混合弁の固定デ
スクの底面図、第15図は可動デスクの底面図、第16
図乃至第18図は混合弁の作動状態を説明する説明図、
第19図乃至第22図は動作プログラムを示すフローチ
ャートである。 a:第1熱回路 b:第2熱回路 5:給水管路 5a:第1熱回路側給水管路 5b=第2熱回路側給水管路 6:給湯管路 6a:第1熱回路側給湯管路 6b:第2熱回路側給渇管路 72入水温度センサー 8:第1流岱センサー 9:第2流Jiセンサー B:制i装置 C:温度設定器
FIG. 1 is a functional block diagram showing the configuration of the gas water heater according to claim 1, FIG. 2 is a schematic configuration diagram schematically showing the overall configuration, and FIG. 3 is a functional block diagram showing the main components of the present invention. It is a front view showing an example of a certain mixing valve with main parts cut away. Fourth
The figure is a side view with main parts cut away. Fig. 5 is a bottom view of the fixed desk of the mixing valve, Fig. 6 is a bottom view of the movable desk, Figs. 7 and 8 are explanatory diagrams explaining the operating state of the mixing valve, and Figs. It is a flowchart showing a program. FIG. 12 is a functional block diagram showing the configuration of the gas water heater according to claim 2, FIG. 13 is a schematic configuration diagram schematically showing the overall configuration, and FIG. 14 is the bottom surface of the fixed desk of the mixing valve. Figure 15 is a bottom view of the movable desk, Figure 16 is a bottom view of the movable desk.
Figures 18 to 18 are explanatory diagrams illustrating the operating state of the mixing valve;
19 to 22 are flowcharts showing the operating program. a: First heat circuit b: Second heat circuit 5: Water supply pipe 5a: First heat circuit side water supply pipe 5b = Second heat circuit side water supply pipe 6: Hot water supply pipe 6a: First heat circuit side hot water supply Pipe 6b: Second heat circuit side supply/drain pipe 72 Inlet water temperature sensor 8: First flow sensor 9: Second flow Ji sensor B: Control device C: Temperature setting device

Claims (2)

【特許請求の範囲】[Claims] (1)2つの熱回路を並列に接続したガス給湯機におい
て、第1の熱回路側の給湯管路が第2の熱回路側の給湯
管路に連結する連結部に設けられて上記第1熱回路側か
らの流体と第2熱回路側からの流体の混合比を可変する
混合弁と、給水管路が第1熱回路側と第2熱回路側に分
岐する部分より上流側において該給水管路に設けられた
入水温度センサーと、上記分岐部より下流の第1熱回路
側給水管路及び第2熱回路側給水管路に夫々設けられる
第1、第2流量センサーと、温度設定器と、温度設定器
の設定温度及び上記各センサーの検出値等に基づいて必
要熱負荷を演算する演算手段と、演算手段の演算値が所
定基準値より小さいときに上記混合弁の第2熱回路側の
通路面積を最小にすると共に第1熱回路側の通路面積を
最大にし、所定基準値より大きいときには混合弁の第1
熱回路側及び第2熱回路側双方の通路面積を最大にする
ように混合弁を制御する混合弁制御手段と、演算手段の
演算値が上記所定基準値より小さいときに第1熱回路の
熱源器を、基準値より大きいときには第1、第2熱回路
双方の熱源器を夫々燃焼させると共にその燃焼を所定の
燃焼シーケンスに基づいて制御する燃焼制御手段とを備
えることを特徴とするガス給湯機。
(1) In a gas water heater in which two heat circuits are connected in parallel, the hot water supply pipe on the first heat circuit side is provided at a connection part that connects to the hot water supply pipe on the second heat circuit side, and a mixing valve that changes the mixing ratio of the fluid from the heat circuit side and the fluid from the second heat circuit side; and a mixing valve that changes the mixing ratio of the fluid from the heat circuit side and the fluid from the second heat circuit side; An inlet water temperature sensor provided in the pipe, first and second flow rate sensors provided respectively in the first heat circuit side water supply pipe and the second heat circuit side water supply pipe downstream from the branch part, and a temperature setting device. and a calculation means for calculating the necessary heat load based on the set temperature of the temperature setting device and the detection values of the respective sensors, and a second heat circuit of the mixing valve when the calculation value of the calculation means is smaller than a predetermined reference value. The passage area on the side of the mixing valve is minimized, and the passage area on the first heat circuit side is maximized.
a mixing valve control means that controls the mixing valve so as to maximize the passage area on both the heat circuit side and the second heat circuit side; and a heat source of the first heat circuit when the calculated value of the calculation means is smaller than the predetermined reference value. A gas water heater characterized in that the gas water heater is equipped with a combustion control means that causes the heat source devices of both the first and second heat circuits to combust, respectively, when the heat source device is larger than a reference value, and controls the combustion based on a predetermined combustion sequence. .
(2)2つの熱回路を並列に接続したガス給湯機におい
て、第1の熱回路側の給湯管路が第2の熱回路側の給湯
管路に連結する連結部に設けられて上記第1熱回路側か
らの流体と第2熱回路側からの流体の混合比を可変する
混合弁と、給水管路が第1熱回路側と第2熱回路側に分
岐する部分より上流側において該給水管路に設けられた
入水温度センサーと、上記分岐部より下流の第1熱回路
側給水管路及び第2熱回路側給水管路に夫々に設けられ
る第1、第2流量センサーと、温度設定器と、温度設定
器の設定温度及び上記各センサーの検出値等に基づいて
必要熱負荷を演算する演算手段と、演算手段の演算値が
所定基準値より小さいときに上記混合弁の第2熱回路側
の通路面積を最小にすると共に第1熱回路側の通路面積
を最大にし、所定基準値より大きいときには混合弁の第
1熱回路側及び第2熱回路側双方の通路面積を夫々最大
にするように混合弁を制御する混合弁制御手段と、演算
手段の演算値が第1、第2熱回路の最大能力の和を越え
るときに混合弁の第1熱回路側双方の通路面積を夫々減
少にするように混合弁を制御する能力オーバーカット手
段と、演算手段の演算値が上記所定基準値より小さいと
きに第1熱回路の熱源器を基準値より大きいときには第
1、第2熱回路双方の熱源器を夫々燃焼させると共にそ
の燃焼を所定の燃焼シーケンスに基づいて制御する燃焼
制御手段とを備えることを特徴とするガス給湯機。
(2) In a gas water heater in which two heat circuits are connected in parallel, the hot water supply pipe on the first heat circuit side is provided at a connecting part that connects to the hot water supply pipe on the second heat circuit side, and a mixing valve that changes the mixing ratio of the fluid from the heat circuit side and the fluid from the second heat circuit side; and a mixing valve that changes the mixing ratio of the fluid from the heat circuit side and the fluid from the second heat circuit side; An inlet water temperature sensor provided in the pipe, first and second flow rate sensors provided respectively in the first heat circuit side water supply pipe and the second heat circuit side water supply pipe downstream from the branch part, and temperature setting. a calculation means for calculating the required heat load based on the set temperature of the temperature setting device and the detection value of each of the above-mentioned sensors; Minimize the passage area on the circuit side and maximize the passage area on the first heat circuit side, and when the area is larger than a predetermined reference value, maximize the passage area on both the first heat circuit side and the second heat circuit side of the mixing valve. A mixing valve control means that controls the mixing valve so that when the calculation value of the calculation means exceeds the sum of the maximum capacities of the first and second heating circuits, the passage area on both the first heating circuit sides of the mixing valve is capacity overcut means for controlling the mixing valve so as to reduce the heat source of the first heat circuit when the calculated value of the calculation means is smaller than the predetermined reference value; A gas water heater characterized by comprising combustion control means for combusting both heat source devices and controlling the combustion based on a predetermined combustion sequence.
JP32870188A 1988-12-26 1988-12-26 Gas hot water feeder Pending JPH02171547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32870188A JPH02171547A (en) 1988-12-26 1988-12-26 Gas hot water feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32870188A JPH02171547A (en) 1988-12-26 1988-12-26 Gas hot water feeder

Publications (1)

Publication Number Publication Date
JPH02171547A true JPH02171547A (en) 1990-07-03

Family

ID=18213212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32870188A Pending JPH02171547A (en) 1988-12-26 1988-12-26 Gas hot water feeder

Country Status (1)

Country Link
JP (1) JPH02171547A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260853B2 (en) * 1982-01-14 1987-12-18 Nippon Electric Co

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260853B2 (en) * 1982-01-14 1987-12-18 Nippon Electric Co

Similar Documents

Publication Publication Date Title
JPH02171547A (en) Gas hot water feeder
JPS6057149A (en) Hot water temperature controlling device
JPH0411771B2 (en)
JP3824734B2 (en) Combustion device
CN210107554U (en) Heating water heater and heating water heating system
JP3792347B2 (en) Hot water combustion equipment
JP3859811B2 (en) Hot water combustion equipment
JPH10185320A (en) Hot-water supplier
JP3834407B2 (en) Water heater
JPS591154Y2 (en) Fluid heating control device
JP3129035B2 (en) Water heater
JPS6176821A (en) Hot water temperature control device for water heater having additional heating function
JPS61268943A (en) Gas instantaneous type hot water supplier
JPS60185050A (en) Instantaneous water heater
JP3872864B2 (en) Hot water combustion equipment
JPS60152857A (en) Hot water supplying device
JP2000121155A (en) Bypass mixing type hot water supply device
JP2565012B2 (en) Water heater
JPS6123251Y2 (en)
JPS5944542A (en) Apparatus for controlling supply of hot water
JPH031748Y2 (en)
JPS6123250Y2 (en)
JPH02219955A (en) Gas hot water feeder
JP3353022B2 (en) Water heater
JPH0221157A (en) Hot water supplying apparatus with water bypass