JPH02168540A - Plasma processing device - Google Patents

Plasma processing device

Info

Publication number
JPH02168540A
JPH02168540A JP32252988A JP32252988A JPH02168540A JP H02168540 A JPH02168540 A JP H02168540A JP 32252988 A JP32252988 A JP 32252988A JP 32252988 A JP32252988 A JP 32252988A JP H02168540 A JPH02168540 A JP H02168540A
Authority
JP
Japan
Prior art keywords
plasma processing
chamber
magnetic field
field
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32252988A
Other languages
Japanese (ja)
Inventor
Takafumi Oda
織田 隆文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32252988A priority Critical patent/JPH02168540A/en
Publication of JPH02168540A publication Critical patent/JPH02168540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To enhance the plasma processing ability by generating a parallel rotary mag. field on the oversurface of a specimen to undergo plasma processing, and introducing microwaves vertically to this plane of mag. field. CONSTITUTION:In a chamber 8 a specimen 10 is placed on a lower electrode 11. Coils 9a, 9b are arranged while pinching this chamber 8, and a mag. field B9 is generated. Also pinching the chamber 8, coils 12a, 12b are arranged, and another mag. field B12 is generated. These coil 12a, 12b are arranged perpendicular to the first named coils 9a, 9b, and a rotary mag. field is formed by these four coils on the oversurface of the specimen 10. Through a wave guide pipe 5, microwaves generated by a microwave oscillator 4 are introduced vertically to the plane of this rotary mag. field. This generates electro-spinning resonance state on the surface of specimen to lead to enhancement of the plasma processing ability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、プラズマを利用して半導体ウェハ等の試料
にエツチング、ケミカル・ベーパー・デポジション(略
してCVD)、クリーニング等を行うプラズマ処理装置
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a plasma processing apparatus that uses plasma to perform etching, chemical vapor deposition (CVD), cleaning, etc. on a sample such as a semiconductor wafer. It is related to.

〔従来の技術〕[Conventional technology]

第2図(alは、従来のプラズマ処理装置を示す断面側
面図である。図において、1は処理室、2はこの処理室
l内に設けられた真空引き口、3は処理室l内にガスを
導入する為のガス導入口、4はマイクロ波発振器、5は
このマイクロ波発振器4で発生させたマイクロ波をチャ
ンバー内へ伝える為の導波管、6はその導波管5の先端
に当たる開口部、7は処理室lの上部にあるチャンバー
8と処理室1をシールする為の0リング、8はチャンバ
ー、9はチャンバー8の外周に同心状に設置されたコイ
ル、10は処理されるべき試料、11は試料10を配置
するための下部電極(単一電極)である。又、第2図(
b)は、第2図(a)において導波管、マイクロ波発振
器などを除いたプラズマ処理装置の平面図である。
FIG. 2 (al is a cross-sectional side view showing a conventional plasma processing apparatus. In the figure, 1 is a processing chamber, 2 is a vacuum port provided in this processing chamber l, and 3 is a sectional side view of a conventional plasma processing apparatus. 4 is a microwave oscillator; 5 is a waveguide for transmitting the microwave generated by the microwave oscillator 4 into the chamber; 6 is the tip of the waveguide 5; An opening, 7 is an O-ring for sealing chamber 8 and processing chamber 1 at the upper part of processing chamber l, 8 is a chamber, 9 is a coil installed concentrically around the outer periphery of chamber 8, and 10 is processed. 11 is a lower electrode (single electrode) for arranging the sample 10.
b) is a plan view of the plasma processing apparatus in FIG. 2(a) with the waveguide, microwave oscillator, etc. removed.

次に動作について説明する。処理室l内のガスを真空引
き口2より排気し、所望の真空度に達した時点で、ガス
導入口3より所定のガスを導入し、その後マイクロ波発
振器4により発生させたマイクロ波電力を導波管5を用
いて、導波管の開口部6へ導くことにより、処理室1の
上部にOリング7を介して存在する絶縁物のチャンバー
ク8内にプラズマを発生させる。(なおマイクロ波は、
絶縁物は透過する。)その時、マイクロ波と同時に、コ
イル9にて形成されている電磁石により発生させ半導体
ウェハなどの試料1oに垂直な磁場(磁界)Bl−セン
バー8内にかけることによりマイクロ波の吸収効率が上
がり、プラズマ密度が上がる。最も吸収効率が上がるの
が、エレクトロ・スピン・レゾナンス状態(ECR条件
という)に近くなったときで、磁場Bの磁界強度が87
5Gaussを若干こえた場合である。(第25回半導
体専門講習会予稿集P120参照)。この効率の良いプ
ラズマにより下部電極ll上の試料1oは、エツチング
等のプラズマ処理がなされる。ECRポイントを満す点
の集合は、斜線13に示すような面となる。
Next, the operation will be explained. The gas in the processing chamber 1 is evacuated from the vacuum port 2, and when the desired degree of vacuum is reached, a predetermined gas is introduced from the gas inlet 3, and then the microwave power generated by the microwave oscillator 4 is Plasma is generated in an insulating chamber 8 located above the processing chamber 1 via an O-ring 7 by guiding it to the opening 6 of the waveguide using the waveguide 5 . (The microwave is
Insulators are transparent. ) At that time, simultaneously with the microwave, a magnetic field (magnetic field) B generated by an electromagnet formed in the coil 9 and perpendicular to the sample 1o such as a semiconductor wafer is applied within the chamber 8, thereby increasing the absorption efficiency of the microwave. Plasma density increases. The absorption efficiency increases the most when the electro-spin resonance state (ECR condition) is approached, and the magnetic field strength of magnetic field B is 87
This is a case where the value slightly exceeds 5 Gauss. (Refer to page 120 of the 25th Semiconductor Specialized Seminar Proceedings). Using this efficient plasma, the sample 1o on the lower electrode 11 is subjected to plasma processing such as etching. A set of points that satisfy the ECR points forms a surface as shown by diagonal lines 13.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のプラズマ処理装置は、以上のように構成されてい
るので、ECR条件を満す点の集合が試料より遠い所に
存在するようになり、試料上のプラズマ密度が上がらな
いという問題点があった。
Since conventional plasma processing equipment is configured as described above, there is a problem in that the set of points that satisfy the ECR conditions are located far away from the sample, and the plasma density on the sample does not increase. Ta.

この発明は、上記のような問題点を解消するためになさ
れたもので、試料面上にECR条件が来るようにし、試
料面上のプラズマを高密度に均一性良く発生させること
ができるプラズマ処理装置を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is a plasma treatment that allows ECR conditions to be applied to the sample surface and generates plasma on the sample surface with high density and good uniformity. The purpose is to obtain equipment.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るプラズマ処理装置は、チャンバー8内に
試料10を載置する電極(下部電極11)と、試料lO
の上面に平行な回転磁場を発生させる回転磁場発生手段
40と、チャンバー8内に導くマイクロ波を発生するマ
イクロ波発振器4とを備え、上記回転磁場の磁場面に垂
直な方向に、上記マイクロ波を導くことにより試料10
をプラズマ処理することを特徴とするものである。
The plasma processing apparatus according to the present invention includes an electrode (lower electrode 11) on which a sample 10 is placed in a chamber 8, and a sample lO
It includes a rotating magnetic field generating means 40 that generates a rotating magnetic field parallel to the upper surface, and a microwave oscillator 4 that generates microwaves guided into the chamber 8. sample 10 by guiding
It is characterized by plasma treatment.

〔作用〕[Effect]

このプラズマ処理装置では、電極(下部電極11)上の
試料10に平行な回転磁場が回転磁場発生手段40によ
り発生され、その磁場面に垂直な進行方向をとったマイ
クロ波がチャンバー8内に導かれ、試料IOはプラズマ
処理される。
In this plasma processing apparatus, a rotating magnetic field parallel to the sample 10 on the electrode (lower electrode 11) is generated by the rotating magnetic field generating means 40, and microwaves traveling in a direction perpendicular to the magnetic field are guided into the chamber 8. The sample IO is then subjected to plasma treatment.

〔発明の実施例〕[Embodiments of the invention]

第1図(a)はこの発明の一実施例に係るプラズマ処理
装置の断面側面図である。第1図(a)において、第2
図(a)に示す構成要素に対応するものには同一の符号
を付し、その説明を省略する。第1図fatにおいて、
9a、9bは磁場B、を発生させる一対のコイルである
。コイル9aとコイル9bとはチャンバー8を挟んで平
行に配置されている。第1図(a)には表記していない
が、これはプラズマ処理装置(導波管、マイクロ波発振
器などを除く)の平面図である第11山)中に示す。第
1図(b)において、12a、12bは磁場BI2を発
生させる一対のコイルであり、コイル12aとコイル1
2bとはチャンバー8を挟んで平行に配置されている。
FIG. 1(a) is a cross-sectional side view of a plasma processing apparatus according to an embodiment of the present invention. In Figure 1(a), the second
Components corresponding to those shown in FIG. 3(a) are given the same reference numerals, and their explanations will be omitted. In Figure 1 fat,
9a and 9b are a pair of coils that generate a magnetic field B. The coil 9a and the coil 9b are arranged in parallel with the chamber 8 in between. Although not shown in FIG. 1(a), this is shown in the 11th peak which is a plan view of the plasma processing apparatus (excluding waveguides, microwave oscillators, etc.). In FIG. 1(b), 12a and 12b are a pair of coils that generate a magnetic field BI2, and the coil 12a and the coil 1
2b and are arranged in parallel with each other with the chamber 8 interposed therebetween.

コイル12a、12bは、コイ/Lz9a、9bに対し
て直角に配置されている。これ等コイル9a。
The coils 12a, 12b are arranged at right angles to the coils/Lz9a, 9b. These coils 9a.

9b、12a、12bによって回転磁場発生手段40が
構成される。ここで、時間をt、角周波数をωとし、磁
場B、と磁場B1.とを合成して形成される磁場をB、
とすると、 B;’ −(kcosωt、 0)        −
(1)へ B Iz=  (0、ksin  ωt )     
       、−(2)−一→ By  −(kcos  ωt、  ksin  ωt
)      −(3)となり、1Byl=にで8丁の
位相はωtとなる。
Rotating magnetic field generating means 40 is constituted by 9b, 12a, and 12b. Here, time is t, angular frequency is ω, magnetic field B, and magnetic field B1. B, the magnetic field formed by combining
Then, B;' −(kcosωt, 0) −
To (1) B Iz= (0, ksin ωt)
, -(2)-1→ By -(kcos ωt, ksin ωt
) - (3), and the phase of the 8 guns becomes ωt at 1 Byl=.

つまり(11,(21式を満たすような強度及び方向と
なるように磁場Bq、B+zを発生させると、磁場B、
は強度にで一定で、角周波数ωで定回転を行い、ここに
回転磁場が得られる。
In other words, (11, (If the magnetic fields Bq, B+z are generated so that the intensity and direction satisfy Equation 21, the magnetic fields B,
has a constant strength and rotates at an angular frequency ω, resulting in a rotating magnetic field.

次に動作について説明する。基本的動作は、従来装置の
所で説明したので省略する。第1図(blにおいて、一
対のコイル9a、9bにより磁場B。
Next, the operation will be explained. The basic operation has been explained in the conventional device, so a description thereof will be omitted. In FIG. 1 (bl), a magnetic field B is generated by a pair of coils 9a and 9b.

が発生し、又一対のコイル12a、12bにより磁場B
12が発生する。この2対のコイル9a。
is generated, and a magnetic field B is generated by the pair of coils 12a and 12b.
12 occurs. These two pairs of coils 9a.

9bと12a、12bとの磁場B、とBl2との強度と
、それらの方向とを時間的に前述の如く変化させること
により、第1図(b)の平面上を回転する回転磁場を発
生させる。チャンバー8へは、従来装置と同様にマイク
ロ波発振器4からのマイクロ波電力とガス導入口3より
ガスを導入することにより、チャンバー8内でプラズマ
を発生させる。
By temporally changing the intensities of the magnetic fields B and Bl2 of 9b, 12a, and 12b and their directions as described above, a rotating magnetic field that rotates on the plane of FIG. 1(b) is generated. . Plasma is generated in the chamber 8 by introducing microwave power from the microwave oscillator 4 and gas from the gas inlet 3 into the chamber 8, as in the conventional apparatus.

この時、マイクロ波は回転磁場の磁場面に垂直に進行方
向をとるよう導入され、このマイクロ波と回転磁場との
相互作用により、マイクロ波の吸収効率が上がり、プラ
ズマ密度が上がる。従来装置の項で説明したように、E
CR条件(磁場強度が375Gaussの場合)より若
干高い磁場をかけた状態のときである。また、この時の
マイクロ波の周波数は2.45GHzである。磁場が回
転することにより、プラズマ密度が空間的に均一化され
る。磁場の回転数については、我々の実験によれば0.
5C/sec −10C/sec程度が均一なプラズマ
処理の可能な回転数であり、より高回転では、試料IO
側に渦電流が発生し、プラズマ処理特性が劣化する。
At this time, the microwaves are introduced in a direction perpendicular to the magnetic field of the rotating magnetic field, and the interaction between the microwaves and the rotating magnetic field increases the absorption efficiency of the microwaves and increases the plasma density. As explained in the section on conventional equipment, E
This is when a magnetic field slightly higher than the CR condition (when the magnetic field strength is 375 Gauss) is applied. Further, the frequency of the microwave at this time is 2.45 GHz. The rotation of the magnetic field makes the plasma density spatially uniform. According to our experiments, the rotational speed of the magnetic field is 0.
Approximately 5C/sec - 10C/sec is the possible rotation speed for uniform plasma processing, and at higher rotations, the sample IO
Eddy currents are generated on the side, deteriorating plasma processing characteristics.

このようにチャンバー8内で875Gauss以上にな
る磁場強度を有する点が存在し、かつマイクロ波の周波
数が2.45GHzであるとき、下部電極ll上の試料
10は最も効率よくプラズマ処理される。
As described above, when there is a point in the chamber 8 with a magnetic field strength of 875 Gauss or more and the microwave frequency is 2.45 GHz, the sample 10 on the lower electrode 11 is most efficiently plasma-treated.

なお、上記実施例では一対のコイルを2組で構成する場
合を示したが回転磁場が発生できるならば3&Ilより
構成してもよい。そして、マイクロ波の導入方式として
は導波型で説明したが、一部同軸ケーブルになっている
ような型のマイクロ波給電方式であっても、マイクロ波
さえ伝われば、同様の効果を奏する。また、上記実施例
では、一般的なプラズマ処理を目的とする装置について
説明したが、具体的な目的、用途としては、プラズマエ
ツチング、CVD、 クリーニング等の為の装置に対し
ても、本発明は上記実施例と同様の効果を奏する。さら
に上記実施例では、試料10側の電位はグランド電位と
したが、第1図(C)に示したように、適当な高周波電
力15をブロッキングコンデンサ14を介して下部型a
llに印加すれば、いわゆるVdc(セルフバイアス電
位)が得られ、より異方性の高い処理が得られる。
In the above embodiment, a case is shown in which the pair of coils is composed of two sets, but if a rotating magnetic field can be generated, it may be composed of 3 & Il. Although we have described a waveguide type microwave introduction method, even a type of microwave power feeding system that uses a coaxial cable in part can produce the same effect as long as the microwaves can be transmitted. Further, in the above embodiments, an apparatus for general plasma processing has been described, but the present invention can also be applied to apparatuses for plasma etching, CVD, cleaning, etc. as specific purposes and uses. The same effects as in the above embodiment are achieved. Furthermore, in the above embodiment, the potential on the sample 10 side was set to the ground potential, but as shown in FIG.
If applied to ll, a so-called Vdc (self-bias potential) can be obtained, and a process with higher anisotropy can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、試料の上面に平行な回転
磁場を発生させ、その磁場面に垂直に進行するマイクロ
波を試料の内在するチャンバーに導くように構成したの
で0、試料面上にECR条件が来るようになり、試料面
上のプラズマを高密度に均一性良く発生させることがで
き、プラズマ処理能力が高まるという効果が得られる。
As described above, according to the present invention, a rotating magnetic field parallel to the upper surface of the sample is generated, and microwaves traveling perpendicular to the magnetic field are guided into the chamber in which the sample resides. ECR conditions are now met, plasma can be generated on the sample surface with high density and good uniformity, and the effect of increasing plasma processing ability can be obtained.

【図面の簡単な説明】 第1図fatはこの発明の一実施例に係るプラズマ処理
装置を示す断面側面図、第1図(b)は第1図fa)に
示す導波管、マイクロ波発振器などを除いたプラズマ処
理装置の平面図、第1図(C)はこの実施例において高
周波電力を印加する例を示す図、第2図(alは従来の
プラズマ処理装置を示す断面側面図、第2図(b)は第
2図(alに示ず導波管、マイクロ波発振器などを除い
たプラズマ処理装置の平面図である。 4・・・マイクロ波発振器、8・・・チャンバ9a、9
b、12a、  12b・−・コイル、10・・・試料
、11・・・下部電極(単一電極)40・・・回転磁場
発生手段。 第1図(a) 第1図(1)) 躬1 図 (Cン 代理人  大  岩  増  M(ばか2名)第2図(
a) 第2図(b) 6、M正の内容 (1)明細書第1頁第15行目「ベーパー」とあるσを
「ペーパー」と補正する。 (2)同書第3頁第3行目乃至第4行目「発生させ)i
導体」とあるのを「発生させた半導体」と補正する。 以上 書 (自り9
[Brief Description of the Drawings] Figure 1 (fat) is a cross-sectional side view showing a plasma processing apparatus according to an embodiment of the present invention, and Figure 1 (b) shows the waveguide and microwave oscillator shown in Figure 1 (fa). FIG. 1(C) is a plan view of the plasma processing apparatus excluding the parts, FIG. 1(C) is a diagram showing an example of applying high frequency power in this embodiment, FIG. FIG. 2(b) is a plan view of the plasma processing apparatus excluding the waveguide, microwave oscillator, etc. not shown in FIG.
b, 12a, 12b -- Coil, 10 -- Sample, 11 -- Lower electrode (single electrode) 40 -- Rotating magnetic field generating means. Figure 1 (a) Figure 1 (1)) Figure 1 (C agent Masu Oiwa M (2 idiots) Figure 2 (
a) Figure 2 (b) 6. M Correct Contents (1) In the 15th line of page 1 of the specification, σ in "vapor" is corrected to "paper". (2) Page 3 of the same book, lines 3 and 4, “generate” i
The phrase ``conductor'' should be corrected to ``generated semiconductor.'' Above (self 9)

Claims (1)

【特許請求の範囲】[Claims] チャンバー内に試料を載置する電極と、試料の上面に平
行な回転磁場を発生させる回転磁場発生手段と、上記チ
ャンバー内に導くマイクロ波を発生するマイクロ波発振
器とを備え、上記回転磁場の磁場面に垂直な方向に、上
記マイクロ波を導くことにより上記試料をプラズマ処理
することを特徴とするプラズマ処理装置。
The chamber includes an electrode for placing a sample, a rotating magnetic field generating means for generating a rotating magnetic field parallel to the upper surface of the sample, and a microwave oscillator for generating microwaves guided into the chamber. A plasma processing apparatus characterized in that the sample is subjected to plasma processing by guiding the microwave in a direction perpendicular to the surface.
JP32252988A 1988-12-20 1988-12-20 Plasma processing device Pending JPH02168540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32252988A JPH02168540A (en) 1988-12-20 1988-12-20 Plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32252988A JPH02168540A (en) 1988-12-20 1988-12-20 Plasma processing device

Publications (1)

Publication Number Publication Date
JPH02168540A true JPH02168540A (en) 1990-06-28

Family

ID=18144685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32252988A Pending JPH02168540A (en) 1988-12-20 1988-12-20 Plasma processing device

Country Status (1)

Country Link
JP (1) JPH02168540A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045855A1 (en) * 1996-05-31 1997-12-04 Akashic Memories Corporation Highly tetrahedral amorphous carbon films and methods for their production
US5858477A (en) * 1996-12-10 1999-01-12 Akashic Memories Corporation Method for producing recording media having protective overcoats of highly tetrahedral amorphous carbon

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045855A1 (en) * 1996-05-31 1997-12-04 Akashic Memories Corporation Highly tetrahedral amorphous carbon films and methods for their production
US6537668B1 (en) 1996-05-31 2003-03-25 United Module Corporation, Inc. Recording media having protective overcoats of highly tetrahedral amorphous carbon and methods for their production
US6544627B1 (en) 1996-05-31 2003-04-08 United Modular Corporation Method of producing recording media having protective overcoats of highly tetrahedral amorphous carbon
US6740384B2 (en) 1996-05-31 2004-05-25 Vijayen Veerasamy Recording media having protective overcoats of highly tetrahedral amorphous carbon and methods for their production
US6805891B2 (en) 1996-05-31 2004-10-19 United Mobile Corporation Recording media having protective overcoats of highly tetrahedral amorphous carbon and methods for their production
US7402350B2 (en) 1996-05-31 2008-07-22 Stormedia Texas, Llc Highly tetrahedral amorphous carbon coatings and systems and methods for their production
US7513215B2 (en) 1996-05-31 2009-04-07 Stormedia Texas, Llc Systems and methods for the production of highly tetrahedral amorphous carbon coatings
US7544397B2 (en) 1996-05-31 2009-06-09 Stormedia Texas, Llc Recording media having protective overcoats of highly tetrahedral amorphous carbon and methods for their production
US7604881B2 (en) 1996-05-31 2009-10-20 Stormedia Texas, Llc Highly tetrahedral amorphous carbon coatings and systems and methods for their production
US7931748B2 (en) 1996-05-31 2011-04-26 Stormedia Texas, Llc Systems and methods for the production of highly tetrahedral amorphous carbon coatings
US5858477A (en) * 1996-12-10 1999-01-12 Akashic Memories Corporation Method for producing recording media having protective overcoats of highly tetrahedral amorphous carbon

Similar Documents

Publication Publication Date Title
US4947085A (en) Plasma processor
US5162633A (en) Microwave-excited plasma processing apparatus
KR20040028985A (en) Plasma reactor coil magnet system
JPS63142636A (en) Vacuum apparatus
JPH0362517A (en) Microwave plasma processor
JPH02168540A (en) Plasma processing device
JPH05335277A (en) Plasma treatment device
JPH0917598A (en) Ecr plasma working device and ecr plasma generating method
JP2000012290A (en) Plasma treatment device
KR20010072635A (en) Device and method for plasma processing
JPH02237117A (en) Semiconductor treatment apparatus
JP3151596B2 (en) Plasma processing method and apparatus
JPH0270063A (en) Plasma/ion forming source and plasma/ion treating device
JPH0312924A (en) Plasma treatment device
JP2515885B2 (en) Plasma processing device
JPS63274148A (en) Microwave plasma processing device
JPH02201923A (en) Plasma treatment device
JPH0650724B2 (en) Low temperature plasma electromagnetic field control mechanism
JPH0270064A (en) Plasma batch treating device
JPH01205519A (en) Plasma treatment apparatus
JPH01304724A (en) Plasma processing apparatus
JP2613313B2 (en) Microwave plasma processing equipment
JPS63228617A (en) Ecr plasma treating apparatus
JPS62143418A (en) Thin film forming device
JPH0525645A (en) Plasma treating device