JPH02161953A - Artificial lung-containing artificial heart - Google Patents

Artificial lung-containing artificial heart

Info

Publication number
JPH02161953A
JPH02161953A JP63317221A JP31722188A JPH02161953A JP H02161953 A JPH02161953 A JP H02161953A JP 63317221 A JP63317221 A JP 63317221A JP 31722188 A JP31722188 A JP 31722188A JP H02161953 A JPH02161953 A JP H02161953A
Authority
JP
Japan
Prior art keywords
blood
gas exchange
function part
artificial
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63317221A
Other languages
Japanese (ja)
Inventor
Hisateru Takano
高野 久輝
Takehisa Matsuda
武久 松田
Yoshiyuki Myonaka
義之 妙中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP63317221A priority Critical patent/JPH02161953A/en
Publication of JPH02161953A publication Critical patent/JPH02161953A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

PURPOSE:To maintain a compact and good blood circulation state and to exhibit excellent gas exchange efficiency by building a gas exchange function part into a pump function part having a pulsation forming mechanism so as to exist therein. CONSTITUTION:Oxygen is passed in the internal passages of a hollow yarn bundle 1 constituting the gas exchange function part and blood is filled in a housing 9. Air is introduced into and discharged from an air chamber 7 through an air introducing and discharging port 11. Then a diaphragm 6 in the air chamber repeats advancing and retreating in a vertical direction and the pressure in the housing changes pulsatively and the blood flows pulsatively from a blood introducing port 2 to a blood discharge port 3 correspondingly. The gas exchange of O2 and CO2 is executed via the film wall of the hollow yarn bundle during this time and the revived blood is introduced into the living body. Since the gas exchange function part is built into the pump function part so as to exist therein in such a manner, the blood flows to the outside of a gas exchange film and the excellent gas exchange efficiency is obtd. The compact device is thus obtd. and the blood is circulated in the form of pulsation flow so that the blood can be circulated to the peripheral organs.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、体外に設置して患者の血液を蘇生・循環させ
る人工臓器に関し、詳細には血液循環を負担する人工心
臓の内部に血液蘇生を負担する人工肺を内蔵した人工肺
内蔵人工心臓に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an artificial organ that is placed outside the body to resuscitate and circulate a patient's blood, and more specifically, the present invention relates to an artificial organ that is installed outside the body to resuscitate and circulate a patient's blood. This invention relates to an artificial heart with a built-in artificial lung that carries the burden of the artificial lung.

[従来の技術] 近年、呼吸不全に陥った患者や循環機能障害を起した患
者に対する治療用臓器あるいは一時的機能代行臓器とし
て、原型人工肺を備えたECMO(Extra −Me
mbrane Oxygenation)等の人工心肺
装置が使用されている。尚人工肺としては上記原型人工
肺の他に気泡型人工肺があり、さらに例えば特公昭57
−4346号公報の様に原型人工肺の中に人工心臓とし
てのポンプ機能部を内在せしめた膜型人工心肺装置も提
案されている。
[Prior Art] In recent years, ECMO (Extra-Me
Artificial heart-lung machines such as mbrane Oxygenation are used. In addition to the above-mentioned prototype oxygenator, there are bubble-type oxygenators.
There has also been proposed a membrane type artificial heart-lung device, as in Japanese Patent No. 4346, in which a pumping function section serving as an artificial heart is built into a prototype artificial lung.

[発明が解決しようとする課題] ECMOに代表される人工心肺装置は、例えば第2図に
示される様に、02とCO2とのガス交換を行なう原型
人工肺Aに対して、ポンプPI。
[Problems to be Solved by the Invention] As shown in FIG. 2, for example, an artificial heart-lung machine represented by ECMO has a pump PI, in contrast to a prototype oxygenator A that performs gas exchange between 02 and CO2.

P2を介した長い血液管路1からなる人工心臓部を組み
合せて構成されており、ポンプPIによフて生体から抜
き出された血液が原型人工肺Aへ供給されて主として0
2と002のガス交換が行なわれ、蘇生された血液はポ
ンプP2によって再び生体へ導入される。しかるに上記
人工心肺装置の実用装置は、装置が大規模且つ複雑であ
り、その制御が難しいという問題もあり、改善すべき点
が多々存在する。又上記装置の人工肺膜には微細な孔を
介してガス交換を行なわせるマイクロポーラス膜を採用
しているものが多いが、マイクロポーラス膜においては
長時間の使用によって血液中の水分や血漿成分が孔部に
堆積してガス交換能が低下するという問題がある。さら
に血液循環を維持するポンプとしては、遠心ポンプやロ
ーラポンプが使用されるが、これらのポンプによって形
成されるのは定常流であり、脈動流を発生させる生体心
臓とは血液流様式が異なってくる。即ち定常流は末梢器
官への循環維持にとって好ましいものとは言えず、良好
な循環状態を維持するには脈動流ポンプの採用が望まれ
る。又ローラポンプには送血管路をしごく作用があり、
チューブ内面が損傷を受けたり、血球成分等が破壊され
て溶血を生じるといった問題がある。一方達心ボンブに
は溶血の問題は少ないが、回転運動に伴なう発熱という
問題があり、冷却用の熱交換器を組込む等の対策が必要
となる。上記の様にECMO型の人工心肺装置には多く
の解決すべき問題点がある。
It is constructed by combining an artificial heart part consisting of a long blood conduit 1 via P2, and the blood extracted from the living body by pump PI is supplied to the prototype artificial lung A.
Gas exchange between 2 and 002 is performed, and the resuscitated blood is introduced into the living body again by pump P2. However, the above-mentioned practical heart-lung machine has the problem that it is large-scale and complicated, and that it is difficult to control, and there are many points that need to be improved. In addition, many of the oxygenator membranes used in the above devices employ microporous membranes that allow gas exchange to occur through minute pores; There is a problem in that gas is deposited in the pores and the gas exchange ability is reduced. Furthermore, centrifugal pumps and roller pumps are used as pumps to maintain blood circulation, but these pumps generate a steady flow, which is different from the biological heart, which generates a pulsating flow. come. That is, a steady flow is not preferable for maintaining circulation to peripheral organs, and it is desirable to employ a pulsating flow pump to maintain a good circulation state. Also, the roller pump has the effect of squeezing the blood supply line.
There are problems such as damage to the inner surface of the tube and destruction of blood cell components, resulting in hemolysis. On the other hand, Dashin bombs have less problems with hemolysis, but they do have the problem of heat generation due to rotational motion, which requires countermeasures such as incorporating a heat exchanger for cooling. As mentioned above, the ECMO type artificial heart-lung machine has many problems that need to be solved.

他方特公昭57−4346号公報に開示される原型人工
心肺装置は、第3図に示す様に血液流バイブあるいは血
液が流れる膜の外側に脈動するガス(酸素)を流して血
液流に脈動を与える、言わば人工心臓内蔵人工肺であり
、脈動流を採用しているという点では血液循環に好都合
であるが、血液に対するガス交換効率が低いという問題
がある。即ち酸素の脈動加圧によフて内在膜を直接加圧
・減圧してポンプ機能をもたせるものであり、コンパク
ト化しようとしたときには充分な気液接触面積がとりに
くい、つまり十分な気液接触面積をとる目的で血液流の
バイブ部及びポンプ部を中空糸状細管の束で構成したと
すると、生体血圧に近い120 a+mHg程度の酸素
の加圧ではポンピングに必要なパイプ部等の体積減少を
起こすことが困難であるという問題がある。
On the other hand, the prototype heart-lung machine disclosed in Japanese Patent Publication No. 57-4346, as shown in FIG. It is, so to speak, an artificial lung with a built-in artificial heart, and is advantageous for blood circulation in that it uses pulsating flow, but has the problem of low gas exchange efficiency with respect to blood. In other words, it provides a pump function by directly pressurizing and depressurizing the integral membrane using pulsating pressurization of oxygen, and when trying to make it compact, it is difficult to provide sufficient gas-liquid contact area. If the blood flow vibrator section and pump section are constructed of a bundle of hollow fiber-like tubules for the purpose of increasing the area, pressurization of oxygen to about 120 a + mHg, which is close to the biological blood pressure, will cause the volume of the pipe section necessary for pumping to decrease. The problem is that it is difficult to

以上の様に、これまで提案されている人工心肺装置には
未だ満足し得るものがなく、改良の必要にせまられてい
る。
As described above, the artificial heart-lung machines that have been proposed so far are still unsatisfactory, and there is a pressing need for improvement.

本発明はこうした事情に着目してなされたものであって
、コンパクトで且つ良好な血液循環状態を維持すること
ができ、しかも優れたガス交換効率を発揮し得る様な人
工心肺装置を提供することを目的とするものである。
The present invention has been made in view of these circumstances, and an object of the present invention is to provide an artificial heart-lung machine that is compact, capable of maintaining a good blood circulation state, and exhibiting excellent gas exchange efficiency. The purpose is to

[課題を解決するための手段] しかして上記目的を達成することのできる本発明の人工
心肺装置は、血液とのガス交換を行なうガス交換機能部
と、生体より導き出された血液をガス交換に付した後、
再び生体へ導入するポンプ機能部を有する複合人工臓器
において、脈動形成機構を備えたポンプ機能部内にガス
交換機能部を内在させてなる点に要旨を有するものであ
る。
[Means for Solving the Problems] The artificial heart-lung machine of the present invention that can achieve the above object includes a gas exchange function section that performs gas exchange with blood, and a gas exchange function section that performs gas exchange with blood drawn from a living body. After attaching
In a composite artificial organ having a pump function section for reintroduction into a living body, the gist is that a gas exchange function section is built into the pump function section provided with a pulsation forming mechanism.

[作用] 人工肺部分におけるガス交換効率が最もよい方法は気液
を直接々触させる気泡型人工肺であるが、気泡の発生及
び存在そのものが血液循環にとって重大な欠点となるの
で、膜を介して血液中のCo2を外気中の02とガス交
換する膜型人工肺を採用しているのが現状である。介在
膜によってガス交換を行うときのガス交換効率を増大さ
せるに当たっては、気相を攪拌流動させるよりも液相部
を攪拌流動させる方が効果的であると考えられる0本発
明は上記ガス交換効率の観点及び装置コンパクト化の観
点から血液が流れるポンプ機能部内に、ガス交換膜を介
して酸素等が流れる人工肺部を内在させたものであり、
ポンプ機能部には血液流に脈動を与える脈動形成機構を
具備させており、これによって良好な血液循環を維持さ
せると共に、血球成分の破壊等を防止している。
[Effect] The method with the best gas exchange efficiency in the oxygenator part is the bubble-type oxygenator, which brings gas and liquid into direct contact with each other. Currently, membrane oxygenators are used to exchange CO2 in the blood with 02 in the outside air. In increasing the gas exchange efficiency when gas exchange is performed using an intervening membrane, it is considered that it is more effective to stir and flow the liquid phase than to stir and flow the gas phase. In order to make the device more compact and to make the device more compact, an artificial lung part through which oxygen, etc. flows through a gas exchange membrane is built into the pump function part through which blood flows.
The pump function section is equipped with a pulsation forming mechanism that gives pulsations to the blood flow, thereby maintaining good blood circulation and preventing destruction of blood cell components.

脈動形成機構を備えたポンプ機能部としては、例えば血
液が流れる管を収縮させるチューブラ−型、血液中でバ
ルーンの収縮・膨張を繰返すバルーン型、ガス交換膜が
流体圧によって上・下動するダイヤフラム型、二重袋状
で内袋を収縮・膨張させるサック型、ガス交換膜に盤状
の平板を取付けて上・下動させるブツシャ−プレート型
等を挙げることができるが、勿論これらに限定される訳
ではない、又ポンプ機能部の血液出入口又はその近傍に
は、夫々逆流防止弁を取付けることが好ましく、逆流防
止弁としてはボール弁、リーフレット弁、ディスク弁が
好ましい。
Examples of pump units with a pulsation forming mechanism include a tubular type that contracts a tube through which blood flows, a balloon type that repeatedly deflates and expands a balloon in the blood, and a diaphragm that has a gas exchange membrane that moves up and down due to fluid pressure. type, a double bag type in which the inner bag contracts and expands, and a butcher plate type in which a disk-like flat plate is attached to the gas exchange membrane and moves up and down, but of course it is not limited to these. In addition, it is preferable to install a check valve at or near the blood inlet/outlet of the pump function part, and the check valve is preferably a ball valve, a leaflet valve, or a disk valve.

本発明に適用されるガス交換機能部即ち人工肺部は前記
した通りポンプ機能部の内部に構成されるものであり、
例えば平膜タイプや中空糸膜タイプ等があるが、ガス交
換効率を高めるという観点からは中空糸膜タイプが好ま
しい0本発明において血液と接触する部分の全てまたは
一部は抗血栓性材料で形成することが好ましく、人工臓
器全体を抗血栓性材料で形成してもよいが、例えば繰返
し応力に充分耐える性質、充分な弾性、成形性等を備え
た材料でまず主要構造を形成し、その構造体のうち血液
と接触する部分に抗血栓性材料で表面処理あるいは表面
被覆してもよい、尚抗血栓性材料を使用しない場合には
、血液中にヘパリンの大量投入が必要となり、この結果
、患者が出血傾伺になるという問題が生ずる。抗血栓性
材料としては、ポリウレタン好ましくはポリエーテル型
セグメント化ポリウレタン、ポリジメチルシロキサン、
ポリジメチルシロキサン−ポリウレタンのブロックまた
はグラフト共重合体、高分子量ポリエステル可塑剤含有
ポリ塩化ビニル、ポリスチレン−ポリ(2−ヒドロキシ
エチル)メ名クリレート共重合体、さらにはヘパリンを
イオン結合させ表面からスローリリースさせることによ
り抗血栓性を発現する材料等、公知のものが挙げられる
が、これらに限定されるものではない。
The gas exchange function section, that is, the artificial lung section applied to the present invention is configured inside the pump function section as described above,
For example, there are flat membrane types and hollow fiber membrane types, but the hollow fiber membrane type is preferable from the viewpoint of increasing gas exchange efficiency. In the present invention, all or part of the part that comes into contact with blood is made of antithrombotic material. The entire artificial organ may be formed of an antithrombotic material, but for example, the main structure is first formed of a material with sufficient resistance to repeated stress, sufficient elasticity, moldability, etc. Parts of the body that come into contact with blood may be surface-treated or coated with anti-thrombotic materials; however, if anti-thrombotic materials are not used, a large amount of heparin must be injected into the blood, resulting in A problem arises in which the patient becomes prone to bleeding. Antithrombotic materials include polyurethanes, preferably polyether-type segmented polyurethanes, polydimethylsiloxanes,
Polydimethylsiloxane-polyurethane block or graft copolymers, high molecular weight polyester plasticizer-containing polyvinyl chloride, polystyrene-poly(2-hydroxyethyl)acrylate copolymers, and even heparin are ionically bonded and slowly released from the surface. Examples include, but are not limited to, known materials such as materials that exhibit antithrombotic properties by being exposed to the antithrombotic effect.

[実施例] 第1図は本発明の実施例を示す断面説明図で、ガス交換
機能部は抗血栓性材料からなる中空糸束1で構成される
と共にハウジング9に内蔵されており、ハウジング9は
酸素導入口4を有するヘッダ部8aとガス排出口5を有
するヘッダ部8bに夫々連結されている。又ハウジング
9には血液導入口2及び血液排出口3がほぼ対向するよ
うに形成され、且つ図面の略中央下部にはハウジング9
の一部を突出させ、ポリウレタン製のダイヤフラム6で
区画して空気室7を形成している。そして血液導入口2
及び血液排出口3には夫々逆流防止弁10.10を介設
している。
[Embodiment] FIG. 1 is a cross-sectional explanatory diagram showing an embodiment of the present invention, in which the gas exchange function section is composed of a hollow fiber bundle 1 made of an antithrombotic material and is built into a housing 9. are connected to a header section 8a having an oxygen inlet 4 and a header section 8b having a gas outlet 5, respectively. Further, the housing 9 is formed with a blood inlet 2 and a blood outlet 3 so as to be substantially opposed to each other, and the housing 9 is located at the lower center of the drawing.
A part of the air chamber 7 is made to protrude and is partitioned by a diaphragm 6 made of polyurethane to form an air chamber 7. And blood inlet 2
A backflow prevention valve 10, 10 is provided at the blood outlet 3 and the blood outlet 3, respectively.

上記の様に構成される実施例の人工肺内蔵人工心臓にお
いて、ガス交換機能部を構成する中空糸束1の内部通路
に酸素を流すと共にハウジング9内に血液を充満させ、
空気導入・排出口11がら空気室7へ空気を導入及び排
出すると、空気室7内のダイヤフラム6が図面において
上下方向に前進及び後退、を繰返し、ハウジング9内の
圧力が脈動的に変化し、それに伴なって血液導入口2か
ら血液排出口3へかけて血液が脈動的に流れる。この間
に、中空糸束の膜壁を介してo2とCo2のガス交換が
行なわれ、蘇生された血液は血液排出口3から生体へ導
入されることになる。
In the artificial heart with a built-in artificial lung of the embodiment configured as described above, oxygen is caused to flow through the internal passage of the hollow fiber bundle 1 constituting the gas exchange function section, and the housing 9 is filled with blood,
When air is introduced into and discharged from the air chamber 7 through the air introduction/discharge port 11, the diaphragm 6 within the air chamber 7 repeatedly advances and retreats in the vertical direction in the drawing, and the pressure within the housing 9 changes pulsatingly. Accordingly, blood flows in a pulsating manner from the blood inlet 2 to the blood outlet 3. During this time, gas exchange between O2 and Co2 occurs through the membrane wall of the hollow fiber bundle, and the resuscitated blood is introduced into the living body through the blood outlet 3.

第4図(^) 、 (B)は他の実施例を示す説明図で
、第4図(A)は側面からみた断面説明図、第4図(B
)は第4図(A)のB−B線断面図である。基本的には
第1図の実施例と同様の構成を示すものであるが、酸素
の流れる中空糸束1を2つの群に分けて縦方向に配置し
ており、ハウジング9の側壁にダイヤフラム6や空気室
7からなる脈動形成機構を設けている。
FIGS. 4(^) and 4(B) are explanatory diagrams showing other embodiments, FIG. 4(A) is a cross-sectional explanatory diagram as seen from the side, and FIG.
) is a sectional view taken along line BB in FIG. 4(A). Basically, the structure is similar to that of the embodiment shown in FIG. A pulsation forming mechanism consisting of an air chamber 7 and an air chamber 7 is provided.

第5図(A) 、 (B)は更に他の実施例を示す説明
図で、第5図(A)は側面からみた断面説明図、第5図
(B)は第5図(A)のB−B線断面説明図である。基
本的な構成は第1図例及び第4図例と同様であり、酸素
の流れる中空糸束1がT方側に入口へラダ8a及び出口
ヘッダ8bを設けて湾曲するように形成され、且つ血液
導入口4を上部に、血液排出口5を下部に、しかも斜め
に対向するように形成している。
FIGS. 5(A) and 5(B) are explanatory diagrams showing still other embodiments, FIG. 5(A) is a cross-sectional explanatory diagram seen from the side, and FIG. 5(B) is an explanatory diagram of FIG. 5(A). It is a BB line cross-sectional explanatory view. The basic configuration is the same as the example shown in FIG. 1 and the example shown in FIG. A blood inlet 4 is formed in the upper part, and a blood outlet 5 is formed in the lower part so as to be diagonally opposed to each other.

第1.4.5図に示した実施例では、酸素とダイヤフラ
ム駆動用空気を別系統にして使用したが、第6図に示す
実施例では空気を酸素供給源として使用している。ハウ
ジング9内は、プレート1゛2の両端にダイヤフラム6
を取付けた隔壁によって空気流通部Aと血液流通部Kに
区画されている。そして該プレート12にプレート駆動
軸13を固設しており、プレート駆動軸13を動力源で
ある駆動部14によって上下動させることによってプレ
ート12及びダイヤフラム6を進出・後退させて血液ポ
ンプとして機能させている。又プレート12及びダイヤ
フラム6によって区画される血液流通部に内に、中空糸
束1からなるガス交換部が血液流通部Aと十分にシール
された状態で収納され、該中空糸束1の両端部に夫々へ
ラダH,,H,を付設して空気をヘッダH1から中空糸
束1内へ導入すると共に、ヘッダH3がら空気排出口3
へ抜き出す様に構成している。一方面液は、上記プレー
ト12及びダイヤフラム6の進出・後退に伴ない、血液
流入口2から血液流通部に内へ導入され、更に血液導出
口3から生体へ循環されており、血液の逆流を防止する
逆流防止弁10.10が血液流入口2及び血液導出口3
に夫々に介設されている。上記の様に、空気及び血液を
流動させることによって中空糸束1でガス交換を行ない
、蘇生した血液を生体へ環流することになる。尚上記で
はプレート駆動軸13によってプレート12及びダイヤ
フラム6を進退させたが、空気流通室Aへ導入される空
気に脈動を与えることによって進退させることもできる
In the embodiment shown in FIG. 1.4.5, oxygen and air for driving the diaphragm are used in separate systems, but in the embodiment shown in FIG. 6, air is used as the oxygen supply source. Inside the housing 9, there are diaphragms 6 at both ends of the plates 1 and 2.
It is divided into an air circulation section A and a blood circulation section K by a partition wall to which a partition wall is attached. A plate drive shaft 13 is fixed to the plate 12, and by moving the plate drive shaft 13 up and down by a drive unit 14 which is a power source, the plate 12 and the diaphragm 6 are moved forward and backward to function as a blood pump. ing. In addition, a gas exchange section consisting of a hollow fiber bundle 1 is housed in the blood circulation section defined by the plate 12 and the diaphragm 6 in a sufficiently sealed state with the blood circulation section A, and both ends of the hollow fiber bundle 1 are A ladder H, , H, is attached to each of the holes to introduce air into the hollow fiber bundle 1 from the header H1, and also to introduce air from the header H3 into the air outlet 3.
It is configured so that it can be extracted to On the one hand, the liquid is introduced into the blood circulation section from the blood inlet 2 as the plate 12 and the diaphragm 6 advance and retreat, and is further circulated to the living body from the blood outlet 3, thereby preventing backflow of blood. A backflow prevention valve 10.10 prevents blood inlet 2 and blood outlet 3.
Interventions are provided for each. As described above, by causing air and blood to flow, gas exchange is performed in the hollow fiber bundle 1, and the resuscitated blood is returned to the living body. In the above description, the plate 12 and the diaphragm 6 are moved forward and backward by the plate drive shaft 13, but they can also be moved forward and backward by applying pulsation to the air introduced into the air circulation chamber A.

[発明の効果] 本発明は以上の様に構成されており、ポンプ機能部内に
ガス交換機能部を内在させたので、ガス交換膜の外部に
血液が流れ、優れたガス交換効率を得ることができる。
[Effects of the Invention] The present invention is configured as described above, and since the gas exchange function section is built into the pump function section, blood flows outside the gas exchange membrane and excellent gas exchange efficiency can be obtained. can.

また装置をコンパクト化することができ、且つ血液は脈
動流となって循環されるので末梢器管まで血液を循環さ
せる上で優れた性能を得ることができる。
Furthermore, the apparatus can be made compact, and since the blood is circulated as a pulsating flow, excellent performance can be obtained in circulating blood to the peripheral organs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,4〜6図は本発明の実施例を示す断面説明図、第
2.3図は従来例を示す断面説明図である。
1, 4 to 6 are cross-sectional explanatory views showing embodiments of the present invention, and FIGS. 2.3 are cross-sectional explanatory views showing a conventional example.

Claims (1)

【特許請求の範囲】 血液とのガス交換を行なうガス交換機能部と、生体より
導き出された血液をガス交換に付した後、再び生体へ導
入するポンプ機能部を有する複合人工臓器において、 脈動形成機構を備えたポンプ機能部内にガス交換機能部
を内在させてなることを特徴とする人工肺内蔵人工心臓
[Scope of Claims] A composite artificial organ having a gas exchange function unit that performs gas exchange with blood, and a pump function unit that subjects blood extracted from a living body to gas exchange and then reintroduces it into the living body, comprising: An artificial heart with a built-in artificial lung, characterized in that a gas exchange function part is built into a pump function part having a mechanism.
JP63317221A 1988-12-15 1988-12-15 Artificial lung-containing artificial heart Pending JPH02161953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63317221A JPH02161953A (en) 1988-12-15 1988-12-15 Artificial lung-containing artificial heart

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63317221A JPH02161953A (en) 1988-12-15 1988-12-15 Artificial lung-containing artificial heart

Publications (1)

Publication Number Publication Date
JPH02161953A true JPH02161953A (en) 1990-06-21

Family

ID=18085829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63317221A Pending JPH02161953A (en) 1988-12-15 1988-12-15 Artificial lung-containing artificial heart

Country Status (1)

Country Link
JP (1) JPH02161953A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0857044A (en) * 1994-08-19 1996-03-05 Hiroshima Univ Cardiopulmonary function assisting device
JP2010518995A (en) * 2007-02-28 2010-06-03 ドリッテ パテントポルトフォーリオ ベタイリグングスゲゼルシャフト エムベーハー ウント コー.カーゲー Equipment for mass transfer and / or energy exchange
JP2015027458A (en) * 2013-07-29 2015-02-12 ノヴァルング ゲーエムベーハー Device having blood pump and pump control unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615923A (en) * 1979-07-13 1981-02-16 Sumitomo Metal Ind Ltd Preparation of stress concentration relieving screw
JPS63257573A (en) * 1987-03-25 1988-10-25 フランコ・マリア・モンテベッチ Method and apparatus for externally circulating blood and supporting heart blood vessel and/or breathing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615923A (en) * 1979-07-13 1981-02-16 Sumitomo Metal Ind Ltd Preparation of stress concentration relieving screw
JPS63257573A (en) * 1987-03-25 1988-10-25 フランコ・マリア・モンテベッチ Method and apparatus for externally circulating blood and supporting heart blood vessel and/or breathing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0857044A (en) * 1994-08-19 1996-03-05 Hiroshima Univ Cardiopulmonary function assisting device
JP2010518995A (en) * 2007-02-28 2010-06-03 ドリッテ パテントポルトフォーリオ ベタイリグングスゲゼルシャフト エムベーハー ウント コー.カーゲー Equipment for mass transfer and / or energy exchange
US8398858B2 (en) 2007-02-28 2013-03-19 Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co. Kg Device for transferring mass and/or exchanging energy
JP2015027458A (en) * 2013-07-29 2015-02-12 ノヴァルング ゲーエムベーハー Device having blood pump and pump control unit

Similar Documents

Publication Publication Date Title
US6387323B1 (en) Integrated blood oxygenator and pump system having active blood oxygenator
US11173238B2 (en) Arrangement with a blood pump and a gas exchanger for extracorporeal membrane oxygenation
JP3265650B2 (en) Blood circulation assist device
US4573997A (en) Right ventricular assist device
US3639084A (en) Mechanism for control pulsatile fluid flow
WO1994003266A9 (en) Improved mass and thermal transfer means for use in heart lung machines, dialyzers, and other applications
WO1994003266A1 (en) Improved mass and thermal transfer means for use in heart lung machines, dialyzers, and other applications
CN102921054B (en) A kind of pulsation Medical Devices in extracorporeal surgery
US4094792A (en) Membrane fluid transfer method and apparatus
Galletti Cardiopulmonary bypass: a historical perspective
JPH02161953A (en) Artificial lung-containing artificial heart
US20100145471A1 (en) Prosthetic lung
WO2005028002A1 (en) Blood oxygenation system with single lumen catheter
JPH0857044A (en) Cardiopulmonary function assisting device
MXPA04000801A (en) Low flow atrial-arterial shunt for pump-assisted myocardial revascularization without cardiopulmonary bypass.
Galletti et al. Cardiopulmonary bypass: the historical foundation, the future promise
JPH0241172A (en) Blood treatment apparatus
JPH07255834A (en) Blood pump
Abe et al. Basic study to develop the undulation pump for practical use: antithrombogenicity, hemolysis, and flow patterns inside the pump
Bramson et al. Design and performance of a new membrane lung
JPH03126465A (en) Artificial cardiopulmonary device
JPH02156957A (en) Hollow fiber film type oxygen enriching device
Nojiri et al. Small soft left ventricular assist device powered by intraaortic balloon pump console for infants: a less expensive option
JPH03295565A (en) Gas driven type artificial lung device
JPH02156958A (en) Hollow fiber film type oxygen enriching device