JPH02150850A - Surface roughening method for electrophotographic sensitive body - Google Patents

Surface roughening method for electrophotographic sensitive body

Info

Publication number
JPH02150850A
JPH02150850A JP30421288A JP30421288A JPH02150850A JP H02150850 A JPH02150850 A JP H02150850A JP 30421288 A JP30421288 A JP 30421288A JP 30421288 A JP30421288 A JP 30421288A JP H02150850 A JPH02150850 A JP H02150850A
Authority
JP
Japan
Prior art keywords
photoreceptor
shot
electrophotographic
cleaning
cleaning blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30421288A
Other languages
Japanese (ja)
Inventor
Shunkai Sako
酒匂 春海
Kiyoshi Sakai
酒井 清志
Teigo Sakakibara
悌互 榊原
Shoji Amamiya
昇司 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP30421288A priority Critical patent/JPH02150850A/en
Publication of JPH02150850A publication Critical patent/JPH02150850A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To prevent the cleaning defect by the turning over, edge chipping, etc., of a cleaning blade without degrading electrophotographic characteristics by mechanically polishing the surface by using spherical shot or abrasive particles. CONSTITUTION:The surface is mechanically polished by using the spherical shot or abrasive particles. The shot collides against the surface of the electrophotographic sensitive body and bounces back without being captured by the surface if a sandblasting method is executed by using the shot and, therefore, the embedment of the shot arises only when the shot collides against the surface of the electrophotographic sensitive body as the external force to further embed the shot at the moment when the shot exists on the surface; in addition, the probability thereof is extremely low and, therefore, the embedment of the shot is substantially prevented. The turning over and edge chipping of the cleaning blade by the friction on the surface of the photosensitive body are prevented in this way and the excellent cleanability and images are obtd. without degrading the electrophotographic characteristics at all.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子写真感光体に関し、より詳しくは、クリー
ニング性及び電子写真特性の良好な電子写真感光体を得
るための電子写真感光体の表面粗面化法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to an electrophotographic photoreceptor, and more particularly, to a method for improving the surface of an electrophotographic photoreceptor for obtaining an electrophotographic photoreceptor with good cleaning properties and electrophotographic properties. Concerning surface roughening method.

[従来の技術] 一般に電子写真プロセスにおいては、電子写真感光体に
対して少なくとも帯電、像露光、現像。
[Prior Art] Generally, in an electrophotographic process, an electrophotographic photoreceptor is at least charged, image exposed, and developed.

転写及びクリーニングの各工程からなるサイクルを繰り
返して行っている。特に、転写工程後の、感光体」二の
残存トナーを除去するクリーニング工程は常に鮮明なコ
ピー画像を得るために重要な工程である。
A cycle consisting of transfer and cleaning steps is repeated. In particular, the cleaning process for removing residual toner from the photoreceptor after the transfer process is an important process in order to always obtain clear copy images.

このクリーニングの方法として、通常次の二通りの方法
が用いられている。その第一は、クリーニングブレード
と称するゴム性の板形状部材を感光体上に圧接して感光
体とクリーニングブレードとの間の隙間を無くし、トナ
ーのすり抜けを防止して残存トナーをかき取る方法であ
る。第2図はそのようなりリーニングブレードを利用す
るクリーング装置の典型的な例を示す概要断面図であり
、クリーニング装置7を矢印Aの方向に回転する円筒状
の感光体8に近接して配置し、該クリーニング装置に取
り付けられているクリーニングブレード9の一方の端部
の一つのエツジを感光体8の表面に1図示のように感光
体の回転方向に対してカウンタ一方向で、又は不図示の
順方向で圧接させて残存トナーをかき取る(クリーニン
グ性はカウンタ一方向の方が優れていることが知られて
いる)、その第二は、ファーブラシのローラを感光体表
面に接するように回転させて残仔トナーを拭き取るか、
又は叩き落とす方法である。これらの二通りの方法のう
ち、ゴムブレードの方が安価であり、設計も容易である
ため、現在ではクリーニングブレードを用いるクリーニ
ングが主流を占めている。特に天然色カラー現像を行な
場合には、マゼンタ、シアン、イエローの3原色、ある
いは、更にブラックを含めた4色を重ねることによって
天然色を出しているので、トナーの使用量が通常の1色
現像よりはるかに多く、そのためゴムブレードを感光体
に圧接するクリーニング方法を用いることが最適である
The following two methods are generally used for this cleaning. The first method is to press a rubber plate-shaped member called a cleaning blade onto the photoconductor to eliminate the gap between the photoconductor and the cleaning blade, thereby preventing toner from slipping through and scraping off the remaining toner. be. FIG. 2 is a schematic cross-sectional view showing a typical example of a cleaning device using such a leaning blade, in which the cleaning device 7 is placed close to a cylindrical photoreceptor 8 rotating in the direction of arrow A. , one edge of one end of the cleaning blade 9 attached to the cleaning device is applied to the surface of the photoreceptor 8 in one direction counter to the rotational direction of the photoreceptor as shown in the figure, or in one direction (not shown). The remaining toner is scraped off by applying pressure in the forward direction (it is known that the cleaning performance is better in one direction of the counter).The second method is to rotate the roller of the fur brush so that it is in contact with the surface of the photoreceptor. Let me wipe off the leftover toner, or
Or you can knock it off. Of these two methods, since the rubber blade is cheaper and easier to design, cleaning using a cleaning blade is currently the mainstream. In particular, when performing natural color development, natural colors are produced by overlapping the three primary colors of magenta, cyan, and yellow, or four colors including black, so the amount of toner used is 1/2 of the normal amount. color development, and therefore it is best to use a cleaning method in which a rubber blade is pressed against the photoreceptor.

しかしながら、 (*れたクリーニング性を示すクリー
ニングブレードには、感光体との摩擦力が大きいため、
クリーニングブレードの反転が起こりやすいという欠点
があった。このクリーニングブレードの反転は、第2図
に示したカウンタ一方向のクリーニングブレード9aが
9bで示すように感光体の移動方向、即ちカウンタ一方
向とは反対の方向に反ってしまう現象である。
However, cleaning blades with (*) cleaning performance have a large frictional force with the photoreceptor, so
There was a drawback that the cleaning blade was likely to reverse. This reversal of the cleaning blade is a phenomenon in which the cleaning blade 9a shown in FIG. 2, which is oriented in one counter direction, is warped in the direction in which the photoreceptor moves, that is, in the opposite direction to the one direction counter, as shown by 9b.

このクリーニングブレードが反転する現象は。What is the phenomenon of this cleaning blade turning over?

感光体の長寿命化のために感光体表面を硬く、即ち削れ
難くシた場合には更に生じ易くなる。又、画質向上のた
めにトナーの粒径が均一化されて微小なトナーが除去さ
れている場合には、トナーがクリーニングブレードと感
光体表面との間の隙間に入ることによって引き起こされ
る潤滑性が薄れるので、クリーニングブレードの反転が
より一層生じやすくなる6 また、天然色カラー現象を行う場合には、1枚の画像を
出すのにマゼンタ、シアン、イエローの3色、あるいは
ブラックを含めた4色のトナーを用いて3回あるいは4
回の現象を行うため、クリニングブレードにかかる負荷
が太き(なり、それでクリーニングブレードの反転や、
更にはエツジ部の欠損が生じやすくなる。
If the surface of the photoreceptor is made hard, ie, less likely to be scraped, in order to extend the life of the photoreceptor, this problem becomes more likely to occur. In addition, when toner particle size is made uniform and minute toner particles are removed to improve image quality, the lubricity caused by toner entering the gap between the cleaning blade and the photoreceptor surface is reduced. As the cleaning blade fades, reversal of the cleaning blade is more likely to occur.6 Also, when performing natural coloring, it takes three colors, magenta, cyan, and yellow, or four colors, including black, to produce one image. 3 or 4 times using the same toner.
In order to carry out the phenomenon of
Furthermore, the edges are more likely to be damaged.

また、感光体の表面層が有機物からなる場合には、無機
物表面に比べて、クリーニングブレードと感光体表面と
の摩擦抵抗が増大し、特にクリーニングブレードの反転
やエツジ部の欠損が発生し易くなる。
Additionally, when the surface layer of the photoreceptor is made of organic matter, the frictional resistance between the cleaning blade and the photoreceptor surface increases compared to an inorganic surface, making it particularly likely that the cleaning blade will flip over and the edges will be damaged. .

そこで本件出願人は先に、特願昭62−256769号
において、感光体表面をあらかじめ粗面にしておくこと
によって画質の低下を招かずに、クリーニングブレード
の反転、ブレードエツジ部の欠損等によるクリーニング
不良を防止する方法を提案した。感光体表面の粗面化状
態はJIS規格80601で定義される10点平均粗さ
(R2)の測定法で表してその最大値、平均値及び最少
値がいずれも好ましくは0.3〜5.0μmの範囲内に
あり、更に好ましくは0.3〜2.0μmの範囲内にあ
る。その最大値が5.0μmよりも大きい場合には画像
欠陥としてスジ状のものが画像に表われやす(なる、ま
た最小値が0.3μmよりも小さい場合には部分的にク
リーニングブレードと感光体表面との摩擦がほとんど緩
和されず、また感光体表面を粗面にした効果が認められ
ない、上記の最大値、平均値及び最小値が0.3〜5.
0μmの範囲内にあれば、感光体表面とクリーニングブ
レードとの接触面積を減少させ、また、トナー中に僅か
に含まれている微小粒径のもの(はぼ5μm以下)や、
使用により削り取られた感光体表面の削り扮(はぼ1μ
m以下)が感光体表面とクリーニングブレードとの間の
隙間に適度にもぐり込むことによって生じる潤滑性を持
たせ易(するので、クリーニングブレードの反転等によ
るクリーニング不良を防止することができる。
Therefore, in Japanese Patent Application No. 62-256769, the applicant previously proposed that the surface of the photoreceptor be roughened in advance so as to avoid deterioration in image quality by cleaning the cleaning blade by inverting the cleaning blade, chipping the blade edge, etc. We proposed a method to prevent defects. The roughening state of the photoreceptor surface is expressed by the 10-point average roughness (R2) measurement method defined in JIS Standard 80601, and the maximum value, average value, and minimum value are all preferably 0.3 to 5. It is within the range of 0 μm, more preferably within the range of 0.3 to 2.0 μm. If the maximum value is larger than 5.0 μm, streaks are likely to appear on the image as an image defect. When the maximum value, average value, and minimum value are 0.3 to 5.0, the friction with the surface is hardly alleviated and the effect of roughening the photoreceptor surface is not recognized.
If it is within the range of 0 μm, the contact area between the photoreceptor surface and the cleaning blade will be reduced, and if the particle size is small (approximately 5 μm or less) contained in the toner,
The surface of the photoreceptor has been scraped off due to use (1μ
m or less) easily penetrates into the gap between the photoreceptor surface and the cleaning blade to provide lubricity (this makes it possible to prevent cleaning failures due to inversion of the cleaning blade, etc.).

一方、感光体表面を粗面化する方法としては。On the other hand, as a method for roughening the surface of a photoreceptor.

特開昭53−92133号公報や特開昭57−9477
2号公報に記載されているようにブラシや研磨粒子を用
いたりしたサンドブラスト法などによる機械的な研磨の
方法、特開昭53−92133号公報に記載されている
ように塗工型の乾燥条件等で表面なゆず皿状にする方法
や溶剤にさらす方法、さらには特開昭52−26226
号公報に記載されているように表面層にあらかじめ粉体
粒子を添加して塗工し粗面化する方法等がある。このう
ち機械的に研磨する方法はクリーニングブレードと感光
体表面との間の潤滑性を増加させるという点で最も好ま
しい、それは機械で研磨することによって発生する感光
体表面の削り粉がそのまま潤滑剤として作用するためで
ある。
JP-A-53-92133 and JP-A-57-9477
A mechanical polishing method such as a sandblasting method using a brush or abrasive particles as described in Publication No. 2, and drying conditions for the coating mold as described in Japanese Patent Application Laid-Open No. 53-92133. There are also methods to make the surface into a yuzu dish shape, methods to expose it to a solvent, and even JP-A-52-26226.
As described in the above publication, there is a method in which powder particles are added to the surface layer in advance and coated to roughen the surface. Among these methods, the mechanical polishing method is the most preferable in that it increases the lubricity between the cleaning blade and the photoreceptor surface, because the shavings on the photoreceptor surface generated by mechanical polishing directly act as a lubricant. This is because it works.

[発明が解決しようとする課題] しかし、この機械的な研磨ではその研磨粒子やメジが少
なからず感光体表面に埋め込まれ、それが感光体の電子
写真特性、特に残留電位の上昇や暗減衰の増加という弊
害を引き起こしていた。すなわち、残留電位の上昇のた
めに感光体の電位コントラストが小さくなり1画像濃度
が下がったり、暗減衰の増加により画像上の下地部の汚
れが発生したりする。
[Problems to be Solved by the Invention] However, in this mechanical polishing, a considerable amount of the abrasive particles and grains are embedded in the surface of the photoreceptor, which affects the electrophotographic characteristics of the photoreceptor, especially the increase in residual potential and dark decay. This was causing the negative effect of an increase in That is, due to the increase in residual potential, the potential contrast of the photoreceptor decreases, resulting in a decrease in the density of one image, and the increase in dark decay causes staining of the underlying portion of the image.

本発明の目的は、上記のような問題を伴うことなしで、
即ち電子写真感光体の電子写真特性を低下させずに、ク
リーニングブレードの反転やエツジ部の欠損等によるク
リーニング不良を防止することのできる電子写真感光体
を提供することである。
The object of the present invention is to solve the problem without the above-mentioned problems.
That is, it is an object of the present invention to provide an electrophotographic photoreceptor that can prevent cleaning failures due to inversion of a cleaning blade, loss of edges, etc., without degrading the electrophotographic characteristics of the electrophotographic photoreceptor.

本発明の他の目的は、このクリーニング不良を防止する
ために行う電子写真感光体の表面粗面化を、電子写真感
光体表面への研磨粒子やメジの埋め込みなしで、行うこ
とできる表面粗面化法を提供することである。
Another object of the present invention is to provide a roughened surface that can be used to roughen the surface of an electrophotographic photoreceptor in order to prevent this cleaning failure without embedding abrasive particles or sandals into the surface of the electrophotographic photoreceptor. The aim is to provide a method for converting

[課題を解決するための手段] 本発明者等は、この研磨粒子やメジについて鋭意検討し
た結果、形状が球状であるものを用いることによって電
子写真感光体表面への埋め込みが著しく減少し、粗面化
しても電子写真感光体の電子写真特性には影響を与えな
いことを見いだした。これは、研磨粒子やメジの形状が
不定バaの場合には、その鋭角部が電子写真感光体上に
突き刺さるか、あるいは引っかかり、その後から来る研
磨粒子あるいはメジの圧力により感光体上へ埋め込みが
起こるのに対し、形状が球状であると鋭角部が無いため
電子写真感光体への突きヤ11りや引っかかりが起こり
にくく、そのため埋め込みが起こらないためであると思
われる。
[Means for Solving the Problems] As a result of intensive studies on the abrasive particles and sand particles, the present inventors found that by using particles with a spherical shape, embedding in the surface of the electrophotographic photoreceptor is significantly reduced, and roughness is reduced. It has been found that surface coating does not affect the electrophotographic properties of the electrophotographic photoreceptor. This is because if the shape of the abrasive particles or squares is irregular, the sharp edges of the particles will pierce or get caught on the electrophotographic photoreceptor, and the subsequent pressure of the abrasive particles or squares will embed them onto the photoreceptor. This is thought to be because, on the other hand, when the shape is spherical, there are no acute angles, so it is difficult for the punch 11 to hit or catch on the electrophotographic photoreceptor, and therefore embedding does not occur.

即ち、本発明は、電子写真感光体の表面を粗面化する方
法において、該表面を球状形状のメジ又は研磨粒子を用
いて機械研磨することを特徴とする。
That is, the present invention is characterized in that, in a method for roughening the surface of an electrophotographic photoreceptor, the surface is mechanically polished using spherical grinding or abrasive particles.

本発明の粗面化法においては、JIS規格B06旧で定
義される10点平均粗さ(R2)の測定法で表して面粗
さの最大値、平均値及び最小値(本明細書においては、
これらをそれぞれ最大面粗さ、平均面粗さ及び最小面粗
さと言う)がいずれも0.3〜5.0μmの範囲内に入
る均一な粗面状態を得ることが可能であり、クリーニン
グ不良を防止することができる。
In the surface roughening method of the present invention, the maximum value, average value, and minimum value of surface roughness (herein, ,
It is possible to obtain a uniform rough surface condition in which the maximum surface roughness, average surface roughness, and minimum surface roughness are all within the range of 0.3 to 5.0 μm, thereby reducing cleaning defects. It can be prevented.

更に、本発明者等が電子写真感光体の粗面化法について
検討を重ねた結果、上記のように形状が球状のメジな用
いてサンドブラスト法を用いて粗面化することにより、
電子写真感光体上へのメジの埋め込みが全く無いことが
わかった。すなわち、電子写真感光体表面の研磨におい
て研磨粒子を電子写真感光体上に圧接して電子写真感光
体表面を粗面化する従来の方法では、研磨粒子を球形に
して電子写真感光体上への突き刺ささりや引つかかりを
無くしたとしても、研磨剤の粒子が単離して電子写真感
光体上に存在しているだけで、研磨剤の圧接による圧力
で埋め込まれてしまうのに対し1球状のメジを用いてサ
ンドブラスト法を行なうと、メジは電子写真感光体表面
に衝突し、引っかからずにはね返ってしまうため、電子
写真感光体上にメジが存在している瞬間に更に埋め込む
ための外圧としてメジが衝突する場合しかメジの埋め込
みは起こらず、また、その確立は極めて少ないために実
質上、メジの埋め込みが無くなると考えられる。
Furthermore, as a result of repeated studies by the present inventors on a method for roughening the surface of an electrophotographic photoreceptor, by roughening the surface using a sandblasting method using a medium having a spherical shape as described above,
It was found that there was no embedding of meji on the electrophotographic photoreceptor. That is, in the conventional method of polishing the surface of an electrophotographic photoreceptor, the surface of the electrophotographic photoreceptor is roughened by pressing abrasive particles onto the electrophotographic photoreceptor. Even if sticking and catching are eliminated, the abrasive particles are isolated and exist on the electrophotographic photoreceptor, and are embedded by the pressure of the abrasive, whereas a spherical particle When sandblasting is performed using sandblasting, the sandblasting collides with the surface of the electrophotographic photoreceptor and bounces off without being caught. Since embedding of meji only occurs when there is a collision, and the probability of this happening is extremely low, it is thought that embedding of meji will virtually disappear.

従って、好ましくは球状のメジを用いるサンドブラスト
法を用いて電子写真感光体表面を粗面にするのが望まし
い。
Therefore, it is desirable to roughen the surface of the electrophotographic photoreceptor by preferably using a sandblasting method using a spherical sandpaper.

本発明の表面粗面化法の実施に当たっては、サンドブラ
スト法以外の方法として、フィルム状研磨材を用いるこ
とができ、その場合には、例えば第1図に模式的に断面
図で示した装置を用いることができる。有機電子写真感
光体lを時計回り又は反時計回りに回転させる。一方フ
ィルム状研磨材2を送り出しローラー3から、電子写真
感光体に圧接しているゴム製押さえローラー4を経由さ
せて巻き取りローラー5へ矢印6の方向に移動させるに
の際にフィルム状研磨材2は押さえローラー4の位置で
電子写真感光体lの表面を摺擦する0本発明においては
この電子写真感光体lの表面の速度とフィルム状研磨材
2の移動速度との差による相対研磨速度を好ましくは1
.0 mm/ 5000mm/秒に維持する。
In carrying out the surface roughening method of the present invention, a film-like abrasive material can be used as a method other than the sandblasting method. Can be used. Rotate the organic electrophotographic photoreceptor l clockwise or counterclockwise. On the other hand, when the film-like abrasive material 2 is moved in the direction of arrow 6 from the delivery roller 3 to the take-up roller 5 via the rubber presser roller 4 which is in pressure contact with the electrophotographic photoreceptor, the film-like abrasive material 2 rubs the surface of the electrophotographic photoreceptor l at the position of the presser roller 4. In the present invention, the relative polishing speed is determined by the difference between the speed of the surface of the electrophotographic photoreceptor l and the moving speed of the film-like abrasive material 2. preferably 1
.. Maintain at 0 mm/5000 mm/sec.

本発明の実施に用いるフィルム状研磨材としては酸化ア
ルミニウム、シリコンカーバイド、酸化クローム、ダイ
ヤモンド等の微粒子をポリエステル等のフィルムに塗布
、固定したものがある。
Film-like abrasives used in the practice of the present invention include those in which fine particles of aluminum oxide, silicon carbide, chromium oxide, diamond, etc. are coated and fixed on a film of polyester or the like.

本発明の粗面化法によって処理される電子写真感光体は
、無機系感光体でも有機系感光体でもよく1例^ば有機
系感光体の場合には第3図に示すように、導電性支持体
lO上に有機感光層11が積層されたものであり、この
感光層11は好ましくは電荷発生層I2と電荷輸送層1
3に機能分離された積層型感光層である。
The electrophotographic photoreceptor treated by the surface roughening method of the present invention may be an inorganic photoreceptor or an organic photoreceptor. For example, in the case of an organic photoreceptor, as shown in FIG. An organic photosensitive layer 11 is laminated on a support lO, and this photosensitive layer 11 preferably includes a charge generation layer I2 and a charge transport layer 1.
This is a laminated photosensitive layer with three functionally separated layers.

導電性支持体10として、アルミニウム、アルミニウム
合金、ステンレスなどの金属、導電性物質を単独又は適
当なバイングーと共に塗布して導電層を設けた金属、あ
るいは導電処理したプラスデックや紙などをドラム状又
はシート状に成形したものなと゛、従来公知のいずれの
ものも用いることができる。
As the conductive support 10, a metal such as aluminum, an aluminum alloy, or stainless steel, a metal coated with a conductive substance alone or together with a suitable binder to provide a conductive layer, or a conductive treated plastic deck or paper may be used in a drum shape or Any conventionally known material can be used as long as it is shaped into a sheet.

電荷発生層12は、アゾ顔料、キノン顔料、キノシアニ
ン顔料、ペリレン顔料、インジゴ顔料、フタロシアニン
顔料などの電荷発生物質を、ポリビニルブチラール、ポ
リスチレン、アクリル樹脂、ポリエステル、ポリ酢酸ビ
ニル、ポリカーボネートなどの結着性樹脂に分散含有さ
せて形成することができ、また、真空蒸着装置によって
真空蒸着膜として形成することもできる。好ましい膜厚
は0、旧〜3μmである。
The charge generation layer 12 contains a charge generation substance such as an azo pigment, a quinone pigment, a quinocyanine pigment, a perylene pigment, an indigo pigment, or a phthalocyanine pigment, and a binding agent such as polyvinyl butyral, polystyrene, acrylic resin, polyester, polyvinyl acetate, or polycarbonate. It can be formed by being dispersed in a resin, or it can also be formed as a vacuum deposited film using a vacuum deposition apparatus. The preferred film thickness is 0.5 μm to 3 μm.

電荷輸送層13はスチリル系化合物、ヒドラゾン系化合
物、トリアリールアミン系化合物、カルバゾール系化合
物、オキサゾール系化合物、ピラゾリン系化合物などの
電荷輸送物質を、ボリアリレート、ポリスチレン、アク
リル樹脂、ポリエステル、ポリカーボネートなどの結着
剤樹脂に分散含有させて形成することができる。好まし
い膜厚は10〜30μmである。また、感光層11の構
成として電荷発生層12を電荷輸送層13の上に形成し
てもよく、さらには感光層11は前述の電荷発生物質と
電荷輸送物質とを同一層に含有させた単一層型であって
もよい。
The charge transport layer 13 contains a charge transport material such as a styryl compound, a hydrazone compound, a triarylamine compound, a carbazole compound, an oxazole compound, or a pyrazoline compound, or a charge transport material such as a polyarylate, polystyrene, acrylic resin, polyester, or polycarbonate. It can be formed by being dispersed in a binder resin. The preferred film thickness is 10 to 30 μm. Further, as a structure of the photosensitive layer 11, a charge generation layer 12 may be formed on the charge transport layer 13, and furthermore, the photosensitive layer 11 may be formed of a monolayer containing the above-mentioned charge generation substance and charge transport substance in the same layer. It may be of a single layer type.

さらに、導電性支持体10と感光511との間には、接
着性及びバリヤー性を向上させるために下引き層などの
中間層を設けてもよい。
Furthermore, an intermediate layer such as an undercoat layer may be provided between the conductive support 10 and the photosensitive layer 511 in order to improve adhesiveness and barrier properties.

本発明の方法で表面粗面化された電子写真感光体は、感
光体に対してカウンタ一方向に当接されたゴムブレード
によるクリーニング手段を有する電子写真プロセスに用
いられる。
The electrophotographic photoreceptor whose surface has been roughened by the method of the present invention is used in an electrophotographic process having a cleaning means using a rubber blade brought into contact with the photoreceptor in one counter direction.

以下に1本発明を具体例に基づいて詳細に説明する。各
々の実施例、比較例で作成した感光体をそれぞれ帯電、
像露光、現像、転写及びポリウレタンゴムブレードによ
るクリーニング(線圧11g/cm)を有する電子写真
装置(NP−3525、キャノン製)に組み入れて、通
紙初期から5万枚までの繰り返し画像出し評価を行なっ
た。重にそれぞれの感光体につき、粗面化する以前の感
光体との電子写真特性(残留電位、暗減衰)の差を測定
した。
The present invention will be explained in detail below based on a specific example. The photoreceptors prepared in each example and comparative example were charged,
It is installed in an electrophotographic device (NP-3525, manufactured by Canon) that has image exposure, development, transfer, and cleaning with a polyurethane rubber blade (linear pressure 11 g/cm), and repeatedly evaluates the image output from the beginning of paper feeding up to 50,000 sheets. I did it. For each photoreceptor, the difference in electrophotographic characteristics (residual potential, dark decay) between the photoreceptor and the photoreceptor before roughening was measured.

ここで残留電位とは、−700Vの一次帯電後6、Ol
ux・secの光を照射した時の電位であり、暗減衰と
は、−700Vに帯電させてから0.5秒後までに減衰
した電位とする。また、粗面化後に感光体上に埋め込ま
れた研磨粒子あるいはメジの個数を、光学顕微鏡写真に
より観察し、感光体表面の1辺が10011mの正方形
中に埋め込まれている個数として測定した。
Here, the residual potential is 6, Ol after primary charging of -700V.
This is the potential when irradiated with light of ux·sec, and dark decay is the potential that decays within 0.5 seconds after being charged to -700V. Further, the number of abrasive particles or grains embedded on the photoreceptor after surface roughening was observed using an optical microscope photograph, and was measured as the number of particles embedded in a square of 10011 m on one side of the photoreceptor surface.

それらの繰り返し画像出し評価等の結果を第1表にまと
めて示す。
Table 1 summarizes the results of the repeated image development evaluations, etc.

[実施例1] 80φX360mmのアルミニウムシリンダーを支持体
とし、これに可溶性ナイロン(6−66−610−12
四元ナイロン共重合体)の5%メタノール溶液を浸漬塗
布して1μm厚の下引き層を設けた。
[Example 1] An aluminum cylinder of 80φ x 360mm was used as a support, and soluble nylon (6-66-610-12
A 1 μm thick undercoat layer was provided by dip coating a 5% methanol solution of a quaternary nylon copolymer.

次に下記構造式のジスアゾ顔料10部(重量部、以下同
様)ポリビニルブチラール(ブチラール化度68%、数
平均分子[20000) 5部及びシクロへキサノン5
0部lφガラスピーズを用いたサンドミルで20時間分
散した。この分散液にメチルエチルケトン70〜120
(適宜)部を加え、下引層上に塗布して膜厚0.lLL
mの電荷発生層を形成した。
Next, 10 parts (parts by weight, the same applies hereinafter) of a disazo pigment having the following structural formula, 5 parts of polyvinyl butyral (degree of butyralization 68%, number average molecular weight [20000)] and 5 parts of cyclohexanone
Dispersion was carried out for 20 hours in a sand mill using 0 parts lφ glass beads. This dispersion contains 70 to 120 methyl ethyl ketone.
(appropriate) and coated on the undercoat layer to a film thickness of 0. lLL
A charge generation layer of m was formed.

次にビスフェノールZ型車リカーボネート(粘度平均分
子1130000 )  10部及び下記構造式のヒド
ラゾン化合物10部をモノクロルベンゼン65部中に溶
解し、この溶液を上記電荷発生層上に侵清塗布して18
μm厚の電荷輸送層を形成した。この感光体の平均面粗
さは0.0μmであった。
Next, 10 parts of bisphenol Z-type car recarbonate (viscosity average molecular weight: 1130000) and 10 parts of a hydrazone compound having the following structural formula were dissolved in 65 parts of monochlorobenzene, and this solution was applied on the charge generation layer for 18 hours.
A charge transport layer with a thickness of μm was formed. The average surface roughness of this photoreceptor was 0.0 μm.

上記の方法で作成した感光体を、形状が球状である直径
2.0μmのメジ10000個を用いてサンドブラスト
法によって表面研磨したところ、その表面粗さは第1表
に示す通りであった。その粗面化の前及び後で評価を行
なった。この結果を実施例1として第1表に示す。
When the surface of the photoreceptor prepared by the above method was polished by sandblasting using 10,000 spherical squares with a diameter of 2.0 μm, the surface roughness was as shown in Table 1. Evaluations were made before and after the surface roughening. The results are shown in Table 1 as Example 1.

第1表に示す値(実施例1.2.3)になるように研磨
した。その後、清浄処理として蒸留水中に浸して超音波
洗浄を行なった後、充分乾燥させてから評価を行なった
。その結果を第1表に示す。
It was polished to the values shown in Table 1 (Example 1.2.3). Thereafter, as a cleaning treatment, the specimens were immersed in distilled water for ultrasonic cleaning, and then thoroughly dried before evaluation. The results are shown in Table 1.

[実施例2] 実施例1に用いた感光体において電荷輸送層を次の方法
で作製した以外、同様の感光体を作製したn’+’Ii
 4:l輸送層としては、ビスフェノールZ 1111
ボノカーホネ〜ト(粘度=r−均分子:1t30000
1 I 0部。
[Example 2] n'+'Ii was prepared using the same photoreceptor as that used in Example 1, except that the charge transport layer was prepared by the following method.
As a 4:l transport layer, bisphenol Z 1111
Bono carbonate (viscosity = r-equal molecular weight: 1t30000
1 I 0 parts.

含フッ素樹脂粉体としてポリ四フッ化エチレン扮体(商
品名ニルブロンL−2ダイキン1:業製)10部をモノ
クロルヘンセン40部、テトラヒトL′Jフラン15部
と共にスデンレス製ボールミルで50時間分散し、?i
fられた分散液に電荷輸送物質としてド記構造式のヒド
ラゾン化合物10部を溶解した。この溶液を電荷発生層
上に浸漬塗イ13シて18μm厚の電荷輸送層を形成し
た。
As a fluorine-containing resin powder, 10 parts of polytetrafluoroethylene (trade name: Nilbrone L-2 Daikin 1: manufactured by Kogyo) was dispersed for 50 hours with 40 parts of monochlorohensen and 15 parts of tetrahedral L'J furan in a Sdenless ball mill. death,? i
10 parts of a hydrazone compound having the following structural formula as a charge transport substance was dissolved in the prepared dispersion. This solution was applied on the charge generation layer by dip coating for 13 times to form a charge transport layer having a thickness of 18 μm.

この感光体を、実施例1と同様のメジIO[10(l 
rI?4を用いてサンドブラスト法によって実施例1と
同じ粗面化具合に粗面化した。その粗面化の前及び後で
評価を行なった。これを実施例2としてその結果を第1
表に示す。
This photoreceptor was used as a medium IO [10(l
rI? The surface was roughened to the same degree of roughness as in Example 1 by sandblasting using No. 4. Evaluations were made before and after the surface roughening. This is Example 2, and the results are shown in Example 1.
Shown in the table.

[実施例3] 実施例1と同様の感光体を作成し、実施例1のメジと形
状、大きさ、材質共に全く同一の粒子10000 例を
研磨粒子として有するラッピングテープを用いて感光体
表面を実施例1と同じ粗面化具合に粗面化した。その粗
面化の前及び後で評価を行なった。これを実施例3とし
てその結果を第1表に示す。
[Example 3] A photoreceptor similar to that in Example 1 was prepared, and the surface of the photoreceptor was coated with a wrapping tape having 10,000 particles as abrasive particles that were exactly the same in shape, size, and material as those in Example 1. The surface was roughened to the same degree as in Example 1. Evaluations were made before and after the surface roughening. This was treated as Example 3 and the results are shown in Table 1.

[実施例41 実施例2と同様の感光体を作成し、実施例1のメジと形
状、大きさ、材質共に全く同一の粒子10000個を研
磨粒子として有するラッピングテープを用いて感光体表
面を実施例1と同じ粗面化具合に粗面化した。その粗面
化の前及び後で評価を行なった。これを実施例4として
その結果を第1表に示す。
[Example 41] A photoconductor similar to that in Example 2 was prepared, and the surface of the photoconductor was polished using a lapping tape having 10,000 particles as abrasive particles that were exactly the same in shape, size, and material as those in Example 1. The surface was roughened to the same degree as in Example 1. Evaluations were made before and after the surface roughening. This was treated as Example 4 and the results are shown in Table 1.

[比較例I] 実施例1と同様の感光体を作成し、実施例1のメジと大
きさ、材質は同一であるが、形状が不定形のメジ100
00個を用いてサンドブラスト法によって感光体表面を
実施例1と同じ粗面化具合に粗面化した。その粗面化の
前及び後で評価を行なった。これを比較例1としてその
結果を第1表に示す。
[Comparative Example I] A photoreceptor similar to that in Example 1 was prepared, and 100 pieces of Meji were prepared that had the same size and material as those of Example 1, but had an irregular shape.
The surface of the photoreceptor was roughened to the same degree of roughness as in Example 1 by sandblasting. Evaluations were made before and after the surface roughening. This was treated as Comparative Example 1 and the results are shown in Table 1.

[比較例2] 実施例2と同様の感光体を作成し、実施例1のメジと大
きさ、材質は同一であるが、形状が不定形のメジ100
00個を用いてサンドブラスト法によって感光体表面を
実施例1と同じ粗面化具合に粗面化した。その粗面化の
前及び後で評価を行なった。これを比較例2としてその
結果を第1表に示す。
[Comparative Example 2] A photoreceptor similar to that in Example 2 was prepared, and 100 pieces of Meji were prepared, having the same size and material as those of Example 1, but having an irregular shape.
The surface of the photoreceptor was roughened to the same degree of roughness as in Example 1 by sandblasting. Evaluations were made before and after the surface roughening. This was treated as Comparative Example 2 and the results are shown in Table 1.

[比較例3] 実施例1と同様の感光体を作成し、実施例1のメジと大
きさ、材質は同一であるが、形状が不定形の粒子100
00個を研磨粒子として有するラッピングテープを用い
て感光体表面を実施例1と同じ粗面化具合に粗面化した
。その粗面化の前及び後で評価を行なった。これを比較
例3としてその結果を第1表に示す。
[Comparative Example 3] A photoreceptor similar to that of Example 1 was prepared, and 100 particles having the same size and material as those of Example 1 but having an irregular shape were prepared.
The surface of the photoreceptor was roughened to the same degree of roughness as in Example 1 using a lapping tape having 0.00 abrasive particles. Evaluations were made before and after the surface roughening. This was treated as Comparative Example 3 and the results are shown in Table 1.

[比較例4] 実施例2と同様の感光体を作成し、実施例1のメジと大
きさ、材質は同一であるが、形状が不定形の粒子1oo
oo個を研磨粒子として有するラッピングテープを用い
て感光体表面を実施例1と同じ粗面化具合に粗面化した
。その粗面化の前及び後で評価を行なった。これを比較
例4としてその結果を第1表に示す。
[Comparative Example 4] A photoreceptor similar to that of Example 2 was prepared, and particles 1oo of the same size and material as those of Example 1 but with irregular shapes were prepared.
The surface of the photoreceptor was roughened to the same degree of roughness as in Example 1 using a lapping tape having 00 abrasive particles. Evaluations were made before and after the surface roughening. This was treated as Comparative Example 4 and the results are shown in Table 1.

第1表において、合格はクリーニングブレードの反転、
エツジ部の欠損等のクリーニング不良及び画像欠陥は全
く発生しなかったことを意味する。
In Table 1, passing means reversing the cleaning blade,
This means that no cleaning defects such as loss of edges and no image defects occurred.

しかし第1表から明らかなように、形状が不定形の研磨
粒子またはメジを用いて感光体表面を粗面化すると、感
光体上にその研磨粒子、メジの埋め込みが生じ、感光体
の電子写真特性を低下させる。これに対し、形状が球状
の1iJF磨粒子またはメジを用いて感光体表面を粗面
化すると感光体上への埋め込みが著しく減少し、特にサ
ンドブラスト法を用いることで、電子写真特性には全く
影響を及ぼさず適切な感光体表面の粗面化を行なうこと
が可能となったのである。
However, as is clear from Table 1, when the surface of a photoreceptor is roughened using irregularly shaped abrasive particles or abrasives, the abrasive particles or abrasives become embedded on the photoreceptor, and the electrophotograph of the photoreceptor is Reduce properties. On the other hand, when the photoreceptor surface is roughened using spherical 1iJF abrasive particles or Meji, the embedding on the photoreceptor is significantly reduced, and especially when sandblasting is used, the electrophotographic characteristics are not affected at all. This makes it possible to appropriately roughen the surface of the photoreceptor without causing any damage.

[発明の効果1 以上に、説明して来たように、ゴムブレードによるクリ
ーニング手段を用いる電子写真プロセスにおいてクリー
ニングブレードと感光体表面の摩擦によるクリーニング
ブレードの反転やエツジ部の欠けを防止するための感光
体表面の粗面化方法について、本発明によれば形状が球
状である研磨粒子またはメジを用い、好ましくはサンド
ブラスト法によって粗面化を行なうことで電子写真特性
を何ら低下させることなしで、すぐれたクリーニング性
、画像を得ることが出来るようになった。
[Effect of the Invention 1] As explained above, in an electrophotographic process using a cleaning means using a rubber blade, this invention is effective in preventing the cleaning blade from being reversed or chipping of the edge portion due to friction between the cleaning blade and the surface of the photoreceptor. Regarding the method of roughening the surface of the photoreceptor, according to the present invention, the surface is roughened by using abrasive particles or sandblasting having a spherical shape, preferably by a sandblasting method, without any deterioration of the electrophotographic characteristics. It has become possible to obtain excellent cleaning performance and images.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の表面粗面化法に用い粂ことのできる装
置の模式的断面図である。 第2図はクリーニングブレードを利用するクリーニング
手段の作用を説明するためのその概要断面図である。 第3図は本発明の表面粗面化法によって処理される有機
電子写真感光体の一例を示す断面図である。 図中、lは有機電子写真感光体、2はフィルム状研磨材
、3は送り出しローラー、4は押えローラー、5は巻き
取りローラー、7はクリーニング装置、8は感光体、9
はクリーニングブレード、10は導電性支持体、11は
感光層、12は電荷発生層、13は電荷輸送層である。
FIG. 1 is a schematic cross-sectional view of a device capable of being used in the surface roughening method of the present invention. FIG. 2 is a schematic cross-sectional view for explaining the operation of a cleaning means using a cleaning blade. FIG. 3 is a sectional view showing an example of an organic electrophotographic photoreceptor treated by the surface roughening method of the present invention. In the figure, l is an organic electrophotographic photoreceptor, 2 is a film-like abrasive material, 3 is a delivery roller, 4 is a press roller, 5 is a take-up roller, 7 is a cleaning device, 8 is a photoreceptor, 9
10 is a cleaning blade, 10 is a conductive support, 11 is a photosensitive layer, 12 is a charge generation layer, and 13 is a charge transport layer.

Claims (2)

【特許請求の範囲】[Claims] (1)電子写真感光体の表面を粗面化する方法において
、該表面を球状形状のメジ又は研磨粒子を用いて機械研
磨することを特徴とする電子写真感光体の表面粗面化法
(1) A method for roughening the surface of an electrophotographic photoreceptor, which method comprises mechanically polishing the surface using spherical grinding or abrasive particles.
(2)サンドブラスト法を用いて機械研磨することを特
徴とする請求項1記載の電子写真感光体の表面粗面化法
(2) The method for roughening the surface of an electrophotographic photoreceptor according to claim 1, characterized in that mechanical polishing is performed using a sandblasting method.
JP30421288A 1988-12-02 1988-12-02 Surface roughening method for electrophotographic sensitive body Pending JPH02150850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30421288A JPH02150850A (en) 1988-12-02 1988-12-02 Surface roughening method for electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30421288A JPH02150850A (en) 1988-12-02 1988-12-02 Surface roughening method for electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH02150850A true JPH02150850A (en) 1990-06-11

Family

ID=17930360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30421288A Pending JPH02150850A (en) 1988-12-02 1988-12-02 Surface roughening method for electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH02150850A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330425A (en) * 2005-05-27 2006-12-07 Canon Inc Image forming method
EP1734411A1 (en) * 2004-03-26 2006-12-20 Canon Kabushiki Kaisha Electrophotographic photoreceptor, production method for electrophotographic photoreceptor, process cartridge and electrophotographic device
WO2007088997A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
WO2007089012A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Method for manufacturing electrophotographic photoreceptor
WO2007088994A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Method of image forming and electrophotographic apparatus making use of the method
WO2007088990A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Method for producing electrophotographic photosensitive body
WO2007088995A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Electrophotographic photosensitive material, process cartridge and electrophotographic devicde
WO2007089000A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Electronic photographing photosensitive body, process cartridge, and electronic photographing device
WO2008090636A1 (en) 2007-01-26 2008-07-31 Canon Kabushiki Kaisha Process for manufacturing electrophotographic photoreceptor
WO2009014262A1 (en) 2007-07-26 2009-01-29 Canon Kabushiki Kaisha Electrophotographic photosensitive element, process cartridge, and electrophotographic device
US8273513B2 (en) 2009-06-25 2012-09-25 Ricoh Company, Limited Image forming apparatus, process cartridge, and image bearing member
EP2535774A1 (en) 2011-06-16 2012-12-19 Ricoh Company, Ltd. Image bearing drum, image forming apparatus, image forming method, and process cartridge
US8351823B2 (en) 2009-06-30 2013-01-08 Ricoh Company, Ltd Image forming apparatus, image bearing member, and method of manufacturing image bearing member
US8486595B2 (en) 2009-09-10 2013-07-16 Ricoh Company, Ltd. Image bearing member, image forming apparatus, and process cartridge
US8643570B2 (en) 2007-06-29 2014-02-04 Canon Kabushiki Kaisha Active matrix organic electroluminescence display and its gradation control method
US9501032B2 (en) 2013-07-11 2016-11-22 Canon Kabushiki Kaisha Process cartridge having projected portions and recessed portions provided on surface of charging member and image forming apparatus thereof
US11782353B2 (en) 2020-04-21 2023-10-10 Canon Kabushiki Kaisha Method for producing electrophotographic photosensitive member

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1734411A1 (en) * 2004-03-26 2006-12-20 Canon Kabushiki Kaisha Electrophotographic photoreceptor, production method for electrophotographic photoreceptor, process cartridge and electrophotographic device
EP1734410A1 (en) * 2004-03-26 2006-12-20 Canon Kabushiki Kaisha Electrophotography photosensitive body, method for producing electrophotography photosensitive body, process cartridge, and electrophotograph
EP1734411A4 (en) * 2004-03-26 2011-08-03 Canon Kk Electrophotographic photoreceptor, production method for electrophotographic photoreceptor, process cartridge and electrophotographic device
EP1734410A4 (en) * 2004-03-26 2011-08-03 Canon Kk Electrophotography photosensitive body, method for producing electrophotography photosensitive body, process cartridge, and electrophotograph
US7534534B2 (en) 2004-03-26 2009-05-19 Canon Kabushiki Kaisha Electrophotographic Photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
JP2006330425A (en) * 2005-05-27 2006-12-07 Canon Inc Image forming method
JP4590308B2 (en) * 2005-05-27 2010-12-01 キヤノン株式会社 Image forming method
WO2007088995A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Electrophotographic photosensitive material, process cartridge and electrophotographic devicde
US7749667B2 (en) 2006-01-31 2010-07-06 Canon Kabushiki Kaisha Image forming method, and electrophotographic apparatus making use of the image forming method
WO2007089012A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Method for manufacturing electrophotographic photoreceptor
WO2007088994A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Method of image forming and electrophotographic apparatus making use of the method
WO2007089000A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Electronic photographing photosensitive body, process cartridge, and electronic photographing device
WO2007088990A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Method for producing electrophotographic photosensitive body
US7551878B2 (en) 2006-01-31 2009-06-23 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US7556901B2 (en) 2006-01-31 2009-07-07 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US7622238B2 (en) 2006-01-31 2009-11-24 Canon Kabushiki Kaisha Process for producing electrophotographic photosensitive member
US7718331B2 (en) 2006-01-31 2010-05-18 Canon Kabushiki Kaisha Electrophotographic photosensitive member with depressed portions, process cartridge holding the electrophotographic photosensitive member and electrophotographic apparatus with the electrophotographic photosensitive member
WO2007088997A1 (en) 2006-01-31 2007-08-09 Canon Kabushiki Kaisha Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
US7413840B1 (en) 2007-01-26 2008-08-19 Canon Kabushiki Kaisha Process for forming an electrophotographic photosensitive member with depressed portions by condensing a surface of a surface layer on which a coating liquid is present
WO2008090636A1 (en) 2007-01-26 2008-07-31 Canon Kabushiki Kaisha Process for manufacturing electrophotographic photoreceptor
US8643570B2 (en) 2007-06-29 2014-02-04 Canon Kabushiki Kaisha Active matrix organic electroluminescence display and its gradation control method
US7813675B2 (en) 2007-07-26 2010-10-12 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
WO2009014262A1 (en) 2007-07-26 2009-01-29 Canon Kabushiki Kaisha Electrophotographic photosensitive element, process cartridge, and electrophotographic device
US8273513B2 (en) 2009-06-25 2012-09-25 Ricoh Company, Limited Image forming apparatus, process cartridge, and image bearing member
US8351823B2 (en) 2009-06-30 2013-01-08 Ricoh Company, Ltd Image forming apparatus, image bearing member, and method of manufacturing image bearing member
US8486595B2 (en) 2009-09-10 2013-07-16 Ricoh Company, Ltd. Image bearing member, image forming apparatus, and process cartridge
EP2535774A1 (en) 2011-06-16 2012-12-19 Ricoh Company, Ltd. Image bearing drum, image forming apparatus, image forming method, and process cartridge
US9501032B2 (en) 2013-07-11 2016-11-22 Canon Kabushiki Kaisha Process cartridge having projected portions and recessed portions provided on surface of charging member and image forming apparatus thereof
US11782353B2 (en) 2020-04-21 2023-10-10 Canon Kabushiki Kaisha Method for producing electrophotographic photosensitive member

Similar Documents

Publication Publication Date Title
US4663259A (en) Electrophotographic photosensitive member and image forming process using the same
JPH02150850A (en) Surface roughening method for electrophotographic sensitive body
EP1734412B1 (en) Electrophotographic photoreceptor, method of manufacturing electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP4416829B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JPWO2005093518A1 (en) Electrophotographic photoreceptor, method of manufacturing electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JPS6330850A (en) Electrophotographic sensitive body
KR101400590B1 (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JPH02139566A (en) Process for roughening surface of organic electrophotographic sensitive body
JP2010026240A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP2007086320A (en) Electrophotographic photoreceptor and image forming method
JP2010008898A (en) Electrophotographic device
JP2007072276A (en) Electrophotographic apparatus
JP2007086319A (en) Electrophotographic photoreceptor, method for manufacturing the same, and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor
JP2702252B2 (en) Surface roughening method for organic electrophotographic photoreceptor
JP2749882B2 (en) Electrophotographic photoreceptor surface roughening treatment method
JPH0350551A (en) Surface roughening method for electrophotographic sensitive body
JPH0792697A (en) Electrophotographic photoreceptor and its production
JPH0310277A (en) Surface treatment of electrophotographic sensitive body
JPH03188451A (en) Surface roughening method for organic electrophotographic sensitive body
JPH02105161A (en) Manufacture of electrophotographic sensitive body
JPH0310276A (en) Surface processing device for electrophotographic photosensitive body
JP2006267855A (en) Electrophotographic photoreceptor and method for manufacturing the same, process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor
JPH02129647A (en) Surface roughening device for organic electrophotographic sensitive body
JPH02150854A (en) Organic electrophotographic sensitive body
JPH02139563A (en) Process for roughening surface of organic electrophotographic sensitive body