JPH02150747A - Device for optical tomographic imaging - Google Patents

Device for optical tomographic imaging

Info

Publication number
JPH02150747A
JPH02150747A JP30469188A JP30469188A JPH02150747A JP H02150747 A JPH02150747 A JP H02150747A JP 30469188 A JP30469188 A JP 30469188A JP 30469188 A JP30469188 A JP 30469188A JP H02150747 A JPH02150747 A JP H02150747A
Authority
JP
Japan
Prior art keywords
sample
optical
optical system
laser
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30469188A
Other languages
Japanese (ja)
Other versions
JP2882803B2 (en
Inventor
Masahiro Toida
昌宏 戸井田
Tsutomu Ichimura
市村 勉
Fumio Inaba
稲場 文男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP63304691A priority Critical patent/JP2882803B2/en
Publication of JPH02150747A publication Critical patent/JPH02150747A/en
Application granted granted Critical
Publication of JP2882803B2 publication Critical patent/JP2882803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the optical tomographic image of a substance to be measured by irradiating the substance to be measured with a laser light beam and classifying and detecting only rectilinear component out of transmitted light beam by utilizing the directivity of optical heterodyne detection. CONSTITUTION:The laser light beam projected from a laser device 1 is splitted into two such as a laser light beam L1 and a laser light beam for reference L2 by a beam splitter 2. A sample 5 is irradiated with the laser light beam L1 and only the straight advancing component, out of the transmitted light, which is tinged with the optical absorption information of the sample 5 is extracted and optically mixed with the laser light beam L2 by a half mirror 13. In such a case, the sample 5 is irradiated with the laser light beam L1 by deviating the frequency thereof and the scattered laser light beam which is transmitted is condensed on an aperture 7. The optically mixed laser light beams are detected by utilizing the directivity of transmittivity of only straight advancing component in a specified direction with the aid of the optical heterodyne detection by a photoelectric detector 14. Thus, the distribution of the substance to be measured of the sample 5 is expressed as the tomographic image.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ光と光ヘテロダイン検波とにより被測定
物の断層像を画像化する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for imaging a tomographic image of an object to be measured using laser light and optical heterodyne detection.

〔従来の技術〕[Conventional technology]

物質内部をその物質を破壊することなく観察するために
現在までに様々な物理的エネルギを利用した断層撮影法
が考案されている。
BACKGROUND ART To date, various tomography methods using physical energy have been devised to observe the inside of a material without destroying the material.

その内でも代表的なものとしてX線CTがあげられよう
。これにより被測定物の内部形態を非侵襲的に断層像と
して観察できるようになった。また、X線被爆の危険を
伴わないMHIや超音波によるイメージング法が開発さ
れてきた。
Among them, X-ray CT is the most representative one. This has made it possible to non-invasively observe the internal form of the object to be measured as a tomographic image. Additionally, MHI and ultrasound imaging methods that do not involve the risk of X-ray exposure have been developed.

〔発明が解決すべき課題〕[Problem to be solved by the invention]

従来、光を用いたCT装置が実現されなかったのは、一
般に光の透過性(直進的透過性)のよい物質であれば、
外部より内部の観察が容易にできるので、いちいちCT
化を行うまでもなかったからである。また、光の直進的
透過性の悪い試料では光の散乱によって、Lamber
t−Beerの法則が成立しないためCT化が困難であ
った。
Conventionally, CT devices using light have not been realized because materials with good light transmittance (linear transmittance)
Since it is easier to observe the inside than the outside, CT
This is because there was no need to make changes. In addition, in samples with poor direct light transmittance, Lamber
CT conversion was difficult because t-Beer's law did not hold.

一方、住体系の生命活動に伴う生体内の各必須物質転換
を生命活動を阻害することなく、計測することが近年特
に求められている。
On the other hand, in recent years, there has been a particular need to measure the conversion of essential substances within living organisms that accompany the life activities of living systems without interfering with life activities.

しかし、試料内部の物質転換による機能変化を観察しよ
うとしたとき、X線CTでは形態情報のみしか得られな
いし、またMRIにおいてもプロトンの動態を見るにと
どまり、放射性同位元素をマーカーとしてポジトロンC
Tでリンや炭素といった物質の動態が観察できるのみで
あった。しがし、これらはいずれも被測定試料に対し、
非侵襲的に内部機能情報を取得することは全くできない
のが現状である。
However, when attempting to observe functional changes due to material conversion inside a sample, X-ray CT can only obtain morphological information, and MRI only observes the dynamics of protons;
At T, only the dynamics of substances such as phosphorus and carbon could be observed. However, these methods all apply to the sample to be measured.
Currently, it is not possible to acquire internal functional information non-invasively.

本発明は上記課題を解決す条ためのもので、被測定物に
レーザ光を照射し、透過レーザ光のうちの直進成分のみ
を光ヘテロダイン検波のもつ指向性を利用して分別検出
し、被測定物の光断層像を得ることが可能な光断層像画
像化装置を提供することを目的とする。
The present invention is intended to solve the above-mentioned problems, by irradiating a laser beam onto an object to be measured, and separately detecting only the straight component of the transmitted laser beam using the directivity of optical heterodyne detection. An object of the present invention is to provide an optical tomographic imaging device capable of obtaining an optical tomographic image of an object to be measured.

〔課題を解決するための手段〕[Means to solve the problem]

そのために本発明の光断層像画像化装置は、レーザ光を
試料に照射し、その透過光と参照光とを光混合し、光ヘ
テロダイン検波により光散乱体中を透過したレーザ光よ
り特定方向の直進成分のみの透過率を測定し、試料の特
定物質分布の断層像を得ることを特徴とする。
For this purpose, the optical tomographic imaging device of the present invention irradiates a sample with laser light, mixes the transmitted light with a reference light, and uses optical heterodyne detection to detect a specific direction of the laser light transmitted through a light scattering body. It is characterized by measuring the transmittance of only the straight component and obtaining a tomographic image of the distribution of specific substances in the sample.

また、レーザ装置と、レーザ装置からのレーザビームを
分割するビームスプリッタと、ビームスプリッタで分割
された一方のレーザ光を周波数偏移させる周波数変換器
と、試料移動手段により移動回転すると共に、周波数変
換されたレーザ光が照射される試料台と、試料を透過し
たレーザ光から平行光束を得るための第1光学系と、ビ
ームスプリッタで分割された他方のレーザ光を第1光学
系の平行光束とスポット径の同じ平行光束にするための
第2光学系と、第1光学系、第2光学系出力光を光混合
し、ビート成分を抽出する光ヘテロダイン検波手段と、
光ヘテロダイン検波出力と試料移動手段からの試料位置
情報が入力される演算手段とを備え、光ヘテロダイン検
波出力と試料位置情報とから試料の断層像を得ることを
特徴とする。
In addition, it includes a laser device, a beam splitter that splits the laser beam from the laser device, a frequency converter that shifts the frequency of one of the laser beams split by the beam splitter, and a sample moving means that moves and rotates and converts the frequency. a first optical system for obtaining a parallel beam from the laser beam that has passed through the sample; and a first optical system for obtaining a parallel beam from the laser beam that has passed through the sample; a second optical system for producing a parallel light beam having the same spot diameter; an optical heterodyne detection means for optically mixing the output lights of the first optical system and the second optical system and extracting a beat component;
It is characterized by comprising a calculation means into which the optical heterodyne detection output and the sample position information from the sample moving means are input, and obtaining a tomographic image of the sample from the optical heterodyne detection output and the sample position information.

更に、レーザ装置と、レーザ装置からのレーザビームを
分割するビームスプリッタと、ビームスプリッタで分割
された一方のレーザ光を周波数偏移させる周波数変換器
と、試料移動手段により移動回転する試料台と、周波数
変換されたレーザ光を拡大して試料に照射し、その透過
光から所定のスポット径の平行光束を得る拡大光学系と
、ビームスプリッタで分割された他方のレーザ光を拡大
光学系の光束内で走査する走査光学系と、拡大光学系、
走査光学系出力光を光混合し、ビート成分を抽出する光
ヘテロダイン検波手段と、光ヘテロダイン検波出力、試
料移動手段からの試料位置情報、走査信号が入力される
演算手段とを備え、光ヘテロダイン検波出力、試料位置
情報、走査信号とから試料の断層像を得ることを特徴と
する。
Furthermore, a laser device, a beam splitter that splits the laser beam from the laser device, a frequency converter that shifts the frequency of one of the laser beams split by the beam splitter, and a sample stage that is moved and rotated by the sample moving means. An expanding optical system that expands the frequency-converted laser beam and irradiates it onto the sample, and obtains a parallel beam with a predetermined spot diameter from the transmitted light, and a beam splitter that splits the other laser beam into the beam of the expanding optical system. A scanning optical system that scans with a magnifying optical system,
Optical heterodyne detection means optically mixes the output light of the scanning optical system and extracts a beat component, and a calculation means into which the optical heterodyne detection output, sample position information from the sample moving means, and scanning signal are input. It is characterized by obtaining a tomographic image of the sample from the output, sample position information, and scanning signal.

〔作用〕[Effect]

レーザ装置から射出されたレーザ光(波長λ、周波数ω
)は二分され、一方を周波数Δωだけ偏移させて試料に
照射し、透過散乱レーザ光はレンズによりその焦点位置
に置かれたアパーチャ上に集光される。アパーチャを通
過した光はアパーチャ径とアパーチャ後方に位置したレ
ンズ間口径できまる回折限界と等しい平行光束に、アパ
ーチャ後方に位置したレンズにより変換され、この平行
光束と等しくコリメートされた前述の二分されたレーザ
光の片方と光混合され、光電検波器により検出される。
Laser light emitted from the laser device (wavelength λ, frequency ω
) is divided into two parts, one side is shifted by the frequency Δω and irradiated onto the sample, and the transmitted and scattered laser light is focused by a lens onto an aperture placed at its focal position. The light that has passed through the aperture is converted by the lens located behind the aperture into a parallel light beam that is equal to the diffraction limit determined by the aperture diameter and the aperture between the lenses located behind the aperture, and is collimated equally with this parallel light beam. It is optically mixed with one of the laser beams and detected by a photoelectric detector.

この操作をレーザ光光軸に垂直な方向への走査と共に行
い、次に試料をΔθ回転させ、同様の走査検出を回転角
0°〜36o°に渡って行う。こうして得られた位置信
号と検出信号よりコンピュータにおいて投影データから
の画像再生の計算を行い、モニタに再生画像を構成する
。ここで、波長λを試料内の計測物質の吸収帯に合わせ
、各種可変させることで試料内の特定物質分布の断層像
が得られる。
This operation is performed together with scanning in a direction perpendicular to the optical axis of the laser beam, and then the sample is rotated by Δθ, and similar scanning detection is performed over a rotation angle of 0° to 36°. Using the position signal and detection signal obtained in this way, a computer calculates image reproduction from the projection data, and creates a reproduced image on the monitor. Here, by adjusting the wavelength λ to the absorption band of the substance to be measured within the sample and varying it in various ways, a tomographic image of the distribution of a specific substance within the sample can be obtained.

また、周波数偏移させたレーザ光を拡大して試料に照射
し、その透過光を平行光束とし、二分された他方のレー
ザ光を試料を透過し、拡大した平行光束内で走査して両
者を光混合することにより、同様にして画像再生の計算
を行って、同様に試料内の特定物質分布の断層像が得ら
れる。
In addition, the frequency-shifted laser beam is expanded and irradiated onto the sample, the transmitted light is made into a parallel beam, and the other laser beam that is split into two is transmitted through the sample and scanned within the expanded parallel beam to combine both. By performing light mixing, calculations for image reproduction can be performed in the same manner, and a tomographic image of the distribution of a specific substance within the sample can be similarly obtained.

〔実施例〕〔Example〕

以下、実施例を図面を参照して説明する。 Examples will be described below with reference to the drawings.

第1図は本発明の光断層像画像化装置の一実施例を示す
図である。図中、1はレーザ装置、2はヒ゛−ムスプリ
ンタ、3.3′、9.10はミラー4は周波数変換器、
5は試料、6,8,11.12はレンズ、7はアパーチ
ャ、13はハーフミラ、14は光電検出器、16は選択
レベル測定器、17は試料台、18は試料台制御装置、
19はコンピュータ、20はモニタである。
FIG. 1 is a diagram showing an embodiment of the optical tomographic imaging apparatus of the present invention. In the figure, 1 is a laser device, 2 is a beam printer, 3.3', 9.10 is a mirror 4 is a frequency converter,
5 is a sample, 6, 8, 11.12 is a lens, 7 is an aperture, 13 is a half mirror, 14 is a photoelectric detector, 16 is a selection level measuring device, 17 is a sample stage, 18 is a sample stage controller,
19 is a computer, and 20 is a monitor.

レーザ装置1から射出されたレーザ光はビームスプリッ
タ2によりLIとL2に二分される。レーザ光り、はミ
ラー3により、例えば電気光学結晶等からなる周波数変
換器4へ導かれ、Δωだけ周波数偏移され、ミラー3′
により試料5に照射される。試料を透過した散乱レーザ
光はレンズ6によりその後側焦点位置に置かれたアパー
チャアの上に集束される。アパーチャアを通過した光は
、アパーチャ位置を前側焦点位置とするレンズ8により
平行光束とされ、レンズ8の開口径とアパーチャアの径
により決まる回折限界径の平行光束り、に変換される。
A laser beam emitted from a laser device 1 is split into two by a beam splitter 2 into LI and L2. The laser beam is guided by a mirror 3 to a frequency converter 4 made of, for example, an electro-optic crystal, and is frequency-shifted by Δω, and then reflected by a mirror 3'.
The sample 5 is irradiated by the beam. The scattered laser light that has passed through the sample is focused by a lens 6 onto an aperture placed at the rear focal position. The light passing through the aperture is converted into a parallel light beam by a lens 8 whose front focal point is at the aperture position, and converted into a parallel light beam having a diffraction limit diameter determined by the aperture diameter of the lens 8 and the diameter of the aperture.

これら光学系により全方位に散乱する光軸から外れた散
乱光はカットされ、試料の光吸収情報を帯びた直進成分
のみが抽出される。
These optical systems cut out off-axis scattered light that is scattered in all directions, and extract only the straight components that carry information about the light absorption of the sample.

一方参照用のレーザ光L!ばミラー9.l’oを介し、
レンズ11で集光去れ、レンズ11の後側焦点位置を前
側焦点位置とするレンズ12によりレーザ光り、とスポ
ット径が等しい平行光束L4に変換され、ハーフミラ−
13によりり、と光混合される。そして光電検出器14
により検出され、増幅器15、選択レベル測定器16に
よりビート周波数Δωの成分のみ選択検出される。この
ヘテロダイン検波によりレーザ光L4と可干渉性のない
散乱成分はカットされるので直進成分のうち試料の光吸
収情報を帯びた成分のみ検出することができる。
On the other hand, laser beam L for reference! Mirror 9. Through l'o,
The light is collected by the lens 11, and is converted into a parallel light beam L4 with the same spot diameter as a laser beam by the lens 12, which uses the rear focal position of the lens 11 as the front focal position, and is converted into a parallel light beam L4 with the same spot diameter.
13, the light is mixed with. and photoelectric detector 14
The amplifier 15 and the selective level measuring device 16 selectively detect only the component of the beat frequency Δω. By this heterodyne detection, scattered components that are not coherent with the laser beam L4 are cut out, so that only the component carrying light absorption information of the sample among the straight components can be detected.

同様の検出を試料台17をレーザ光光軸と垂直なX方向
に走査しながら行う0次に試料台17をθの方向にΔθ
だけ回転させ、上述と同様にX方向の走査と検出を行う
Similar detection is performed while scanning the sample stage 17 in the X direction perpendicular to the laser beam optical axis.
scanning and detection in the X direction in the same manner as described above.

以上の走査をθの角度がO°〜360’にわたり行う。The above scanning is performed over an angle of θ from 0° to 360'.

試料台17のX線走査およびθ回転は試料台制御装置1
日により行われ、その位置信号は選択レベル測定器から
の信号と共にコンピュータ19に入力される。コンピュ
ータ19では上述の走査で得られた投影データから画像
再生の計算を行い、モニタ20上に再生像を構成する。
X-ray scanning and θ rotation of the sample stage 17 are performed by the sample stage controller 1.
The position signal is input into the computer 19 along with the signal from the selected level measuring device. The computer 19 performs calculations for image reproduction from the projection data obtained by the above-described scanning, and forms a reproduced image on the monitor 20.

なお、レーザ光の波長を試料内の各計測物質の吸収帯に
合わせ可変させることで、試料内の特定物質を選択して
その分布の断層像が得られる。
Note that by varying the wavelength of the laser beam to match the absorption band of each measurement substance in the sample, a specific substance in the sample can be selected and a tomographic image of its distribution can be obtained.

第2図は本発明の他の実施例を示す図で、第1図と同一
番号は同一内容を示している。なお、21はレーザビー
ム移動制御装置、22,23.24はレンズである。
FIG. 2 is a diagram showing another embodiment of the present invention, and the same numbers as in FIG. 1 indicate the same contents. Note that 21 is a laser beam movement control device, and 22, 23, and 24 are lenses.

図において、レーザ装置1から射出されたレーザ光はビ
ームスプリッタ2によりり、とり、に部分される。レー
ザ光Llはミラー3により周波数変換器4へ導かれ、Δ
ωだけ周波数偏移され、ミラー3′によりレンズ22に
導かれてその焦点位HAに集束され、その後床がって試
料5全体、或いは試料の観測したい部分に照射される。
In the figure, a laser beam emitted from a laser device 1 is split into two parts by a beam splitter 2. The laser beam Ll is guided to the frequency converter 4 by the mirror 3, and
The frequency is shifted by ω, guided by the mirror 3' to the lens 22, focused at the focal point HA, and then irradiated onto the entire sample 5 or the part of the sample to be observed.

試料5を透過した散乱レーザ光り、はレンズ23により
点Aと実像関係の共役な位置に置かれたアパーチャアの
上に集光され、点Aに集光した光だけがアパーチャを通
過することになる。
The scattered laser light transmitted through the sample 5 is focused by the lens 23 onto an aperture placed in a conjugate position with respect to point A, and only the light focused at point A passes through the aperture. Become.

アパーチャアを通過した光は、アパーチャ位置を前側焦
点位置とするレンズ24により平行光束とされ、レンズ
24の開口径とアパーチャアの径により決まる回折限界
径の平行光束り、にレンズ24により変換される。ここ
で、平行光束り、は参照光となるL2の径より十分大き
い径に設定される。
The light that has passed through the aperture is converted into a parallel light beam by the lens 24 whose front focal point is at the aperture position, and converted by the lens 24 into a parallel light beam with a diffraction limit diameter determined by the aperture diameter of the lens 24 and the diameter of the aperture. Ru. Here, the parallel light beam is set to a diameter that is sufficiently larger than the diameter of L2, which is the reference light.

一方、ビームスプリッタ2で分けられた参照光L2は、
ミラー9.lOによりハーフミラ−13上で平行光束L
tと光混合され、光電検出器14により検出され、増幅
器15、選択レベル測定器16により周波数Δω成分の
みが選択検出される。
On the other hand, the reference light L2 separated by the beam splitter 2 is
Mirror 9. Parallel light flux L on half mirror 13 due to lO
t and is detected by a photoelectric detector 14, and only the frequency Δω component is selectively detected by an amplifier 15 and a selective level measuring device 16.

このヘテロダイン検波により、第1図の実施例の場合と
同様にレーザ光L2と可干渉性のない散乱成分はカット
されるので直進成分のうち試料の光吸収情報を帯びた成
分のみ検出することができる。
By this heterodyne detection, the scattered components that are not coherent with the laser beam L2 are cut out, as in the case of the embodiment shown in FIG. can.

いま、レーザ光L2が第3図で示す平行光束り、のYY
’方向に平行光束り、を横切るようにミラー9、lOお
よび光電検出器14をレーザビーム移動制御装置21に
より走査しながら前述した検出を行う。
Now, the laser beam L2 is YY of the parallel beam shown in FIG.
The above-mentioned detection is performed while scanning the mirror 9, 1O, and photoelectric detector 14 by the laser beam movement control device 21 so as to cross the parallel light beam in the ' direction.

次に試料台17の試料台制御装置18により角度Δθだ
け回転し、同様にレーザ光りよをYY′方向に走査をし
ながら検出を行う、この操作と試料台回転角θについて
0″′〜360mについて各々行うことにより、試料台
制御装置18、レーザビーム移動制御装置21および選
択レベル測定器からコンピュータ19に試料5の横断投
影データが入力され、これら投影データより画像再生の
計算を行い、モニタ20上に再生像を構成する。
Next, the sample table controller 18 of the sample table 17 rotates the sample table 17 by an angle Δθ, and similarly detects the laser beam while scanning in the YY' direction.This operation and the sample table rotation angle θ range from 0'' to 360 m By doing so, the cross-sectional projection data of the sample 5 is inputted to the computer 19 from the sample stage control device 18, laser beam movement control device 21, and selection level measuring device, image reproduction calculations are performed from these projection data, and the data are displayed on the monitor 20. The reconstructed image is constructed above.

また、レーザ光り、の走査を、ミラー9.lO1光電検
出器14、レーザビーム移動制御装置21により第3図
XX′方向に行い、試料5の回転を第2図の平面とは垂
直な面で、すなわち第2図中のθ′の方向に行いながら
、投影データの収集を行い画像再生を行えば、試料の縦
断面画像が得られる。また、レーザ光L8の平行光束り
、を横切る方向を外3図のYY’からXx′の間の任意
方向に設定し、その方向に対応した試料回転軸を中心に
試料の回転を行えば、任意方向の断面像が得られる。そ
して、レーザ光の波長を試料内の各計測物質の吸収帯に
合わせ可変させることで、試料内の特定物質分布の任意
の方向の断層像が得られる。
In addition, the laser beam is scanned by the mirror 9. The lO1 photoelectric detector 14 and the laser beam movement controller 21 are used to rotate the sample 5 in the direction XX' in Figure 3, and rotate the sample 5 in a plane perpendicular to the plane in Figure 2, that is, in the direction of θ' in Figure 2. By collecting projection data and reproducing the image while performing this, a vertical cross-sectional image of the sample can be obtained. In addition, if the direction that crosses the parallel beam of laser beam L8 is set to any direction between YY' and Xx' in Figure 3, and the sample is rotated around the sample rotation axis corresponding to that direction, A cross-sectional image in any direction can be obtained. By varying the wavelength of the laser beam in accordance with the absorption band of each measurement substance within the sample, a tomographic image of the specific substance distribution within the sample in any direction can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、試料中の計測物質の分布
を断層像として表すことが可能となり、従来全く評価、
分析法のなかった比較的容積の少ない試料中の各種物質
分布を非侵襲に解析する手法を提供することができるも
のである。
As described above, according to the present invention, it is possible to represent the distribution of a measurement substance in a sample as a tomographic image, and it is possible to
It is possible to provide a method for non-invasively analyzing the distribution of various substances in a sample with a relatively small volume, for which no analytical method exists.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光断層像画像化装置の一実施例を示す
図、第2図は本発明の他の実施例を示す図、第3図は第
2図の平行光束り、のAA’の断面図である。 l・・・レーザ装置、2・・・ビームスプリッタ、3゜
3’、9.10・・・ミラー、4・・・周波数変換器、
5・・・試料、6,8,11,12.22,23.24
・・・レンズ、7・・・アパーチャ、13・・・ハーフ
ミラー14・・・光電検出器、16・・・選択レヘル測
定器、17・・・試料台、18・・・試料台制御装置、
19・・・コンピュータ、20・・・モニター、21・
・・レーザビーム移動制御装置。 出   願   人
FIG. 1 is a diagram showing one embodiment of the optical tomographic imaging device of the present invention, FIG. 2 is a diagram showing another embodiment of the present invention, and FIG. 3 is an AA diagram of the parallel light beam in FIG. 2. ' is a sectional view of '. l... Laser device, 2... Beam splitter, 3°3', 9.10... Mirror, 4... Frequency converter,
5... Sample, 6, 8, 11, 12.22, 23.24
... Lens, 7... Aperture, 13... Half mirror 14... Photoelectric detector, 16... Selection level measuring device, 17... Sample stage, 18... Sample stage control device,
19...computer, 20...monitor, 21.
...Laser beam movement control device. applicant

Claims (5)

【特許請求の範囲】[Claims] (1)レーザ光を試料に照射し、その透過光と参照光と
を光混合し、光ヘテロダイン検波により光散乱体中を透
過したレーザ光より特定方向の直進成分のみの透過率を
測定し、試料の特定物質分布の断層像を得ることを特徴
とする光断層像画像化装置。
(1) Irradiate the sample with laser light, optically mix the transmitted light and reference light, and measure the transmittance of only the linear component in a specific direction from the laser light transmitted through the light scatterer by optical heterodyne detection, An optical tomographic imaging device characterized by obtaining a tomographic image of a specific substance distribution in a sample.
(2)レーザ装置と、レーザ装置からのレーザビームを
分割するビームスプリッタと、ビームスプリッタで分割
された一方のレーザ光を周波数偏移させる周波数変換器
と、試料移動手段により移動回転すると共に、周波数変
換されたレーザ光が照射される試料台と、試料を透過し
たレーザ光から平行光束を得るための第1光学系と、ビ
ームスプリッタで分割された他方のレーザ光を第1光学
系の平行光束とスポット径の同じ平行光束にするための
第2光学系と、第1光学系、第2光学系出力光を光混合
し、ビート成分を抽出する光ヘテロダイン検波手段と、
光ヘテロダイン検波出力と試料移動手段からの試料位置
情報が入力される演算手段とを備え、光ヘテロダイン検
波出力と試料位置情報とから試料の断層像を得ることを
特徴とする光断層像画像化装置。
(2) A laser device, a beam splitter that splits the laser beam from the laser device, a frequency converter that shifts the frequency of one of the laser beams split by the beam splitter, and a sample moving means that rotates and rotates the laser beam. A sample stage that is irradiated with the converted laser beam, a first optical system that obtains a parallel beam from the laser beam that has passed through the sample, and a parallel beam of the other laser beam that is split by a beam splitter from the first optical system. a second optical system for producing a parallel light beam having the same spot diameter as the second optical system; and an optical heterodyne detection means for optically mixing the output lights of the first optical system and the second optical system and extracting a beat component.
An optical tomographic imaging device comprising a calculation means into which optical heterodyne detection output and sample position information from a sample moving means are input, and obtaining a tomographic image of a sample from the optical heterodyne detection output and sample position information. .
(3)第1光学系は、試料透過光をアパーチャ上に集光
するレンズと、アパーチャ位置を前側焦点とするレンズ
とからなる請求項2記載の光断層像画像化装置。
(3) The optical tomographic imaging apparatus according to claim 2, wherein the first optical system includes a lens that focuses the light transmitted through the sample onto an aperture, and a lens that has a front focal point at the aperture position.
(4)レーザ装置と、レーザ装置からのレーザビームを
分割するビームスプリッタと、ビームスプリッタで分割
された一方のレーザ光を周波数偏移させる周波数変換器
と、試料移動手段により移動回転する試料台と、周波数
変換されたレーザ光を拡大して試料に照射し、その透過
光から所定のスポット径の平行光束を得る拡大光学系と
、ビームスプリッタで分割された他方のレーザ光を拡大
光学系の光束内で走査する走査光学系と、拡大光学系、
走査光学系出力光を光混合し、ビート成分を抽出する光
ヘテロダイン検波手段と、光ヘテロダイン検波出力、試
料移動手段からの試料位置情報、走査信号が入力される
演算手段とを備え、光ヘテロダイン検波出力、試料位置
情報、走査信号とから試料の断層像を得ることを特徴と
する光断層像画像化装置。
(4) A laser device, a beam splitter that splits the laser beam from the laser device, a frequency converter that shifts the frequency of one of the laser beams split by the beam splitter, and a sample stage that is moved and rotated by the sample moving means. , an expanding optical system that expands the frequency-converted laser beam and irradiates it onto the sample, and obtains a parallel beam with a predetermined spot diameter from the transmitted light; and a beam splitter that splits the other laser beam with a beam splitter into the expanding optical system. A scanning optical system that scans inside the camera, a magnifying optical system,
Optical heterodyne detection means optically mixes the output light of the scanning optical system and extracts a beat component, and a calculation means into which the optical heterodyne detection output, sample position information from the sample moving means, and scanning signal are input. An optical tomographic imaging device characterized by obtaining a tomographic image of a sample from an output, sample position information, and a scanning signal.
(5)拡大光学系は、後側焦点位置が試料位置より前方
にあるレンズと、該レンズの後側焦点と共役な位置に配
置されたアパーチャ上に透過光を集光するレンズと、ア
パーチャ位置を前側焦点位置とするレンズとからなる請
求項4記載の光断層像画像化装置。
(5) The magnifying optical system includes a lens whose back focal point is in front of the sample position, a lens that focuses transmitted light onto an aperture located at a position conjugate with the rear focal point of the lens, and an aperture position. 5. The optical tomographic imaging apparatus according to claim 4, further comprising a lens having a front focal position of .
JP63304691A 1988-12-01 1988-12-01 Optical tomographic imaging system Expired - Fee Related JP2882803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63304691A JP2882803B2 (en) 1988-12-01 1988-12-01 Optical tomographic imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63304691A JP2882803B2 (en) 1988-12-01 1988-12-01 Optical tomographic imaging system

Publications (2)

Publication Number Publication Date
JPH02150747A true JPH02150747A (en) 1990-06-11
JP2882803B2 JP2882803B2 (en) 1999-04-12

Family

ID=17936061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63304691A Expired - Fee Related JP2882803B2 (en) 1988-12-01 1988-12-01 Optical tomographic imaging system

Country Status (1)

Country Link
JP (1) JP2882803B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818587A (en) * 1995-11-16 1998-10-06 Biophotonics Information Laboratories Ltd. Image measuring apparatus
JP2002005828A (en) * 2000-06-20 2002-01-09 Tochigi Nikon Corp Apparatus and method for inspection of impurity concentration of semiconductor
US6873405B2 (en) 2001-07-02 2005-03-29 Advantest Corporation Propagation measuring apparatus and a propagation measuring method
JP2005537476A (en) * 2002-08-30 2005-12-08 メディカル リサーチ カウンシル Optical projection tomography
US6980288B2 (en) 2001-04-02 2005-12-27 Advantest Corporation Optical network analyzer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072542A (en) * 1983-09-28 1985-04-24 株式会社島津製作所 Light ray ct apparatus
JPS62127034A (en) * 1985-11-26 1987-06-09 住友電気工業株式会社 Apparatus for measuring living body
JPS6363944A (en) * 1986-09-05 1988-03-22 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for measuring dust in semiconductor production process
JPS63115548A (en) * 1986-10-31 1988-05-20 株式会社島津製作所 Light ct apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072542A (en) * 1983-09-28 1985-04-24 株式会社島津製作所 Light ray ct apparatus
JPS62127034A (en) * 1985-11-26 1987-06-09 住友電気工業株式会社 Apparatus for measuring living body
JPS6363944A (en) * 1986-09-05 1988-03-22 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for measuring dust in semiconductor production process
JPS63115548A (en) * 1986-10-31 1988-05-20 株式会社島津製作所 Light ct apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818587A (en) * 1995-11-16 1998-10-06 Biophotonics Information Laboratories Ltd. Image measuring apparatus
JP2002005828A (en) * 2000-06-20 2002-01-09 Tochigi Nikon Corp Apparatus and method for inspection of impurity concentration of semiconductor
US6980288B2 (en) 2001-04-02 2005-12-27 Advantest Corporation Optical network analyzer
US6873405B2 (en) 2001-07-02 2005-03-29 Advantest Corporation Propagation measuring apparatus and a propagation measuring method
DE10297037B4 (en) * 2001-07-02 2008-01-17 Advantest Corp. Spreading measuring device and propagation measuring method
JP2005537476A (en) * 2002-08-30 2005-12-08 メディカル リサーチ カウンシル Optical projection tomography

Also Published As

Publication number Publication date
JP2882803B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
EP0585620B1 (en) Method and apparatus for obtaining three-dimensional information of samples
US5451785A (en) Upconverting and time-gated two-dimensional infrared transillumination imaging
JPH06221913A (en) Method and equipment for measuring optical information of scatterer/absorber
JP3592327B2 (en) Apparatus and method for optically and spatially determining density distribution in biological tissue
JPH02150747A (en) Device for optical tomographic imaging
US20190385281A1 (en) System and method for monitoring a sample with at least two wavelengths
JP2000121550A (en) Method for detecting image of organismic sample by heterodyne detection and its device
JP2890309B2 (en) Form and function imaging device
CN113331788B (en) MFMT-XCT dual-mode system
JPH10246697A (en) Optical inspection method and device
EP0445293B1 (en) Light receiving system of heterodyne detection and image forming device for light transmission image using said light receiving system
JP3597887B2 (en) Scanning optical tissue inspection system
JPH0721451B2 (en) Microscopic absorption distribution measuring device for opaque samples
JP3077703B2 (en) Phase image detection device using heterodyne detection light receiving system
JPH0431745A (en) Apparatus for simultaneous detecting amplitude image and phase image using heterodyne-detecting light receiving device
JP2748269B2 (en) Functional imaging device
JP2981695B2 (en) Method and apparatus for measuring three-dimensional information of a specimen
JP3236055B2 (en) Optical CT device
JP2918992B2 (en) Detector of amplitude image using heterodyne detection light receiving system
JPH10221248A (en) Optical examination method and device thereof
CN109008982A (en) A kind of the absolute flow velocity measuring device and method of doppler optical coherence chromatography
JP2981696B2 (en) Method and apparatus for measuring three-dimensional information of a specimen
JP2862016B2 (en) Method and apparatus for suppressing scattered light component in light passing through subject
JP2981698B2 (en) Method and apparatus for measuring three-dimensional information of a specimen
JP3997030B2 (en) Fundus blood flow meter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees