JPH02149108A - Gate voltage control circuit - Google Patents

Gate voltage control circuit

Info

Publication number
JPH02149108A
JPH02149108A JP63303068A JP30306888A JPH02149108A JP H02149108 A JPH02149108 A JP H02149108A JP 63303068 A JP63303068 A JP 63303068A JP 30306888 A JP30306888 A JP 30306888A JP H02149108 A JPH02149108 A JP H02149108A
Authority
JP
Japan
Prior art keywords
fet
gate voltage
gate
frequency signal
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63303068A
Other languages
Japanese (ja)
Inventor
Toshio Saikai
西海 敏夫
Nobutaka Tauchi
庸貴 田内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Engineering Ltd
Original Assignee
NEC Corp
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC Engineering Ltd filed Critical NEC Corp
Priority to JP63303068A priority Critical patent/JPH02149108A/en
Publication of JPH02149108A publication Critical patent/JPH02149108A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • H03F1/0266Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/195A hybrid coupler being used as power measuring circuit at the input of an amplifier circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To reduce power consumption by decreasing the drain current of a FET by detecting a high frequency signal inputted to the FET, and controlling a voltage to be applied on the gate of the FET based on a detecting signal by a gate voltage controller. CONSTITUTION:A gate voltage control circuit is constituted in such a way that part of the high frequency signal is taken out by connecting a directional coupler 7 to the gate of the FET 1, and a detector 8 and the gate voltage controller 9 are connected to the output line of the high frequency signal, and the output of the gate voltage controller 9 is outputted to the gate of the FET 1. Therefore, the power level of the high frequency signal can be monitored by detecting part of the high frequency signal inputted to a high frequency signal input port 2 by the detector 8. And by controlling a detected voltage at the gate voltage controller 9, the drain current to be applied from a drain bias port 6 can be controlled. In such a way, it is possible to reduce the power consumption by decreasing or decreasing to zero the drain current of the FET.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタ(FET)のドレイン電
流制御を行うためのゲート電圧制御回路に関し、特に非
稼働時の消費電力を低減したゲート電圧制御回路に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a gate voltage control circuit for controlling the drain current of a field effect transistor (FET), and particularly to a gate voltage control circuit that reduces power consumption during non-operation. Regarding circuits.

〔従来の技術〕[Conventional technology]

従来、FETを用いたゲート電圧制御回路として固定バ
イアスを用いた回路が利用されている。
Conventionally, a circuit using a fixed bias has been used as a gate voltage control circuit using an FET.

第2図はその一例であり、FETIのゲートには直流カ
ットコンデンサ3を介して高周波信号入力ポート2を接
続し、またドレインには直流カットコンデンサ5を介し
て高周波信号出力ポート4を接続し、またドレインバイ
アスポート6を接続している。そして、ゲート電圧制御
回路として、FETIのゲートに可変抵抗器10を介し
てゲート電圧バイアスポート11を接続し、このバイア
スポート11に印加されるゲートバイアス電圧を可変抵
抗器10によって調節してFETIのゲートに印加して
いる。
FIG. 2 shows an example, in which a high frequency signal input port 2 is connected to the gate of the FETI via a DC cut capacitor 3, and a high frequency signal output port 4 is connected to the drain via a DC cut capacitor 5. A drain bias port 6 is also connected. As a gate voltage control circuit, a gate voltage bias port 11 is connected to the gate of the FETI via a variable resistor 10, and the gate bias voltage applied to the bias port 11 is adjusted by the variable resistor 10 to control the FETI. Applied to the gate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のゲート電圧制御回路では、可変抵抗器1
0によってゲートバイアス電圧が一義的に設定されるた
め、FETIに高周波信号が入力されていない場合でも
、ある一定のドレイン電流が常時流れている。このため
、FET1で大電力の増幅器等を構成した場合には、非
稼働時にも大量のドレイン電流が流れ、大きな電力が消
費されるという問題がある。
In the conventional gate voltage control circuit described above, the variable resistor 1
Since the gate bias voltage is uniquely set to 0, a certain constant drain current always flows even when no high frequency signal is input to the FETI. Therefore, when the FET 1 constitutes a high-power amplifier or the like, there is a problem that a large amount of drain current flows even when the FET 1 is not in operation, consuming a large amount of power.

また、増幅器を多段に構成する際に、低消費電力化、各
段のドライブレベル等を考慮しなければならないため、
増幅器の混変調歪特性のばらつきを改善するには多種の
FET、ハイブリッドICを必要とし、高周波回路部、
直流バイアス回路部の回路構成が複雑になるという問題
もある。
In addition, when configuring an amplifier in multiple stages, consideration must be given to lower power consumption and the drive level of each stage.
In order to improve the variation in cross-modulation distortion characteristics of amplifiers, various types of FETs and hybrid ICs are required, and the high-frequency circuit section,
Another problem is that the circuit configuration of the DC bias circuit section becomes complicated.

本発明はこれらの問題を解消するためにFETの消費電
力の低減を可能にしたゲート電圧制御回路を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION In order to solve these problems, it is an object of the present invention to provide a gate voltage control circuit that makes it possible to reduce the power consumption of FETs.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のゲート電圧制御回路は、FETに入力される高
周波信号の一部を取り出す方向性結合器と、この方向性
結合器で取り出した高周波信号を検波する検波器と、こ
の検波器で検波した信号に基づいてFETのゲートに印
加する電圧を制御するゲート電圧制御器とを備えている
The gate voltage control circuit of the present invention includes a directional coupler that takes out a part of the high frequency signal input to the FET, a detector that detects the high frequency signal taken out by the directional coupler, and a detector that detects the high frequency signal that is taken out by the directional coupler. and a gate voltage controller that controls the voltage applied to the gate of the FET based on the signal.

〔作用〕[Effect]

上述した構成では、高周波信号が入力されない非稼働時
にはゲート電圧制御器からFETに印加するゲート電圧
をピンチオフ電圧以下とし、FETのドレイン電流を低
減ないし零にして消費電力を低減する。
In the above-described configuration, when the FET is not in operation and no high-frequency signal is input, the gate voltage applied from the gate voltage controller to the FET is lower than the pinch-off voltage, and the drain current of the FET is reduced to zero, thereby reducing power consumption.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の回路図である。図において
、FETIのゲートには直流カットコンデンサ3を介し
て高周波信号入力ポート2を接続し、またドレインには
直流カットコンデンサ5を介して高周波信号出力ポート
4を接続し、またドレインバイアスポート6を接続して
いる。そして、ゲート電圧制御回路として、前記FET
Iのゲートに方向性結合器7を接続して入力される高周
波信号の一部を取り出すように構成し、この高周波信号
の取出線路に検波器8とゲート電圧制御器9を接続し、
このゲート電圧制御器9の出力をFET1のゲートに出
力するように構成しているやこの構成によれば、高周波
信号入力ポート3に入力された高周波信号の一部を検波
器8で検波することにより高周波信号の電力レベルをモ
ニターすることができる。そして、この検波した電圧を
ゲート電圧制御器9において制御し、この電圧をゲート
電圧としてFETIに入力させることにより、ゲートバ
イアスを制御しドレインバイアスポート6から印加され
るドレイン電流を制御することが可能になる。
FIG. 1 is a circuit diagram of an embodiment of the present invention. In the figure, a high frequency signal input port 2 is connected to the gate of the FETI via a DC cut capacitor 3, a high frequency signal output port 4 is connected to the drain via a DC cut capacitor 5, and a drain bias port 6 is connected to the gate of the FETI. Connected. Then, as a gate voltage control circuit, the FET
A directional coupler 7 is connected to the gate of I to extract a part of the input high frequency signal, a detector 8 and a gate voltage controller 9 are connected to the high frequency signal extraction line,
According to this configuration, which outputs the output of the gate voltage controller 9 to the gate of the FET 1, a part of the high frequency signal input to the high frequency signal input port 3 can be detected by the detector 8. The power level of the high frequency signal can be monitored. Then, by controlling this detected voltage in the gate voltage controller 9 and inputting this voltage to the FETI as a gate voltage, it is possible to control the gate bias and the drain current applied from the drain bias port 6. become.

したがって、高周波信号の入力レベルが低いときにはド
レイン電流を抑制し、入力レベルが上昇するのに従って
ドレイン電流を増加させるようにゲート電圧制御器9を
設定しておけば、非稼働時、つまり入力電力が検波器8
で検出されない場合は、ゲート電圧がピンチオフ電圧に
達し、ドレイン電流が流れな(なり、消費電力の低減を
可能とする。
Therefore, if the gate voltage controller 9 is set to suppress the drain current when the input level of the high-frequency signal is low and increase the drain current as the input level rises, the input power will be reduced when the input power is not in operation. Detector 8
If it is not detected, the gate voltage reaches the pinch-off voltage and no drain current flows, making it possible to reduce power consumption.

これにより、FETで大電力増幅器を構成した場合にも
、非稼働時における消費電力を低減できる。また、同等
の混変調歪特性を得るために、高周波回路部や直流バイ
アス回路部の回路構成を簡略化することが可能となる。
As a result, even when a high power amplifier is configured with FETs, power consumption during non-operation can be reduced. Furthermore, in order to obtain equivalent cross-modulation distortion characteristics, it is possible to simplify the circuit configurations of the high frequency circuit section and the DC bias circuit section.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、FETに人力される高周
波信号を検波し、この検波信号に基づいてFETのゲー
トに印加する電圧をゲート電圧制御器で制御するように
構成しているので、高周波信号が入力されない非稼働時
にはゲート電圧制御器からFETに印加するゲート電圧
をピンチオフ電圧以下とし、FETのドレイン電流を低
減して消費電力の低減を図ることができる効果がある。
As explained above, the present invention is configured to detect the high-frequency signal manually applied to the FET, and control the voltage applied to the gate of the FET based on this detected signal with the gate voltage controller. When the FET is not in operation and no signal is input, the gate voltage applied from the gate voltage controller to the FET is set below the pinch-off voltage, thereby reducing the drain current of the FET and reducing power consumption.

また、FETの混変調歪特性のばらつきを補正し、かつ
混変調歪特性の温度補償も実現できる効果がある。
Further, it is possible to correct variations in the cross-modulation distortion characteristics of the FET, and also to realize temperature compensation for the cross-modulation distortion characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の・一実施例の回路図、第2図は従来の
ゲート電圧制御回路の回路図である。
FIG. 1 is a circuit diagram of an embodiment of the present invention, and FIG. 2 is a circuit diagram of a conventional gate voltage control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、FETのゲートに印加するゲート電圧を制御するゲ
ート電圧制御回路において、前記FETに入力される高
周波信号の一部を取り出す方向性結合器と、この方向性
結合器で取り出した高周波信号を検波する検波器と、こ
の検波器で検波した信号に基づいて前記FETのゲート
に印加する電圧を制御するゲート電圧制御器とを備える
ことを特徴とするゲート電圧制御回路。
1. In the gate voltage control circuit that controls the gate voltage applied to the gate of the FET, there is a directional coupler that takes out a part of the high frequency signal input to the FET, and a detection of the high frequency signal taken out by this directional coupler. What is claimed is: 1. A gate voltage control circuit comprising: a wave detector; and a gate voltage controller that controls a voltage applied to the gate of the FET based on a signal detected by the wave detector.
JP63303068A 1988-11-30 1988-11-30 Gate voltage control circuit Pending JPH02149108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63303068A JPH02149108A (en) 1988-11-30 1988-11-30 Gate voltage control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63303068A JPH02149108A (en) 1988-11-30 1988-11-30 Gate voltage control circuit

Publications (1)

Publication Number Publication Date
JPH02149108A true JPH02149108A (en) 1990-06-07

Family

ID=17916511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63303068A Pending JPH02149108A (en) 1988-11-30 1988-11-30 Gate voltage control circuit

Country Status (1)

Country Link
JP (1) JPH02149108A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363058A (en) * 1992-03-19 1994-11-08 Mitsubishi Denki Kabushiki Kaisha Amplifier having linear input-output characteristics and high efficiency
US5532646A (en) * 1993-11-30 1996-07-02 Matsushita Electric Industrial Co., Ltd. High frequency power amplifier
JPH08237041A (en) * 1995-02-28 1996-09-13 Nec Corp High frequency amplifier
WO2002003544A1 (en) * 2000-06-30 2002-01-10 Mitsubishi Denki Kabushiki Kaisha High-frequency amplifier
WO2002003543A1 (en) * 2000-06-30 2002-01-10 Mitsubishi Denki Kabushiki Kaisha High-frequency amplifier
WO2003073605A1 (en) * 2002-02-28 2003-09-04 Fujitsu Limited High-frequency amplifier
JP2004534471A (en) * 2001-07-06 2004-11-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Communication system and device provided with such a communication system
EP1783896A2 (en) * 2005-11-04 2007-05-09 Samsung Electronics Co., Ltd. Apparatus for optimizing gate bias of radio frequency amplifier and method thereof
EP1861923A2 (en) * 2005-03-21 2007-12-05 Skyworks Solutions, Inc. Bias control for reducing amplifier power consumption and maintaining linearity
WO2008136124A1 (en) * 2007-04-26 2008-11-13 Panasonic Corporation Amplifier
US7729674B2 (en) 2007-01-09 2010-06-01 Skyworks Solutions, Inc. Multiband or multimode receiver with shared bias circuit
WO2015121891A1 (en) * 2014-02-13 2015-08-20 三菱電機株式会社 Amplifier

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274906A (en) * 1986-05-23 1987-11-28 Nippon Telegr & Teleph Corp <Ntt> High frequency amplifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274906A (en) * 1986-05-23 1987-11-28 Nippon Telegr & Teleph Corp <Ntt> High frequency amplifier

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363058A (en) * 1992-03-19 1994-11-08 Mitsubishi Denki Kabushiki Kaisha Amplifier having linear input-output characteristics and high efficiency
US5532646A (en) * 1993-11-30 1996-07-02 Matsushita Electric Industrial Co., Ltd. High frequency power amplifier
JPH08237041A (en) * 1995-02-28 1996-09-13 Nec Corp High frequency amplifier
US6873208B2 (en) 2000-06-30 2005-03-29 Mitsubishi Denki Kabushiki Kaisha High-frequency amplifier
US6650181B2 (en) 2000-06-30 2003-11-18 Mitsubishi Denki Kabushiki Kaisha High-frequency amplifier
WO2002003544A1 (en) * 2000-06-30 2002-01-10 Mitsubishi Denki Kabushiki Kaisha High-frequency amplifier
WO2002003543A1 (en) * 2000-06-30 2002-01-10 Mitsubishi Denki Kabushiki Kaisha High-frequency amplifier
JP2004534471A (en) * 2001-07-06 2004-11-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Communication system and device provided with such a communication system
WO2003073605A1 (en) * 2002-02-28 2003-09-04 Fujitsu Limited High-frequency amplifier
US6914483B2 (en) 2002-02-28 2005-07-05 Fujitsu Limited High-frequency amplifier circuit
EP1861923A4 (en) * 2005-03-21 2010-01-06 Skyworks Solutions Inc Bias control for reducing amplifier power consumption and maintaining linearity
EP1861923A2 (en) * 2005-03-21 2007-12-05 Skyworks Solutions, Inc. Bias control for reducing amplifier power consumption and maintaining linearity
EP1783896A2 (en) * 2005-11-04 2007-05-09 Samsung Electronics Co., Ltd. Apparatus for optimizing gate bias of radio frequency amplifier and method thereof
EP1783896A3 (en) * 2005-11-04 2008-04-23 Samsung Electronics Co., Ltd. Apparatus for optimizing gate bias of radio frequency amplifier and method thereof
US7729674B2 (en) 2007-01-09 2010-06-01 Skyworks Solutions, Inc. Multiband or multimode receiver with shared bias circuit
WO2008136124A1 (en) * 2007-04-26 2008-11-13 Panasonic Corporation Amplifier
JPWO2008136124A1 (en) * 2007-04-26 2010-07-29 パナソニック株式会社 amplifier
WO2015121891A1 (en) * 2014-02-13 2015-08-20 三菱電機株式会社 Amplifier

Similar Documents

Publication Publication Date Title
JPH02149108A (en) Gate voltage control circuit
JPH0750526A (en) Balanced cascode current mirror
JPH0563479A (en) Demand controller
US7081775B2 (en) Bias technique for operating point control in multistage circuits
JP3075635B2 (en) Temperature compensated amplifier
KR20050059182A (en) Dc-compensation loop for variable gain amplifier
JPH10294628A (en) High frequency amplifier
JP2900677B2 (en) Power amplifier
JPH04295222A (en) Stabilized power supply circuit
JP3617704B2 (en) Logarithmic amplifier
EP0527029B1 (en) Power control circuit and a method of controlling a power amplifier
JPH08107316A (en) Integrated microwave circuit
JPH0555841A (en) Transistor high frequency amplifier circuit
JPH06310949A (en) High frequency amplifier circuit and its control method
JP2982256B2 (en) Waveform correction circuit
JPH0537530Y2 (en)
KR20020018736A (en) Lna able to compensating noise figure
JPH08154020A (en) Fet power amplifier
JP2666226B2 (en) Power amplifier circuit
JPH0722874A (en) Amplifier
JPH02151109A (en) Semiconductor amplifier circuit
KR940004746B1 (en) Variable impedance circuit
JP3249254B2 (en) Integrated amplifier
JPH02142209A (en) High frequency power amplifier
JPS6217849B2 (en)