JPH02149013A - Oscillation circuit - Google Patents

Oscillation circuit

Info

Publication number
JPH02149013A
JPH02149013A JP63300911A JP30091188A JPH02149013A JP H02149013 A JPH02149013 A JP H02149013A JP 63300911 A JP63300911 A JP 63300911A JP 30091188 A JP30091188 A JP 30091188A JP H02149013 A JPH02149013 A JP H02149013A
Authority
JP
Japan
Prior art keywords
output
inverter
transistor
circuit
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63300911A
Other languages
Japanese (ja)
Inventor
Hiromi Kusakabe
日下部 博已
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63300911A priority Critical patent/JPH02149013A/en
Publication of JPH02149013A publication Critical patent/JPH02149013A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the number of terminals for externally attached parts in the case where a circuit is made into an IC by providing second and third I<2>L inverters to which the output of a first I<2>L inverter and the collector output of a transistor are inputted respectively and whose mutual input/output terminals are connected so as to constitute a latch circuit, and a feedback circuit to feed back the output of the third I<2>L inverter to the input of the first I<2>L inverter. CONSTITUTION:At time T3 when the potential of the terminal P4 reaches VH of the threshold voltage of the I<2>L inverter X1, the output of the I<2>L inverter X1 becomes L-level, and the storage state of the latch circuit L is inverted. When the potential of the terminal P4 becomes VL, since the transistor Q14 becomes into a conductive state, the storage state of the latch circuit L is inverted again. Then, since the shunt of a capacitor C4 is opened, and charge is started, the potential of the terminal P4 comes to rise again. Henceforward, the charge and discharge to the capacitor C4 is continued repeatedly, and oscillation output can be obtained from the output terminal OUT based on the inversion operation of the latch circuit L.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、I 2L (Integrated In
jectionLogic)インバータを用いた発振回
路に係り、特にIC(集積回路)化及び超低電圧動作化
を図ったものに関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) This invention is based on I2L (Integrated In
The present invention relates to an oscillation circuit using an inverter, particularly to an IC (integrated circuit) and ultra-low voltage operation.

(従来の技術) 周知のように、12Lインバータを利用した発振回路と
しては、従来より、第5図に示す構成のものがある。第
5図は、「電子材料J  (1978年6月号の第64
頁の図4)に記載されている水晶発振器を示している。
(Prior Art) As is well known, as an oscillation circuit using a 12L inverter, there is a structure shown in FIG. 5 in the past. Figure 5 is from “Electronic Materials J (June 1978 issue, No. 64)”
The crystal oscillator described in Figure 4) on page 1 is shown.

この水晶発振器は、!2Lトランジスタを反転増幅器と
して利用したもので、トランジスタQlよりなる線形増
幅器と、トランジスタQ2.Q3及びダイオードD1よ
りなる直流負帰還回路と、水晶X tal及びコンデン
サC1゜C2とで、振幅レベルが2VBHに制限された
正弦波の発振出力を得る。そして、この発振出力をトラ
ンジスタQ4.Q5よりなるバッファ・クリッパ回路で
、波形整形し矩形パルスに変換するものである。
This crystal oscillator is! It uses a 2L transistor as an inverting amplifier, consisting of a linear amplifier consisting of a transistor Ql, and a transistor Q2. A sine wave oscillation output whose amplitude level is limited to 2VBH is obtained by a DC negative feedback circuit consisting of Q3 and diode D1, crystal Xtal and capacitor C1°C2. This oscillation output is then transferred to the transistor Q4. A buffer clipper circuit consisting of Q5 shapes the waveform and converts it into a rectangular pulse.

しかしながら、第5図に示した従来の発振回路では、I
C化する場合、水晶X tal及びコンデンサC1,C
2が外付けとなるため、2つの端子Pi、P2が必、要
となり、実用的でないという問題が生じる。
However, in the conventional oscillation circuit shown in FIG.
When converting to C, crystal X tal and capacitor C1, C
Since terminal 2 is externally attached, two terminals Pi and P2 are required, which poses a problem that it is not practical.

そこで、従来より、第6図に示すような発振回路が考え
られている。第6図は、特公昭58−3112ei号公
報に記載されている、位相同期ループを用いたマルチプ
レックス集積回路用の電流制御発振器を示している。こ
の電流制御発振器は、差動増幅器を主体にした比較回路
とヒステリシス特性を有する帰還回路からなるもので、
図示しないローパスフィルタを介して供給される位相差
に応じた電流1oを、抵抗R1及びコンデンサC3より
なる積分回路CRを介して、トランジスタQ6〜Q13
よりなるシュミット回路に供給するようにしたものであ
る。
Therefore, conventionally, an oscillation circuit as shown in FIG. 6 has been considered. FIG. 6 shows a current controlled oscillator for a multiplex integrated circuit using a phase-locked loop, which is described in Japanese Patent Publication No. 58-3112ei. This current controlled oscillator consists of a comparison circuit based on a differential amplifier and a feedback circuit with hysteresis characteristics.
A current 1o corresponding to the phase difference supplied via a low-pass filter (not shown) is passed through an integrating circuit CR consisting of a resistor R1 and a capacitor C3 to transistors Q6 to Q13.
The circuit is designed to be supplied to a Schmitt circuit consisting of:

そして、この電流制御発振器によれば、IC化した場合
、積分回路CRのみが外付けとなるので、・1つの端子
P3で済むようになる。ところが、第6図に示した従来
の発振回路では、最低動作電圧が高いため例えば電池使
用の機器等には不向きであるという問題がある。
According to this current controlled oscillator, when integrated into an IC, only the integrating circuit CR is externally attached, so that only one terminal P3 is required. However, the conventional oscillation circuit shown in FIG. 6 has a problem in that the minimum operating voltage is high, making it unsuitable for, for example, equipment using batteries.

(発明が解決しようとする課題) 以上のように、従来の発振回路では、IC化する場合、
外付は部品用の端子数が多くなるという問題があり、ま
た、端子数の削減を図ると最低動作電圧が高くなるとい
う問題を有している。
(Problems to be Solved by the Invention) As described above, when converting a conventional oscillation circuit into an IC,
External connection has the problem of increasing the number of terminals for components, and also has the problem that reducing the number of terminals increases the minimum operating voltage.

そこで、この発明は上記事情を考慮してなされたもので
、IC化した場合外付は部品用の端子数が削減でき、し
かも、例えば電池1本分の超低電圧でも動作可能な極め
て良好な発振回路を提供することを目的とする。
Therefore, this invention was made in consideration of the above circumstances, and when integrated into an IC, the number of external terminals for components can be reduced, and it also has an extremely good performance that can operate at an ultra-low voltage equivalent to, for example, one battery. The purpose is to provide an oscillation circuit.

[発明の構成] (課題を解決するための手段) この発明に係る発振回路は、エミッタ電位が第1のレベ
ルになったとき導通状態となるようにバイアスされたト
ランジスタと、このトランジスタのエミッタと基準電位
点との間に介挿接続されたコンデンサと、トランジスタ
のエミッタ出力が入力され、スレッショルドレベルが第
1のレベルと異なる第2のレベルである第1の12Lイ
ンバータと、この第1の12Lインバータの出力及びト
ランジスタのコレクタ出力がそれぞれ入力され、互いの
入出力端が相互に接続されてラッチ回路を構成する第2
及び第3の12Lインバータと、第3の12Lインバー
タの出力を第1の12Lインバータの入力に帰還する帰
還回路とを備えたものである。
[Structure of the Invention] (Means for Solving the Problems) An oscillation circuit according to the present invention includes a transistor that is biased to become conductive when the emitter potential reaches a first level, and an emitter of the transistor. a capacitor interposed and connected between the reference potential point, a first 12L inverter to which the emitter output of the transistor is input and whose threshold level is a second level different from the first level; The output of the inverter and the collector output of the transistor are respectively input, and the input and output terminals are connected to each other to form a latch circuit.
and a third 12L inverter, and a feedback circuit that feeds back the output of the third 12L inverter to the input of the first 12L inverter.

(作用) 上記のような構成によれば、第1及び第2のレベル間で
コンデンサに対して充放電を行なわせ発振出力を得るこ
とができる。そして、IC化した場合、外付は部品はコ
ンデンサのみとなるため、端子数は1つで済むようにな
る。また、最低動作電圧も、例えば1v以下の超低電圧
とすることができる。
(Function) According to the above configuration, it is possible to charge and discharge the capacitor between the first and second levels to obtain an oscillation output. When integrated into an IC, the only external component is a capacitor, so only one terminal is required. Furthermore, the minimum operating voltage can also be set to an extremely low voltage of, for example, 1 V or less.

(実施例) 以下、この発明の一実施例について図面を参照して詳細
に説明する。第1図において、Q10はNPN型のトラ
ンジスタで、そのベースには定電圧Vlが印加されてい
る。このトランジスタQ14のエミッタは、端子P4を
介して外付は用のコンデンサC4に接続されている。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. In FIG. 1, Q10 is an NPN type transistor, and a constant voltage Vl is applied to its base. The emitter of this transistor Q14 is connected to an external capacitor C4 via a terminal P4.

ここで、上記トランジスタQ14は、そのエミッタ電位
がVLになったときに導通状態となるようにバイアス設
定されている。つまり、トランジスタQ14のベース・
エミッタ間順方向電圧をVFとすると、 VL −Vl −VF となされている。
Here, the transistor Q14 is biased so that it becomes conductive when its emitter potential reaches VL. In other words, the base of transistor Q14
When the forward voltage between emitters is VF, it is expressed as VL - Vl - VF.

また、上記トランジスタQ14のエミッタは、入力スレ
ッショルドレベルが上記VLよりも高い電位V 11で
ある、12LインバータX1の入力端に瞭続されている
。そして、この12LインバータX1の出力端及びトラ
ンジスタQ14のコレクタは、12LインバータX2.
X3の入力端にそれぞれ接続されている。
Further, the emitter of the transistor Q14 is connected to the input terminal of a 12L inverter X1 whose input threshold level is a potential V11 higher than the VL. The output terminal of the 12L inverter X1 and the collector of the transistor Q14 are connected to the 12L inverter X2.
They are respectively connected to the input terminals of X3.

これらI2LインバータX2.X3は、互いの入出力端
が相互に接続されてラッチ回路りを構成している。そし
て、■2LインバータX2の出力端は、出力端子OUT
に接続され、I2LインバータX3の出力端は、I2L
インバータXIの入力端に接続されている。
These I2L inverters X2. The input and output terminals of X3 are connected to each other to form a latch circuit. ■The output terminal of the 2L inverter X2 is the output terminal OUT.
The output terminal of I2L inverter X3 is connected to I2L
Connected to the input end of inverter XI.

上記のような構成において、以下、その動作を説明する
。まず、コンデンサC4の両端間電位差が0の状態で、
定電圧v1が印加されたとする。
The operation of the above configuration will be described below. First, when the potential difference between both ends of capacitor C4 is 0,
Assume that a constant voltage v1 is applied.

すると、トランジスタQlは完全に導通状態となるため
、そのコレクタはL(ロー)レベルとなり、12Lイン
バータX3の出力はオーブンとなっている。
Then, since the transistor Ql becomes completely conductive, its collector becomes L (low) level, and the output of the 12L inverter X3 becomes an oven.

このため、コンデンサC4には充電のみが行なわれ、端
子P4の電位は、第2図の時刻tl〜t2に示すように
順次上昇する。この場合、端子P4の電位がvLになる
までは、トランジスタQ14によってコンデンサC4に
急速に充電が行なわれるので、端子P4の電位上昇の傾
斜は大きくなっている。
Therefore, the capacitor C4 is only charged, and the potential of the terminal P4 increases sequentially as shown from time tl to t2 in FIG. In this case, until the potential of the terminal P4 reaches vL, the capacitor C4 is rapidly charged by the transistor Q14, so that the slope of the rise in the potential of the terminal P4 is large.

そして、端子P4の電位がVLを越えた時刻t2以降は
、トランジスタQ14は非導通状態となるが、ラッチ回
路りが時刻t2以前の状態を保持しているため、I2L
インバータX3の出力はオーブンのままで、12Lイン
バータX1のインジェクション電流の作用によって、コ
ンデンサC4への充電が継続される。この場合、コンデ
ンサC4への充電は緩やかに行なわれるので、端子P4
の電位上昇の傾斜は緩くなる。
After time t2 when the potential of terminal P4 exceeds VL, transistor Q14 becomes non-conductive, but since the latch circuit maintains the state before time t2, I2L
The output of the inverter X3 remains in the oven, and the capacitor C4 continues to be charged by the injection current of the 12L inverter X1. In this case, since capacitor C4 is charged slowly, terminal P4
The slope of potential rise becomes gentler.

このようにして、端子P4の電位が、I2Lインバータ
X1のスレッショルド電圧であるV Hに達した時刻T
3では、I2LインバータX1の出力がLレベルとなり
、ラッチ回路りの記憶状態が反転される。すると、I2
LインバータX3の出力はLレベルとなって、コンデン
サC4がシャントされ急速に放電が行なわれる。このた
め、端子P4の電位は、急速に降下し時刻t4でVLに
達する。
In this way, the time T when the potential of the terminal P4 reaches VH, which is the threshold voltage of the I2L inverter X1.
3, the output of the I2L inverter X1 becomes L level, and the storage state of the latch circuit is inverted. Then I2
The output of L inverter X3 becomes L level, and capacitor C4 is shunted and rapidly discharged. Therefore, the potential of terminal P4 rapidly drops and reaches VL at time t4.

端子P4の電位がVLになると、トランジスタQ14が
導通状態となるため、ラッチ回路りの記憶状態が再び反
転される。すると、コンデンサC4のシャントが開放さ
れて充電が開始されるので、端子P4の電位が再び上昇
することになる。以後、上記のようなコンデンサC4へ
の充放電動作が繰り返し継続され、ラッチ回路りの反転
動作に基づいて出力端子OUTから発振出力を得ること
ができる。この場合、出力端子OUTの発振出力は、第
2図に示した鋸歯状波形で急激に電圧が降下している部
分でH(ハイ)レベルとなる。
When the potential of the terminal P4 becomes VL, the transistor Q14 becomes conductive, so that the storage state of the latch circuit is reversed again. Then, the shunt of the capacitor C4 is opened and charging is started, so that the potential of the terminal P4 rises again. Thereafter, the above-described charging/discharging operation of the capacitor C4 continues repeatedly, and an oscillation output can be obtained from the output terminal OUT based on the inversion operation of the latch circuit. In this case, the oscillation output of the output terminal OUT becomes H (high) level at the portion of the sawtooth waveform shown in FIG. 2 where the voltage suddenly drops.

第3図は、第1図に示した実施例の回路をより安定に使
用できるように工夫し、実際の回路定数を設定した例を
示している。動作原理は、上記実施例と全く同じであり
、12LインバータX4゜X5及び12LインバータX
B、X7を新たに付加した点が、構成上大きく異なる部
分である。
FIG. 3 shows an example in which the circuit of the embodiment shown in FIG. 1 is devised so that it can be used more stably, and actual circuit constants are set. The operating principle is exactly the same as the above embodiment, and the 12L inverter X4°X5 and the 12L inverter
The major difference in configuration is that B and X7 are newly added.

12LインバータX、4.X5は、トランジスタQ14
が飽和したときの逆βの影響を避けるために設けられて
おり、12LインバータX8.Xlは、コンデンサC4
の充電電荷を急速に放電させるために、電流の吸い込み
能力を高めたものである。
12L inverter X, 4. X5 is transistor Q14
is provided to avoid the influence of inverse β when the 12L inverter X8. Xl is capacitor C4
In order to rapidly discharge the charged electric charge, the current absorption ability has been increased.

そして、第4図(a)〜(c)は、第3図中(a)〜(
C)点の電圧波形を、それぞれコンピュータシミュレー
ションによって描いたものである。第4図から明らかな
ように、各部の動作電圧はIV以下であり、例えば電池
1本(1,5V)程度の超低電圧で動作させることが可
能となる。
4(a) to (c) correspond to (a) to (c) in FIG.
The voltage waveform at point C) is drawn by computer simulation. As is clear from FIG. 4, the operating voltage of each part is below IV, and it is possible to operate at an extremely low voltage, for example, about one battery (1.5 V).

なお、この発明は上記実施例に限定されるものではなく
、この外その要旨を逸脱しない範囲で種々変形して実施
することができる。例えば上記実施例では発振出力を1
2LインバータX2から取り出すようにしたが、これは
目的に応じて任意の点から取り出すようにしてもよいも
のである。また、この発明は、例えば超低電圧用センサ
ーレスモータドライブICのモータ起動用発振回路とし
て使用すると好適する。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and can be implemented with various modifications without departing from the gist thereof. For example, in the above embodiment, the oscillation output is 1
Although it is arranged to take it out from the 2L inverter X2, it may be taken out from any point depending on the purpose. Further, the present invention is suitable for use as an oscillation circuit for starting a motor of an ultra-low voltage sensorless motor drive IC, for example.

[発明の効果] 以上詳述したようにこの発明によれば、IC化した場合
外付は部品用の端子数が削減でき、しかも、例えば電池
1本分の超低電圧でも動作可能な極めて良好な発振回路
を提供することができる。
[Effects of the Invention] As described in detail above, according to the present invention, when integrated into an IC, the number of external terminals for components can be reduced, and furthermore, it has an extremely good performance that can be operated at an ultra-low voltage equivalent to, for example, one battery. It is possible to provide a unique oscillation circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれこの発明に係る発振回路の
一実施例を示す回路構成図及びその動作を説明するため
の波形図、第3図及び第4図はそれぞれ同実施例をより
実際的に構成した状態を示す回路構成図及びその各部の
波形図、第5図及び第6図はそれぞれ従来の発振回路を
示す回路構成図である。
1 and 2 are circuit configuration diagrams showing one embodiment of the oscillation circuit according to the present invention and waveform diagrams for explaining its operation, and FIGS. 3 and 4 respectively show the same embodiment in more detail. FIGS. 5 and 6 are circuit configuration diagrams showing a conventional oscillation circuit, respectively, and a waveform diagram of each part thereof.

Claims (1)

【特許請求の範囲】[Claims] エミッタ電位が第1のレベルになったとき導通状態とな
るようにバイアスされたトランジスタと、このトランジ
スタのエミッタと基準電位点との間に介挿接続されたコ
ンデンサと、前記トランジスタのエミッタ出力が入力さ
れ、スレッショルドレベルが前記第1のレベルと異なる
第2のレベルである第1のI^2Lインバータと、この
第1の1^2Lインバータの出力及び前記トランジスタ
のコレクタ出力がそれぞれ入力され、互いの入出力端が
相互に接続されてラッチ回路を構成する第2及び第3の
I^2Lインバータと、前記第3のI^2Lインバータ
の出力を前記第1のI^2Lインバータの入力に帰還す
る帰還回路とを具備してなることを特徴とする発振回路
A transistor biased to conduct when the emitter potential reaches a first level, a capacitor connected between the emitter of this transistor and a reference potential point, and an emitter output of the transistor as an input. and a first I^2L inverter whose threshold level is a second level different from the first level, the output of this first 1^2L inverter and the collector output of the transistor are respectively inputted, and the second and third I^2L inverters whose input and output terminals are connected to each other to form a latch circuit, and the output of the third I^2L inverter is fed back to the input of the first I^2L inverter. An oscillation circuit comprising a feedback circuit.
JP63300911A 1988-11-30 1988-11-30 Oscillation circuit Pending JPH02149013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63300911A JPH02149013A (en) 1988-11-30 1988-11-30 Oscillation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63300911A JPH02149013A (en) 1988-11-30 1988-11-30 Oscillation circuit

Publications (1)

Publication Number Publication Date
JPH02149013A true JPH02149013A (en) 1990-06-07

Family

ID=17890612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63300911A Pending JPH02149013A (en) 1988-11-30 1988-11-30 Oscillation circuit

Country Status (1)

Country Link
JP (1) JPH02149013A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285666A (en) * 2001-03-23 2002-10-03 Daiken Trade & Ind Co Ltd Supporting leg for partition wall, mounting structure thereof and construction method therefor
US8624588B2 (en) 2008-07-31 2014-01-07 Allegro Microsystems, Llc Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation as a ferromagnetic object
US8754640B2 (en) 2012-06-18 2014-06-17 Allegro Microsystems, Llc Magnetic field sensors and related techniques that can provide self-test information in a formatted output signal
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10495700B2 (en) 2016-01-29 2019-12-03 Allegro Microsystems, Llc Method and system for providing information about a target object in a formatted output signal
US10495485B2 (en) 2016-05-17 2019-12-03 Allegro Microsystems, Llc Magnetic field sensors and output signal formats for a magnetic field sensor
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10656170B2 (en) 2018-05-17 2020-05-19 Allegro Microsystems, Llc Magnetic field sensors and output signal formats for a magnetic field sensor
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285666A (en) * 2001-03-23 2002-10-03 Daiken Trade & Ind Co Ltd Supporting leg for partition wall, mounting structure thereof and construction method therefor
US8994369B2 (en) 2008-07-31 2015-03-31 Allegro Microsystems, Llc Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation of a ferromagnetic object
US9151771B2 (en) 2008-07-31 2015-10-06 Allegro Microsystems, Llc Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation of a ferromagnetic object
US8624588B2 (en) 2008-07-31 2014-01-07 Allegro Microsystems, Llc Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation as a ferromagnetic object
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US11680996B2 (en) 2012-05-10 2023-06-20 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having integrated coil
US8754640B2 (en) 2012-06-18 2014-06-17 Allegro Microsystems, Llc Magnetic field sensors and related techniques that can provide self-test information in a formatted output signal
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10670672B2 (en) 2013-07-19 2020-06-02 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US10254103B2 (en) 2013-07-19 2019-04-09 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US11313924B2 (en) 2013-07-19 2022-04-26 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US11307054B2 (en) 2014-10-31 2022-04-19 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US10753768B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US10495700B2 (en) 2016-01-29 2019-12-03 Allegro Microsystems, Llc Method and system for providing information about a target object in a formatted output signal
US10495485B2 (en) 2016-05-17 2019-12-03 Allegro Microsystems, Llc Magnetic field sensors and output signal formats for a magnetic field sensor
US10837800B2 (en) 2016-06-08 2020-11-17 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10656170B2 (en) 2018-05-17 2020-05-19 Allegro Microsystems, Llc Magnetic field sensors and output signal formats for a magnetic field sensor
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US11686599B2 (en) 2018-08-06 2023-06-27 Allegro Microsystems, Llc Magnetic field sensor
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor

Similar Documents

Publication Publication Date Title
JPH02149013A (en) Oscillation circuit
US7099167B2 (en) Step-down circuit, power supply circuit, and semiconductor integrated circuit
JPH01136419A (en) Oscillation circuit
US3305730A (en) Frequency divider circuit
US4468636A (en) Low temperature coefficient wide band-width voltage controlled oscillator
US3037172A (en) Duty cycle modulated multivibrator
US3060386A (en) Transistorized multivibrator
US3648181A (en) Pulse generating circuit for producing pulses of amplitude which is a multiple of the amplitude of the source voltage
JP3697678B2 (en) V / F conversion circuit
US3299371A (en) Plural transistor lcoscillator circuit with square wave output
US3227965A (en) Square wave oscillator with low output impedance in all states
EP0245908B1 (en) Switched direct voltage converter
US3076152A (en) Stabilized duty cycle modulated multivibrator
US3049626A (en) Spectrum generator
JP2913670B2 (en) Divider circuit
US3047732A (en) Flip-flop responsive to leading and trailing transients of successive input pulses employing diode, r-c combination
JPS61218372A (en) Dead time forming circuit
JPH036032Y2 (en)
JPH01128621A (en) Charge pump circuit
JP3408436B2 (en) Vertical sawtooth wave oscillation circuit
Todd Tunnel diode applications
SU1513579A1 (en) Stabilized power source
SU1453582A1 (en) Quartz oscillator
JPS6342591Y2 (en)
JPH11146634A (en) Charge pump circuit