JPH02148760A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH02148760A
JPH02148760A JP30118988A JP30118988A JPH02148760A JP H02148760 A JPH02148760 A JP H02148760A JP 30118988 A JP30118988 A JP 30118988A JP 30118988 A JP30118988 A JP 30118988A JP H02148760 A JPH02148760 A JP H02148760A
Authority
JP
Japan
Prior art keywords
trench
groove
polycrystalline silicon
silicon
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30118988A
Other languages
Japanese (ja)
Inventor
Toyokazu Fujii
藤居 豊和
Hiroshi Yamamoto
浩 山本
Takao Kakiuchi
垣内 孝夫
Yoji Masuda
洋司 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30118988A priority Critical patent/JPH02148760A/en
Publication of JPH02148760A publication Critical patent/JPH02148760A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To obtain a low resistance by opening a trench groove on the surface of a semiconductor substrate, forming an insulating film along the sidewall of the groove when the groove is filled with electric conductor, laminating polycrystalline silicon or amorphous silicon thereon, and filling a cavity formed thereby with metal. CONSTITUTION:A trench groove 1 to act as an isolating groove is opened in the surface layer of a semiconductor substrate 2. When the groove 1 is filled with an electric conductor 5, it is conducted as below. An insulating film 3 is formed on the bottom and the sidewall of the groove 5, and the surface of the substrate 2, and polycrystalline or amorphous silicon 4 is deposited on the whole surface including it by a vapor growing method. Here, the width of the groove 1 is, for example, 0.5mum, the depth is 4.0mum, the thickness of the film 3 is 10nm, and the thickness of the silicon 4 is 100nm, Thereafter, etching gas is blown perpendicularly to the substrate, the polycrystalline silicon is anisotropically etched to form a cavity 4, and the polycrystalline silicon on the substrate 2 is all removed. Then, W5 is filled only in the cavity 4.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の製造方法に関し、半導体基板に
形成されたトレンチ溝のみを電気伝導体により埋め込む
プロセスの、より改善された方法を提供することを目的
としたものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and an object of the present invention is to provide an improved method of filling only trenches formed in a semiconductor substrate with an electrical conductor. The purpose is to

従来の技術 従来の半導体装置の製造方法においては、トレンチ溝の
形成された半導体基板を酸化した後に、多結晶シリコン
を上記半導体基板上に気相成長法により全面に堆積した
後に、リン拡散によりリンを上記多結晶シリコン中に拡
散することで上記多結晶シリコンの比抵抗を下げた後、
また第2の多結晶シリコンを上記多結晶シリンコ上に気
相成長法により全面に堆積し、同様な手段によりリン拡
散を行ない、上記第2の多結晶シリコンの比抵抗を下げ
るという工程を繰り返すことで、上記トレンチ溝を多結
晶シリコンで埋め込んだ後、エッチバック法により上記
トレンチ溝以外の部分に堆積された上記多結晶シリコン
を除去することで、上記トレンチ溝部分のみにリン拡散
のされた多結晶シリコンが形成されるという技術が知ら
れている。
BACKGROUND OF THE INVENTION In a conventional semiconductor device manufacturing method, a semiconductor substrate in which a trench has been formed is oxidized, polycrystalline silicon is deposited on the entire surface of the semiconductor substrate by vapor phase growth, and then phosphorus is removed by phosphorus diffusion. After lowering the resistivity of the polycrystalline silicon by diffusing it into the polycrystalline silicon,
Further, repeating the process of depositing a second polycrystalline silicon over the entire surface of the polycrystalline silicon by a vapor phase growth method, and performing phosphorus diffusion by the same means to lower the resistivity of the second polycrystalline silicon. After filling the trench groove with polycrystalline silicon, the polycrystalline silicon deposited in the area other than the trench groove is removed by an etch-back method, so that the polycrystalline silicon with phosphorus diffused only in the trench groove area is removed. Techniques are known in which crystalline silicon is formed.

発明が解決しようとする課題 しかしながら、トレンチ溝の幅が0.5μm程度になっ
た場合、リン拡散を行なった多結晶シリコンの比抵抗で
はトレンチ溝内部の抵抗が高くなり過ぎ、トレンチキャ
パシタの安定した動作が得られず、また、リン拡散を行
なう回数を増加すると工程が増加すると共に、リン拡散
の量が多くなるとリンを含んだ化合物の析出が発生し、
不良の原因となる。
Problems to be Solved by the Invention However, when the width of the trench is about 0.5 μm, the resistivity inside the trench becomes too high with the specific resistance of polycrystalline silicon that has undergone phosphorus diffusion, making it difficult to stabilize the trench capacitor. In addition, increasing the number of times phosphorus diffusion is performed increases the number of steps, and increasing the amount of phosphorus diffusion causes precipitation of phosphorus-containing compounds.
This may cause defects.

また、多結晶シリコンを堆積した後エッチバックにより
トレンチ溝以外の多結晶シリコンを除去する必要があり
、工程数が多(なると共に、トレンチ溝の幅が微細化さ
れるに伴いエッチバックが難しくなり、歩留りも悪化す
るという問題を有していた。
In addition, after depositing polycrystalline silicon, it is necessary to remove polycrystalline silicon other than the trench by etchback, which requires a large number of steps (and as the width of the trench becomes smaller, etchback becomes more difficult). However, there was a problem in that the yield also deteriorated.

本発明は、かかる点に鑑み、半導体基板に形成されたト
レンチ溝のみを電気伝導体により埋め込むプロセスのよ
り改善された方法を提供することを目的としたものであ
る。
SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide an improved method of filling only trenches formed in a semiconductor substrate with an electrical conductor.

課題を解決するための手段 トレンチ溝を有する半導体基板上に絶縁膜を形成し、多
結晶シリコンあるいはアモルファスシリコンを上記トレ
ンチ溝にのみ形成した後、気相成長法により金属ハロゲ
ン化物と上記多結晶シリコンあるいはアモルファスシリ
コン、水素、シラン、ジクロルシラン、トリクロルシラ
ン、シリコンクロライドのうち少な(とも1つとの反応
により選択的に上記トレンチ溝部分のみに金属を堆積し
、上記トレンチ部分のみを埋め込むことを特徴とする半
導体装置の製造方法である。
Means for Solving the Problems After forming an insulating film on a semiconductor substrate having a trench, and forming polycrystalline silicon or amorphous silicon only in the trench, a metal halide and the polycrystalline silicon are deposited by vapor phase growth. Alternatively, metal is selectively deposited only in the trench groove portion by reaction with a small amount (one or more) of amorphous silicon, hydrogen, silane, dichlorosilane, trichlorosilane, and silicon chloride, thereby filling only the trench portion. This is a method for manufacturing a semiconductor device.

作用 本発明は、トレンチ溝に電気伝導体として気相成長法に
より金属ハロゲン化物を用い金属を堆積することにより
、比抵抗が従来の多結晶シリコンよりも充分に低いため
、0.5μm以下の幅を持ったトレンチ溝に対しても適
応することが可能であり、更に選択的にトレンチ溝にの
み金属が堆積されることにより、その後のエッチバック
の工程が必要ないため工程数が少なくなり、安定したプ
ロセスを提供することが可能となる。
Function The present invention uses a metal halide to deposit metal as an electrical conductor in the trench groove by vapor phase growth, so that the resistivity is sufficiently lower than that of conventional polycrystalline silicon. It can also be applied to trench grooves with It becomes possible to provide a process that

実施例 (実施例1) 以下実施例により詳細に説明する。第1図(A)〜(C
)は本発明による半導体装置の作成方法の第1の実施例
を工程順に示したものである。
Example (Example 1) A detailed explanation will be given below using an example. Figure 1 (A)-(C
) shows the first embodiment of the method for manufacturing a semiconductor device according to the present invention in the order of steps.

(A)トレンチ溝1及び絶縁膜3を有する半導体基板2
上の全面に気相成長法により多結晶シリコン4を堆積す
る。この時、トレンチ溝1の幅は例えば0.5μmとし
、深さは4.0μmとする。また、絶縁膜3の厚さは例
えば10nmとし、多結晶シリコン4の厚さは1100
nとする。
(A) Semiconductor substrate 2 having trench groove 1 and insulating film 3
Polycrystalline silicon 4 is deposited on the entire surface by vapor phase growth. At this time, the width of the trench groove 1 is, for example, 0.5 μm and the depth is 4.0 μm. Further, the thickness of the insulating film 3 is, for example, 10 nm, and the thickness of the polycrystalline silicon 4 is 110 nm.
Let it be n.

(B)その後、エツチングガスを半導体基板2に対し垂
直に入射することにより、多結晶シリコン4の異方性エ
ツチングを行なうことでトレンチ溝1の側壁にのみ多結
晶シリコン4を残存させる。
(B) Thereafter, etching gas is applied perpendicularly to the semiconductor substrate 2 to perform anisotropic etching of the polycrystalline silicon 4, thereby leaving the polycrystalline silicon 4 only on the side walls of the trench groove 1.

この時、絶縁膜3上に多結晶シリコンが残らない条件を
選ぶ。
At this time, conditions are selected so that no polycrystalline silicon remains on the insulating film 3.

(C)その後、気相成長法により、例えば6フツ化タン
グステン、シラン及び水素を用いて、上記トレンチ1に
のみタングステン5を堆積させる。
(C) Thereafter, tungsten 5 is deposited only in the trench 1 using, for example, tungsten hexafluoride, silane, and hydrogen by vapor phase growth.

この時例えば6フツ化タングステンのガス流量は110
5CC、シランのガス流量は58CCM、水素のガス流
量は11005CCとし、0.15torrの真空中に
て行ない、反応温度は250℃とする。
At this time, for example, the gas flow rate of tungsten hexafluoride is 110
5CC, the silane gas flow rate is 58CCM, the hydrogen gas flow rate is 11005CC, the reaction is carried out in a vacuum of 0.15 torr, and the reaction temperature is 250°C.

(実施例2) 第2図(A)〜(C)は、本発明による半導体装置の製
造方法の第2の実施例を工程順に示したものである。
(Example 2) FIGS. 2A to 2C show a second example of the method for manufacturing a semiconductor device according to the present invention in order of steps.

(A)第1の実施例における(A)の工程後、多結晶シ
リコン4上にレジストを均一に塗布する。
(A) After the step (A) in the first embodiment, a resist is uniformly applied onto the polycrystalline silicon 4.

(B)その後、全面をエツチングすることで絶縁膜3上
のみの多結晶シリコン4を除去した後に、トレンチ溝1
内部に残留したレジスト6を除去することで、トレンチ
溝1のみに多結晶シリコン4を形成する。
(B) Then, after removing the polycrystalline silicon 4 only on the insulating film 3 by etching the entire surface, the trench groove 1
By removing the resist 6 remaining inside, polycrystalline silicon 4 is formed only in trench groove 1.

(C)第1の実施0例における(C)の工程と同じ手法
にて、トレンチ溝1のみに選択的にタングステン5を堆
積させる。
(C) Tungsten 5 is selectively deposited only in the trench 1 using the same method as in the step (C) in the first embodiment.

(実施例3) 第3図(A)〜(D)は、本発明による半導体装置の製
造方法の第3の実施例を工程順に示したものである。
(Example 3) FIGS. 3A to 3D show a third example of the method for manufacturing a semiconductor device according to the present invention in the order of steps.

(A)絶縁膜7をマスクとして、ドライエツチングによ
り形成されたトレンチ溝1を有する半導体基板2上に絶
縁膜3を形成した後、全面に気相成長法により多結晶シ
リコン4を形成する。トレンチ溝1.絶縁膜3及び多結
晶シリコン4のサイズは第1の実施例の(A)の工程と
同様とする。
(A) Using the insulating film 7 as a mask, an insulating film 3 is formed on the semiconductor substrate 2 having the trenches 1 formed by dry etching, and then polycrystalline silicon 4 is formed on the entire surface by vapor phase growth. Trench groove 1. The sizes of the insulating film 3 and polycrystalline silicon 4 are the same as in the step (A) of the first embodiment.

(B)第1の実施例の(B)の工程と同様な手法によっ
て多結晶シリコン4をトレンチ溝1の側壁にのみ残存さ
せる。
(B) The polycrystalline silicon 4 is left only on the side walls of the trench groove 1 by a method similar to the step (B) of the first embodiment.

(C)第2の実施例の(C)の工程と同様な手法によっ
て、トレンチ溝1にのみタングステン5を堆積させる。
(C) Tungsten 5 is deposited only in the trench groove 1 by a method similar to the step (C) of the second embodiment.

(D)その後、全面をシリコン基板2が現われる迄、全
面エツチングし、平坦化を行なう。
(D) Thereafter, the entire surface is etched and planarized until the silicon substrate 2 appears.

(実施例4〉 第4図(A)〜(C)は、本発明による半導体装置の製
造方法の第4の実施例を工程順に示したものである。
(Example 4) FIGS. 4A to 4C show a fourth example of the method for manufacturing a semiconductor device according to the present invention in the order of steps.

(A)第3の実施例における(A)の工程後、多結晶シ
リコン上にレジストを均一に塗布する。
(A) After the step (A) in the third embodiment, a resist is uniformly applied onto the polycrystalline silicon.

(B)第2の実施例における(B)の工程と同様な手法
によって多結晶シリコン4をトレンチ溝1のみに形成す
る。
(B) Polycrystalline silicon 4 is formed only in the trench groove 1 by a method similar to the step (B) in the second embodiment.

(、C)第1の実施例における(C)の工程と同様な手
法にて、トレンチ溝1のみに選択的にタングステン5を
堆積する。
(,C) Tungsten 5 is selectively deposited only in the trench groove 1 using a method similar to the step (C) in the first embodiment.

(D)その後、実施例3の(D)の工程と同様な手法に
より、半導体基板2が現われる迄、全面エツチングし、
平坦化を行なう。
(D) Thereafter, the entire surface is etched until the semiconductor substrate 2 appears by a method similar to the step (D) of Example 3,
Perform flattening.

以上のように本実施例によれば、電気伝導体としてタン
グステン5を用いてトレンチ溝を選択的に埋め込むこと
により、比抵抗が従来の多結晶シリコンよりも充分に低
いため、0.5μm以下の幅を持ったトレンチ溝にも適
応することが可能であり、更に、選択的にトレンチ溝1
のみにタングステンを堆積することにより、工程が簡略
化され、トレンチキャパシタとして有用である。
As described above, according to this embodiment, by selectively filling the trench grooves with tungsten 5 as an electrical conductor, the resistivity is sufficiently lower than that of conventional polycrystalline silicon, so that It is possible to adapt to a trench groove with a width, and furthermore, it is possible to selectively cut the trench groove 1.
Depositing tungsten only on the substrate simplifies the process and is useful as a trench capacitor.

なお、実施例として、トレンチ溝1の幅を0.5μmと
し、深さを4.0μmとしたが、それ以下のあるいはそ
れ以上の幅あるいは深さのトレンチ溝でも良く、また、
絶縁膜3の厚さを10nmとし、多結晶シリコン4の厚
さを1100nとしたが、それ以外の厚さでも良い。ま
た、6フツ化タングステンガス、シランガス及び水素ガ
スを用いてタングステン5を堆積する時に、6フツ化タ
ングステンガスの流量をIO8CCM、シランガスの流
量を5SCCM、水素ガスの流量を11003CCとし
、O,15torrの真空中で反応温度を250℃とし
たが、選択的にトレンチ溝1のみにタングステンが堆積
される条件ならば、それ以上あるいはそれ以下でも良く
、また、水素ガスの代わりにアルゴンガスあるいはヘリ
ウムガスのような不活性ガスを用いても良く、また、シ
ランの代わりにジクロルシラン、トリクロルシラン、シ
リコンクロライド等を用いても良い。また、多結晶シリ
コンの代わりにアモルファスシリコンを用いても良いし
、あるいはタングステンが選択的に堆積されるための核
となるものでも良、い。また、タングステンの代わりに
モリブデンなどの高融点金属を用いても良い。
In addition, as an example, the width of the trench groove 1 was set to 0.5 μm and the depth was set to 4.0 μm, but the trench groove may have a width or depth smaller than or greater than that.
Although the thickness of the insulating film 3 was 10 nm and the thickness of the polycrystalline silicon 4 was 1100 nm, other thicknesses may be used. In addition, when depositing tungsten 5 using tungsten hexafluoride gas, silane gas, and hydrogen gas, the flow rate of tungsten hexafluoride gas is IO8CCM, the flow rate of silane gas is 5SCCM, and the flow rate of hydrogen gas is 11003CC, and the Although the reaction temperature was set at 250°C in vacuum, the temperature may be higher or lower as long as tungsten is selectively deposited only in the trench groove 1. Also, argon gas or helium gas may be used instead of hydrogen gas. Alternatively, dichlorosilane, trichlorosilane, silicon chloride, etc. may be used instead of silane. Further, amorphous silicon may be used instead of polycrystalline silicon, or it may be used as a nucleus on which tungsten is selectively deposited. Further, a high melting point metal such as molybdenum may be used instead of tungsten.

発明の詳細 な説明したように、本発明によれば、電気伝導体として
金属を用いてトレンチ溝を埋め込むことにより、比抵抗
が従来の多結晶シリコンよりも充分低いため、0.5μ
m以下の幅を持ったトレンチ溝であっても抵抗率がそれ
程高くならないため、トレンチキャパシタでの電気的な
遅延が起こらない。更に、気相成長法により選択的にト
レンチ溝のみに金属が堆積されるため、工程が簡略化さ
れ、その実用的効果は大きい。
As described in detail, according to the present invention, by filling the trench with metal as an electrical conductor, the resistivity is sufficiently lower than that of conventional polycrystalline silicon, so that the resistivity is 0.5μ.
Even if the trench has a width of less than m, the resistivity does not become very high, so no electrical delay occurs in the trench capacitor. Furthermore, since metal is selectively deposited only in the trench grooves by vapor phase growth, the process is simplified and its practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1にかかる半導体装置の製造工程断面図
、第2図は実施例2にかがる半導体装置の製造工程断面
図、第3図は実施例3にかかる半導体装置の製造工程断
面図、第4図は実施例4にかかる半導体装置の製造工程
断面図である。 1・・・・・・トレンチ溝、2・・・・・・半導体基板
、3・・・・・・絶縁膜、4・・・・・・多結晶シリコ
ン、5・・・・・・タングステン、6・・・・・・レジ
スト、7・・・・・・絶縁膜。 代理人の氏名 弁理士 粟野重孝 ほか1名図
1 is a cross-sectional view of the manufacturing process of a semiconductor device according to Example 1, FIG. 2 is a cross-sectional view of the manufacturing process of a semiconductor device according to Example 2, and FIG. 3 is a cross-sectional view of the manufacturing process of a semiconductor device according to Example 3. 4 is a cross-sectional view of the manufacturing process of the semiconductor device according to the fourth embodiment. 1... Trench groove, 2... Semiconductor substrate, 3... Insulating film, 4... Polycrystalline silicon, 5... Tungsten, 6...Resist, 7...Insulating film. Name of agent: Patent attorney Shigetaka Awano and one other person

Claims (2)

【特許請求の範囲】[Claims] (1)トレンチ溝を有する半導体基板のトレンチ溝内に
絶縁膜が存在し、上記トレンチ溝内の絶縁膜にそっての
み多結晶シリコン、あるいはアモルファスシリコンが存
在し、上記トレンチ溝の残りの部分がすべて金属により
埋め込まれた構造を特徴とする半導体装置。
(1) An insulating film exists in the trench of a semiconductor substrate having a trench, polycrystalline silicon or amorphous silicon exists only along the insulating film in the trench, and the remaining part of the trench is A semiconductor device characterized by a structure completely filled with metal.
(2)トレンチ溝(分離溝)及び絶縁膜を有する半導体
基板において、上記トレンチにのみ多結晶シリコンある
いはアモルファスシリコンを形成した後、気相成長法に
より金属ハロゲン化物と上記多結晶シリコン、水素、シ
ラン、ジクロルシラン、トリクロルシラン、シリコンク
ロライドのうち少なくとも1つとの反応により選択的に
上記トレンチ溝部分のみに金属を堆積し、上記トレンチ
溝部分のみを埋め込むことを特徴とする半導体装置の製
造方法。
(2) In a semiconductor substrate having a trench groove (separation groove) and an insulating film, polycrystalline silicon or amorphous silicon is formed only in the trench, and then metal halide and the polycrystalline silicon, hydrogen, and silane are formed by vapor phase growth. , dichlorosilane, trichlorosilane, and silicon chloride, selectively depositing metal only on the trench groove portion, and filling only the trench groove portion.
JP30118988A 1988-11-29 1988-11-29 Semiconductor device and manufacture thereof Pending JPH02148760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30118988A JPH02148760A (en) 1988-11-29 1988-11-29 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30118988A JPH02148760A (en) 1988-11-29 1988-11-29 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02148760A true JPH02148760A (en) 1990-06-07

Family

ID=17893846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30118988A Pending JPH02148760A (en) 1988-11-29 1988-11-29 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02148760A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196551A (en) * 1992-09-04 1994-07-15 Internatl Business Mach Corp <Ibm> Flattening of recessed part surface of semiconductor structure
US5475257A (en) * 1992-02-19 1995-12-12 Nec Corporation Semiconductor device having an improved low resistive contact
US5675173A (en) * 1995-01-19 1997-10-07 Kabushiki Kaisha Toshiba Semiconductor device having a trench for isolating elements and a trench for applying a potential to a substrate
US6465888B2 (en) * 2000-06-05 2002-10-15 Chartered Semiconductor Manufacturing Ltd. Composite silicon-metal nitride barrier to prevent formation of metal fluorides in copper damascene
JP2019145790A (en) * 2018-02-15 2019-08-29 パナソニックIpマネジメント株式会社 Capacitance element and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475257A (en) * 1992-02-19 1995-12-12 Nec Corporation Semiconductor device having an improved low resistive contact
JPH06196551A (en) * 1992-09-04 1994-07-15 Internatl Business Mach Corp <Ibm> Flattening of recessed part surface of semiconductor structure
US5675173A (en) * 1995-01-19 1997-10-07 Kabushiki Kaisha Toshiba Semiconductor device having a trench for isolating elements and a trench for applying a potential to a substrate
US6465888B2 (en) * 2000-06-05 2002-10-15 Chartered Semiconductor Manufacturing Ltd. Composite silicon-metal nitride barrier to prevent formation of metal fluorides in copper damascene
JP2019145790A (en) * 2018-02-15 2019-08-29 パナソニックIpマネジメント株式会社 Capacitance element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0191057B1 (en) Electrical contact in semiconductor devices
US4760036A (en) Process for growing silicon-on-insulator wafers using lateral epitaxial growth with seed window oxidation
US5321298A (en) Soi wafer fabrication by selective epitaxial growth
JPS63502313A (en) How to form isolation regions on a semiconductor substrate
JPS5837987B2 (en) Method for forming buried oxide isolation regions
JP3175195B2 (en) Method of forming multilayer wiring
US5897359A (en) Method of manufacturing a silicon/silicon germanium heterojunction bipolar transistor
CN108321083A (en) Semiconductor structure and forming method thereof
JPH02148760A (en) Semiconductor device and manufacture thereof
JP2573621B2 (en) Method of manufacturing electrical interconnect
JPH0697400A (en) Soi wafer and its manufacture
JPH05849B2 (en)
GB2300071A (en) Composite structure for electronic components and method for the production thereof
JPH043455A (en) Soi transistor laminated semiconductor device and manufacture thereof
JP2692918B2 (en) Method for manufacturing semiconductor device
JPH0310231B2 (en)
JP2517751B2 (en) Method for manufacturing semiconductor device
JP2543192B2 (en) Semiconductor device and manufacturing method thereof
JP2985204B2 (en) Method for manufacturing semiconductor device
JPH0273650A (en) Manufacture of semiconductor integrated circuit device
JPH01315161A (en) Manufacture of semiconductor device
JPH05129452A (en) Semiconductor device and manufacture thereof
JPH01129439A (en) Manufacture of semiconductor device
JPH04273462A (en) Manufacture of semiconductor device
JPH0594967A (en) Manufacture of semiconductor device