JPH02144132A - Porous polyolefin film - Google Patents

Porous polyolefin film

Info

Publication number
JPH02144132A
JPH02144132A JP29778388A JP29778388A JPH02144132A JP H02144132 A JPH02144132 A JP H02144132A JP 29778388 A JP29778388 A JP 29778388A JP 29778388 A JP29778388 A JP 29778388A JP H02144132 A JPH02144132 A JP H02144132A
Authority
JP
Japan
Prior art keywords
film
polyolefin
porous
stretching
lamellae
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29778388A
Other languages
Japanese (ja)
Inventor
Kiyonobu Okamura
岡村 清伸
Hiroya Honda
博也 本田
Toshinobu Koshoji
小障子 俊信
Kunio Misoo
久仁夫 三十尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP29778388A priority Critical patent/JPH02144132A/en
Publication of JPH02144132A publication Critical patent/JPH02144132A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To enhance reliability with respect to safety and hygiene by using a specified blended polymer and forming a porous structure in which spaces defined with lamellae and many fibrils connecting the lamellae communicate with each other all over the structure. CONSTITUTION:A blended polymer consisting of 95-40wt.% polyolefin and 5-60wt.% hydrophilic polyolefin is melted and extruded and the resulting unstretched film is stretched to obtain a porous polyolefin film. Since this film has a structure obtd. by splitting folded molecules between lamellae of the unstretched film into fibrils by stretching, spaces are left around many fibrils connecting the lamellae arranged in the longitudinal direction of the film and the resulting structure ranges from one side of the film to the other side. Since a solvent and additives are not used in production, the porous polyolefin film has high reliability with respect to safety and hygiene and also has superior strength characteristics.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は医療用、工業用の濾過、分離等に適した親水性
多孔質フィルムに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hydrophilic porous film suitable for medical and industrial filtration, separation, etc.

(従来の技術) 高分子膜による分離は従来より広く行なわれており、高
分子膜としても種々の素材が開発されている。
(Prior Art) Separation using polymer membranes has been widely used in the past, and various materials have been developed for polymer membranes.

その中でも、結晶性熱可塑性高分子をフィルム状に溶融
賦型し、これを比較的低温で延伸して結晶ラメラ間の非
晶領域にクレーズを発生せしめ、好ましくはこれを更に
熱延伸してフィルム全体に多孔質構造を形成せしめたも
のは微細孔形成のための添加剤や溶剤を使用しないため
不純物や化合物の系への溶出を嫌う用途に適した濾過・
分離用多孔質フィルムとして注目されている。
Among them, a crystalline thermoplastic polymer is melt-shaped into a film, stretched at a relatively low temperature to generate crazes in the amorphous regions between crystalline lamellae, and preferably further hot-stretched to form a film. Products that have a porous structure throughout do not require additives or solvents to form micropores, making them suitable for filtration and applications where impurities or compounds should not be leached into the system.
It is attracting attention as a porous film for separation.

このようなフィルムはU S P 3679538号、
特公昭55−32531号公報等に開示されている。
Such films are described in USP 3,679,538,
It is disclosed in Japanese Patent Publication No. 55-32531.

このようなフィルムはポリプロピレンやポリエチレン等
ポリオレフィンのみからなり、このような素材は本質的
に疎水性であるため、そのままでは水溶液等の水系液体
の濾過には非常に大きな圧力を要し実際的ではない。そ
こで、水系液体の濾過にこのようなフィルムを使用する
場合は、アルコールや界面活性剤によりあらかじめ親水
化してから用いている。
Such films are made only of polyolefins such as polypropylene and polyethylene, and as such materials are inherently hydrophobic, they require extremely large pressures to filter aqueous liquids such as aqueous solutions, making them impractical. . Therefore, when such a film is used for filtration of aqueous liquids, it is first made hydrophilic with alcohol or a surfactant before use.

又、疎水性膜を親水化する方法として、アクリル酸、メ
タクリル酸、酢酸ビニル等の親水性有機炭化水素単量体
で疎水性膜を被覆し、約1〜10メガラドの電離放射線
を照射することにより化学的に固定する方法が特開昭5
6−3+!1333号公報に開示されている。
Further, as a method of making a hydrophobic film hydrophilic, the hydrophobic film is coated with a hydrophilic organic hydrocarbon monomer such as acrylic acid, methacrylic acid, or vinyl acetate, and then irradiated with ionizing radiation of about 1 to 10 megarads. A method of chemical fixation was disclosed in Japanese Patent Application Laid-open No. 5
6-3+! It is disclosed in Japanese Patent No. 1333.

一方、ブレンド技術の応用として、2種の異なるポリマ
ーをブレンドして溶融紡糸した後、延伸処理して異種ポ
リマーの界面を開裂させて中空繊維周壁の外壁面から内
壁面に連通した連続微細空孔壁面の少なくとも一部が他
と異なった性質を有する異種ポリマーで構成された不均
質な微細孔壁面を有する微孔性多孔質中空繊維を形成し
、構成ポリマー中に存在する側鎖基の加水分解、スルホ
ン化等の後処理によって、細孔の表面が親水化された親
水性多孔質中空繊維を製造する方法が特開昭55−13
7208号公報に開示されている。
On the other hand, as an application of blending technology, two different polymers are blended and melt-spun, and then stretched to cleave the interface between the different polymers to create continuous micropores that communicate from the outer wall surface to the inner wall surface of the hollow fiber peripheral wall. Hydrolysis of side chain groups present in the constituent polymers to form a microporous hollow fiber with a heterogeneous micropore wall surface in which at least a portion of the wall surface is composed of different polymers with different properties. , a method for producing hydrophilic porous hollow fibers whose pore surfaces are made hydrophilic by post-treatment such as sulfonation is disclosed in JP-A-55-13.
It is disclosed in Japanese Patent No. 7208.

(発明が解決しようとする問題点) 多孔質膜は医療用においては血漿分離、輸液濾過、血漿
蛋白の分離、無菌水の製造等、工業用においてはICの
洗浄水、食品加工用水の製造、その他の工程用水の浄化
等に用いられ、更には、近年、家庭用、飲食店用等の用
水の浄化等に広く用いられている。これらの用途はいず
れも水系プロセスであり、多孔質膜素材から異物が溶出
すると安全性や、精製水あるいは水溶液の品質低下につ
ながるから好ましくないものであり、このような溶出の
心配のない膜が要望されている。
(Problems to be solved by the invention) Porous membranes can be used for medical purposes such as plasma separation, infusion filtration, plasma protein separation, and the production of sterile water, and for industrial purposes such as the production of IC cleaning water, food processing water, etc. It is used to purify water for other processes, and in recent years, it has been widely used to purify water for domestic use, restaurants, etc. All of these applications are water-based processes, and the elution of foreign substances from the porous membrane material is undesirable because it can lead to safety issues and deterioration of the quality of purified water or aqueous solutions. It is requested.

一方、ポリオレフィンポリマーを溶融賦型し、延伸する
ことにより多孔質化したフィルムは抽出用添加剤や溶剤
を使用しないことから膜使用時の溶出の心配がないとい
う優れたものであるが、親水化処理が必要であり、アル
コールや界面活性剤による処理は一時的な親水化であっ
て、しかも、親水化処理したままで濾過等に用いるとア
ルコールや界面活性剤が精製水側に移行してこれを汚染
するので濾過前にこれらの親水化剤を充分洗浄除去する
必要があり、しかもこのような状態で乾燥すると膜表面
が疎水性に戻るので親水化の後は水で置換しておき、常
に水に接触させておかねばならないという問題を有して
いる。
On the other hand, films made by melt-forming polyolefin polymers and making them porous by stretching them are excellent because they do not use extraction additives or solvents, so there is no need to worry about elution when using the membrane. Treatment with alcohol or surfactant is temporary hydrophilization, and if it is used for filtration etc. after hydrophilization treatment, the alcohol and surfactant will migrate to the purified water side and cause this. Before filtration, it is necessary to thoroughly wash and remove these hydrophilizing agents as they may contaminate the membrane.Moreover, if the membrane surface is dried under such conditions, the membrane surface will return to hydrophobicity, so after hydrophilizing, it must be replaced with water. The problem is that it must be kept in contact with water.

又、特開昭56−313333号公報に記載された方法
は親水性を発現する基が化学的に固定されているため恒
久的な親水化が達成されるが、電離放射線を照射する必
要があることから大掛かりな設備を必要とし、工程の安
定性も充分とは言い難(、膜素材を傷めたりする虞もあ
り、処理工程の操作・管理が難しいという問題がある。
Furthermore, the method described in JP-A No. 56-313333 achieves permanent hydrophilicity because the group expressing hydrophilicity is chemically fixed, but it requires irradiation with ionizing radiation. Therefore, large-scale equipment is required, and the process stability is not sufficient (there is also the risk of damaging the membrane material, making it difficult to operate and manage the treatment process).

又、特開昭55−137208号公報に記載された異種
ポリマーのブレンド物を溶融紡糸、延伸して多孔質化し
た繊維は、ラメラ間の非晶質部分にクレーズを発生させ
てこれをフィブリル化するというよりもむしろ異種ポリ
マー間の界面を開裂させるものであり、従って、ラメラ
間の非晶質部分にクレーズを発生させてこれをフィブリ
ル化するものに比べて細孔内表面積も小さ(、孔径は異
種ポリマーのブレンド状態に影響を受け、異種ポリマー
間の親和性のなさを利用して開孔させるものであるから
微細ブレンドが比較的困難であり、孔径のばらつきも大
きくなるという問題を有している。又、親水化のために
加水分解やスルホン化等の後処理が必要であり、工程が
煩雑になるという問題をも有している。
In addition, the fiber described in JP-A-55-137208, which is made porous by melt-spinning and drawing a blend of different polymers, generates crazes in the amorphous part between the lamellae and fibrillates it. Rather, it cleaves the interface between different polymers, and therefore the pore inner surface area is smaller (and the pore diameter This method is affected by the blending state of different polymers and uses the lack of affinity between different polymers to create pores, so it is relatively difficult to create fine blends and has the problem of large variations in pore size. In addition, post-treatments such as hydrolysis and sulfonation are required to make them hydrophilic, which also poses the problem of complicating the process.

(問題点を解決するための手段) 本発明者らはこのような状況に鑑み鋭意検討した結果、
ポリオレフィンを用い、溶融賦型、延伸処理法によりラ
メラ間の非晶質部分にクレーズを発生させてこれをフィ
ブリル化させて多孔質化して得られる多孔質フィルムの
優れた特性を生かし、しかも水系液体処理に適した恒久
親水性を有し、しかも工業的に有利な方法で製造可能な
多孔質フィルムにつき鋭意検討した結果、本発明に到達
した。
(Means for solving the problem) As a result of intensive study in view of the above situation, the present inventors found that
By using polyolefin, we generate crazes in the amorphous parts between the lamellae using a melt-forming and stretching process, and then fibrillate the resulting porous film, making it porous. As a result of extensive research into a porous film that has permanent hydrophilicity suitable for processing and can be produced by an industrially advantageous method, the present invention was arrived at.

即ち、本発明の要旨はポリオレフィン95〜40重量%
と親水性ポリオレフィン5〜60重量%とのブレンドポ
リマーからなる多孔質ポリオレフィンフィルムであって
、該フィルムの一方の表面から他方の表面にかけて全体
にわたってラメラと該ラメラ間をつなぐ多数のフィブリ
ルとで囲まれてなる空間が連通してなる多孔質構造を有
していることを特徴とする多孔質ボリ才レフィンフィル
ムにある。
That is, the gist of the present invention is that 95 to 40% by weight of polyolefin
A porous polyolefin film made of a blend polymer of and 5 to 60% by weight of a hydrophilic polyolefin, the film being surrounded entirely from one surface to the other by lamellae and a large number of fibrils connecting the lamellae. The porous polyolefin film is characterized by having a porous structure formed by communicating spaces.

本発明において用いられるポリオレフィンとしてはポリ
エチレン、ポリプロピレン、ポリ3−メチルブテン−1
、ポリ4−メチルペンテン−1などを例示できる。又、
本発明においてポリオレフィンとブレンドされる親水性
ポリオレフィンはこれをフィルムにして測定したときの
水との接触角が80°以下であるように改質されたポリ
オレフィンであることが好ましく、70°以下であるよ
うに改質されたポリオレフィンであることがより好まし
い。このような改質されたポリマーの例としては各種ポ
リオレフィンの分子鎖に水酸基、カルボキシル基、アミ
ノ基、スルホン酸基、ポリオキシエチレン基等を結合し
たものを例示でき、これにはエチレンとビニルアルコー
ルの共重合体、エチレンと酢酸ビニルとの共重合体、エ
チレンと無水マレイン酸との共重合体、エチレンとポリ
オキシエチレンとを化学結合させた共重合体、金属イオ
ン架橋ポリオレフィン等を例示できる。
Polyolefins used in the present invention include polyethylene, polypropylene, poly3-methylbutene-1
, poly-4-methylpentene-1, and the like. or,
In the present invention, the hydrophilic polyolefin blended with the polyolefin is preferably a polyolefin modified so that the contact angle with water is 80° or less, and preferably 70° or less, when measured by making a film of the hydrophilic polyolefin. More preferably, it is a polyolefin modified in the following manner. Examples of such modified polymers include those in which hydroxyl groups, carboxyl groups, amino groups, sulfonic acid groups, polyoxyethylene groups, etc. are bonded to the molecular chains of various polyolefins, including ethylene and vinyl alcohol. Examples include copolymers of ethylene and vinyl acetate, copolymers of ethylene and maleic anhydride, copolymers of ethylene and polyoxyethylene chemically bonded, and metal ion crosslinked polyolefins.

ここで、ポリオレフィンとブレンドするポリマーを親水
性ポリオレフィンに限定した理由は、上述のようなポリ
オレフィンであればポリオレフィンとブレンドしたとき
に両者の間に良好°な親和性が得られ、これによりこれ
を溶融賦型して得られる未延伸フィルムにおける高配向
高結晶性のラメラ構造の形成をさほど阻害せず、更に、
ブレンドポリマー界面での剥離も発生し難いためポリオ
レフィン単独ポリマーを用いた場合と同様の優れた多孔
質膜構造が得られ、しかも親水性基を有しているため恒
久的親水性が得られ、水や湿分な容易に透過でき、かつ
、空孔がフィブリルの周囲の空間であるため1か所が詰
まっても容易に迂回できるため実質的に目詰まりが少な
いという優れた特徴を有している。このポリオレフイノ
と親水性ポリオレフィンとの混合比率はポリオレフィン
95〜40重量%、親水性ポリオレフィン5〜60重量
%である必要がある。これは、親水性ポリオレフィンと
して高度に親水性であるものを用いた場合は比較的少量
のブレンドで親水性を発揮でき、しかもこのような親水
性ポリオレフィンは逆に多量にブレンドするとラメラ結
晶の生成を阻害する傾向にあるため良好な多孔質構造が
得られ難くなり、親水性が比較的低く、ポリオレフィン
の特徴をより多く有しているものの場合は逆に親水性を
充分に発揮させるためには比較的多量にブレンドする必
要があり、しかも多量にブレンドしてもラメラ結晶の生
成を阻害することもない。ポリオレフィンと親水性ポリ
オレフィンの混合比率はポリオレフィン90〜50重量
%、親水性ポリオレフィン10〜50重量%であること
が好ましい。ポリオレフィンの比率が上記下限未満であ
ると充分均一な多孔質構造が得られ難(なる傾向にある
ため好ましくなく、上記上限を越えたものでは親水性が
不充分となるため好ましくない。
Here, the reason why we limited the polymers to be blended with polyolefins to hydrophilic polyolefins is that when the above-mentioned polyolefins are blended with polyolefins, good affinity is obtained between the two. It does not significantly inhibit the formation of a highly oriented, highly crystalline lamellar structure in the unstretched film obtained by shaping, and further,
Since peeling at the blend polymer interface is difficult to occur, it is possible to obtain an excellent porous membrane structure similar to that obtained when using a polyolefin single polymer.Moreover, it has a hydrophilic group, so permanent hydrophilicity is obtained, and water It has the excellent feature that it can easily pass through moisture and moisture, and since the pores are the spaces around the fibrils, even if one spot becomes clogged, it can be easily bypassed, so there is virtually no clogging. . The mixing ratio of this polyolefin and the hydrophilic polyolefin needs to be 95 to 40% by weight of the polyolefin and 5 to 60% by weight of the hydrophilic polyolefin. This is because when a highly hydrophilic polyolefin is used, it can exhibit hydrophilicity with a relatively small amount of blending, and conversely, when such a hydrophilic polyolefin is blended in a large amount, it can cause the formation of lamellar crystals. This makes it difficult to obtain a good porous structure, and if the hydrophilicity is relatively low and has more of the characteristics of polyolefins, on the other hand, it is necessary to It is necessary to blend them in a targeted amount, and even if they are blended in a large amount, the formation of lamellar crystals will not be inhibited. The mixing ratio of polyolefin and hydrophilic polyolefin is preferably 90 to 50% by weight of polyolefin and 10 to 50% by weight of hydrophilic polyolefin. If the ratio of polyolefin is less than the above-mentioned lower limit, it is difficult to obtain a sufficiently uniform porous structure, which is undesirable, and if it exceeds the above-mentioned upper limit, hydrophilicity becomes insufficient, which is not preferred.

本発明の多孔質フィルムの多孔質構造は結晶性高分子を
溶融押出して得られる未延伸フィルムを延伸して、未延
伸フィルムのラメラとラメラの間の折り畳まれた分子を
引伸してフィブリルに開裂させて得られる構造であるた
め、ラメラとラメラの間を結ぶフィルム長手方向に配列
した多数のフィブリルの周囲が空間となって、この構造
がフィルムの一方の表面から他方に表面までつながって
いるものである。
The porous structure of the porous film of the present invention is obtained by stretching an unstretched film obtained by melt-extruding a crystalline polymer, stretching the folded molecules between the lamellae of the unstretched film, and cleaving it into fibrils. Because it has a structure obtained by using lamellae, there is a space around the many fibrils arranged in the longitudinal direction of the film that connect the lamellae, and this structure is connected from one surface of the film to the other. be.

以下に、本発明の多孔質フィルムの製造方法について説
明する。
Below, the method for manufacturing a porous film of the present invention will be explained.

まず、上述のポリオレフィンと親水性ポリオレフィンと
をブレンドするが、このブレンドは充分均一にブレンド
する必要があり、上記ポリマーを例えばV型ブレンダー
のようなブレンダーであらかじめブレンドするか、溶融
押出し機で溶融ブレンドし、−旦ベレット化したものを
フィルム製造用押出し機にかけるのが好ましい。
First, the above-mentioned polyolefin and hydrophilic polyolefin are blended, but this blend must be sufficiently uniform, and the above-mentioned polymers may be blended in advance using a blender such as a V-type blender, or melt-blended using a melt extruder. It is preferable that the pelletized material is then passed through an extruder for film production.

次にこのブレンドポリマーを通常のフィルム押出機を用
いて未延伸フィルムを成型する。フィルム押出機として
はTグイ型、二重管型ダイスのいずれをも用いることが
できる。二重管型ダイスを用いると筒状のフィルムが得
られ、これは引き続いて行なう延伸処理を筒状のままで
行なうことができ、製造過程で特に切開して平面状フィ
ルムにする必要はない。又、フィルム成型に際して内部
エア吹込み量を調節することにより目的に応じた肉厚及
び幅のフィルム成型ができる。
Next, this blended polymer is molded into an unstretched film using a conventional film extruder. As the film extruder, either a T-type die or a double tube die can be used. When a double-tube die is used, a cylindrical film is obtained, which can be subjected to the subsequent stretching process in its cylindrical form, and there is no need to cut it into a flat film during the manufacturing process. Furthermore, by adjusting the amount of internal air blown during film molding, it is possible to mold a film with a thickness and width that suit the purpose.

本発明の多孔質フィルムを得るための未延伸フィルムを
安定に得るのに適した押出し温度は使用するポリマーの
種類、メルトインデックス、採用する吐出量、冷却条件
、巻取り速度等の条件との兼ね合いで、目的とするフィ
ルムの肉厚、幅を安定に確保しつる範囲で適宜設定すれ
ばよ(、通常は、ブレンドするポリマーの中、融点の高
いほうのポリマーの融点(以下、m、、という)より2
0℃以上高く、かつ該融点(m、)より100℃高い温
度を越えない温度範囲で成型すればよい。この温度範囲
の下限より低い温度で成型すると、得られる未延伸フィ
ルムは高度に配向しているが、後の工程である延伸工程
で延伸多孔質化を図る時に最大延伸倍率が低くなり、充
分高い空孔率が得難くなるので好ましくない。逆に上記
温度範囲の上限を越える温度で紡糸した場合も高い空孔
率のものが得難いので好ましくない。
The extrusion temperature suitable for stably obtaining an unstretched film for obtaining the porous film of the present invention is determined by the balance between the type of polymer used, melt index, discharge rate adopted, cooling conditions, winding speed, etc. The thickness and width of the desired film can be set appropriately within a stable range (usually, the melting point of the polymer with the higher melting point (hereinafter referred to as m) among the polymers to be blended is set as appropriate. ) from 2
Molding may be carried out at a temperature that is 0° C. or higher and does not exceed a temperature that is 100° C. higher than the melting point (m,). If molding is performed at a temperature lower than the lower limit of this temperature range, the resulting unstretched film will be highly oriented, but the maximum stretching ratio will be low when making the film porous by stretching in the later stretching step, and the maximum stretching ratio will be low. This is not preferable because it becomes difficult to obtain sufficient porosity. Conversely, spinning at a temperature exceeding the upper limit of the above temperature range is also not preferred, since it is difficult to obtain a high porosity.

適切な押出し温度で吐出されたポリマーは1〜5000
のドラフトで引き取るのが好ましく、10〜2000の
ドラフトであることがより好ましい。引き取られるフィ
ルムがダイスを出て最初に接触するローラーに安定に引
き取られるようにダイス直後で急速に冷却することが好
ましく、エアナイフあるいはその他の冷却装置を用いる
ことが好ましい。
Polymer extruded at appropriate extrusion temperature is 1-5000
It is preferable to take it in at a draft of 10 to 2000, more preferably a draft of 10 to 2000. It is preferable to rapidly cool the film immediately after the die so that the film can be stably drawn off by the first roller it comes into contact with after exiting the die, and it is preferable to use an air knife or other cooling device.

こうして得られた未延伸フィルムをこのまま延伸しても
良いが、配向結晶化を高めるため、mph以下であって
、未延伸糸の構造を実質的に傷めない範囲の温度範囲で
、定長下あるいは弛緩状態でアニール処理をした後延伸
してもよい。
The unstretched film obtained in this way may be stretched as is, but in order to enhance oriented crystallization, the unstretched film may be stretched at a constant length or at a temperature below mph and within a range that does not substantially damage the structure of the unstretched yarn. The film may be annealed in a relaxed state and then stretched.

延伸はm、、−80℃以下、かつmニー220℃以上、
好ましくはm pH−110℃〜mpH−90℃での冷
延伸と、その次にmpo−60℃〜mp14−5℃での
熱延伸の組み合わせで行なわれることが好ましい。熱延
伸は2段以上の多段延伸であってもよい。即ち、高配向
結晶性未延伸フィルムは、まず冷延伸によって結晶界面
の剥離が生じ、引き続く熱延伸工程での熱可塑化延伸に
よってミクロボー(ド積層構造に発達するものであり、
最初の冷延伸において如何に均一にミクロクラッキング
を発生せしめることができるかが製品の均質性、工程の
安定性を確保するうえで大きな技術的ポイントとなる。
Stretching is m, -80°C or lower, and m knee is 220°C or higher,
It is preferable to carry out a combination of cold stretching at mpH-110°C to mpH-90°C and then hot stretching at mpo-60°C to mp14-5°C. The hot stretching may be a multi-stage stretching of two or more stages. That is, in a highly oriented crystalline unstretched film, exfoliation of the crystal interface occurs first through cold stretching, and then develops into a micro-boarded laminated structure through thermoplastic stretching in the subsequent hot stretching step.
How uniformly microcracking can occur during the initial cold stretching is a major technical point in ensuring product homogeneity and process stability.

この観点から例延伸の区間を50mm以下にするのが好
ましい。熱延伸温度が上記上限より高いとフィルムは透
明化し、目的とする多孔質構造が得られな(なる。熱延
伸温度が上記下限より低い場合は、温度が低ければ低い
ぼど空孔率が低下するので好ましくない。
From this point of view, it is preferable that the stretching section be 50 mm or less. If the hot stretching temperature is higher than the above upper limit, the film becomes transparent and the desired porous structure cannot be obtained.If the hot stretching temperature is lower than the above lower limit, the lower the temperature, the lower the porosity. Therefore, it is not desirable.

冷延伸及び熱延伸の倍率は多孔質フィルムの空孔率等、
目的とする品質性能に応じて適宜設定すればよいが、冷
延伸における延伸倍率は5〜lOO%であることが好ま
しく、熱延伸の倍率は冷延伸と熱延伸とを合わせた総延
伸量が150〜700%になるように設定するのが好ま
しい。総延伸量が700%を越えると、延伸時にフィル
ムの切断が多発するので好ましくない。こうして得られ
た多孔質ポリオレフィンフィルムは熱延伸によりほぼ形
態の安定性が確保されているが、必要に応じてm 9)
1−60℃〜mニー5℃の温度で緊張下あるいは制限緩
和状態で熱セットしてもよい。
The magnification of cold stretching and hot stretching depends on the porosity of the porous film, etc.
Although it may be set appropriately according to the desired quality performance, the stretching ratio in cold stretching is preferably 5 to 100%, and the stretching ratio in hot stretching is such that the total stretching amount of cold stretching and hot stretching is 150%. It is preferable to set it to 700%. If the total amount of stretching exceeds 700%, the film will be frequently cut during stretching, which is not preferable. The porous polyolefin film obtained in this way is almost stable in shape by hot stretching, but if necessary, the porous polyolefin film can be
Heat setting may be performed at a temperature of 1-60° C. to 5° C. under tension or under relaxed conditions.

本発明者らの検討によれば、この冷延伸及び熱延伸の温
度、倍率などにより空孔率、濾過における阻止率等目的
とする多孔質フィルムの品質性能を適宜実現させること
ができろう (実施例) 以下に実施例を用いて本発明を更に説明するが、実施例
において、ブレンドポリマーの結晶化度は広角X線回折
装置を用いて全方位の回折強度を積算し、下記の式で求
めた。
According to the studies of the present inventors, the desired quality performance of the porous film, such as porosity and rejection rate in filtration, can be appropriately achieved by changing the temperature and magnification of the cold stretching and hot stretching. Example) The present invention will be further explained using examples below. In the examples, the crystallinity of the blend polymer was calculated by integrating the diffraction intensity in all directions using a wide-angle X-ray diffraction device and using the following formula. Ta.

結晶化度χ。=(全回折強度の積分値−非晶部分の回折
強度の積分値)/全回折強度の積分値又、結晶配列度は
広角X線回折装置を用いて(110)面の回折強度のフ
ィルムMD方向への分布の半価値を求め、下記の式によ
り求めた。
Crystallinity χ. = (integral value of total diffraction intensity - integral value of diffraction intensity of amorphous portion)/integral value of total diffraction intensity Also, the degree of crystal alignment can be determined using a wide-angle X-ray diffractometer using the film MD of the diffraction intensity of the (110) plane. The half value of the distribution in the direction was determined using the following formula.

結晶配列度=(H(2,。I/(180−Hll、。I
)X100(%) 但し、Hu+u  :  (110)面の半価値又、接
触角は親水性ポリオレフィン単独の非多孔質フィルムを
作成し、協和コンタクトアングルメーター(協和科学■
製)を用いて公知の方法で測定した。
Crystal order degree = (H(2,.I/(180-Hll,.I
)X100(%) However, Hu + u: Half value of (110) plane. Also, the contact angle is determined by making a non-porous film of hydrophilic polyolefin alone and using a Kyowa contact angle meter (Kyowa Scientific ■).
The measurements were made using a known method.

実施例1 密度0 、964g/cm’  メルトインデックス0
.35の高密度ポリエチレン(三井石油化学■製ハイゼ
ックス5202B)とポリエチレンとアクリル酸の共重
合体の亜鉛イオンによる架橋体(三井ポリケミカル■製
、ハイミラン−1702、フィルムにして測定した接触
角が69°)をV型ブレンダーで1:1の比率でブレン
ドし、乾燥した後、吐出口径が60mm、円環スリット
幅が1mmの二重管構造のダイスを使用し、温度180
℃で溶融押出した。成型された管状フィルムの直径がダ
イスの直径と等しくなるように内部へ空気を吹込み、ダ
イス上10cmの位置で管状フィルムの外壁全面に温度
25℃の冷却風を吹き付けて冷却し、ダイス上100c
mの位置でニップロールにより27m/分で引き取った
。このときのドラフトは213であった。この未延伸フ
ィルムを管状のまま113℃に加熱されたローラ上を定
長下に通過せしめてアニール処理を行なった。
Example 1 Density 0, 964 g/cm' Melt index 0
.. 35 high-density polyethylene (HIZEX 5202B manufactured by Mitsui Petrochemical ■) and a copolymer of polyethylene and acrylic acid crosslinked with zinc ions (Himilan-1702 manufactured by Mitsui Polychemical ■), the contact angle measured as a film was 69° ) in a V-type blender at a ratio of 1:1, dried, and heated to 180°C using a double tube structure die with an outlet diameter of 60mm and an annular slit width of 1mm.
Melt extrusion was performed at °C. Air is blown into the molded tubular film so that its diameter is equal to the diameter of the die, and cooling air at a temperature of 25°C is blown over the entire outer wall of the tubular film at a position 10 cm above the die to cool it.
It was taken off at a speed of 27 m/min by nip rolls at a position of m. The draft at this time was 213. This unstretched film was annealed by passing it in a fixed length over rollers heated to 113° C. in its tubular form.

この未延伸フィルムの結晶化度は65%゛、結晶配列度
は77%であった。さらに、このアニール処理フィルム
を25℃に保持されたニップローラ間で35%の冷延伸
を行なった。このときのローラ間隔は35mmであった
。この冷延伸に引き続いて110℃に加熱した加熱面中
で総延伸量が400%になる迄熱延伸を行ない、更に、
115℃に加熱した加熱面中で20秒間足長熱セットを
行なって、連続的に多孔質フィルムの製造を行なった。
The degree of crystallinity of this unstretched film was 65%, and the degree of crystal orientation was 77%. Furthermore, this annealed film was cold-stretched by 35% between nip rollers maintained at 25°C. The roller interval at this time was 35 mm. Following this cold stretching, hot stretching was performed on a heated surface heated to 110°C until the total stretching amount reached 400%, and further,
The porous film was continuously produced by performing long-leg heat setting for 20 seconds on a heating surface heated to 115°C.

得られた多孔質フィルムは肉厚23μm、空孔率67%
、透水圧(水がフィルムの一方の表面から他方の面にに
透過する時の水圧) 0 、9 kg/cm”であった
The resulting porous film had a wall thickness of 23 μm and a porosity of 67%.
The water permeability pressure (water pressure when water permeates from one surface of the film to the other) was 0.9 kg/cm''.

実施例2 密度0 、964 g/c+n” 、メルトインデック
ス035の高密度ポリエチレンとポリエチレンとアクリ
ル酸の共重合体の亜鉛イオンによる架橋体をV型ブレン
ダーで1=1の比率でブレンドし、乾燥したもののかわ
りに密度0 、964 g/cm”メルトインデックス
0.3の高密度ポリエチレン(三井石油化学■製ハイゼ
ックス5200S)とエチレン−ビニルアルコール共重
合体(日本合成化学■製、ソアノールA、フィルムにし
て測定した接触角が56°)を押出し機で7:3の比率
でブレンドし、乾燥したものを用いた以外は実施例1と
同様にした。熱処理後の未延伸フィルムの結晶化度は7
0%、結晶配列度は80%であった。
Example 2 High-density polyethylene with a density of 0, 964 g/c+n'' and a melt index of 035 and a crosslinked product of a copolymer of polyethylene and acrylic acid using zinc ions were blended in a V-type blender at a ratio of 1=1 and dried. Instead of a material, we used high-density polyethylene with a density of 0, 964 g/cm" and a melt index of 0.3 (HIZEX 5200S, manufactured by Mitsui Petrochemicals) and an ethylene-vinyl alcohol copolymer (Soarnol A, manufactured by Nippon Gosei Chemicals, made into a film. The procedure was the same as in Example 1, except that the samples (with a measured contact angle of 56°) were blended in an extruder at a ratio of 7:3 and dried. The crystallinity of the unstretched film after heat treatment is 7.
0%, and the degree of crystal alignment was 80%.

延伸、熱セツト後に得られた多孔質フィルムは肉厚21
μm、空孔率64%、透水圧1.3kg/cm”であっ
た。
The porous film obtained after stretching and heat setting has a wall thickness of 21
μm, porosity 64%, and water permeability pressure 1.3 kg/cm”.

比較例1 密度0.964g/cm”の高密度ポリエチレンとポリ
エチレンとアクリル酸の共重合体の亜鉛イオンによる架
橋体のブレンド物のかわりに同様の高密度ポリエチレン
を単独で用いた以外は実施例1と同様にして多孔質フィ
ルムを得た。得られた多孔質フィルムは肉厚23μm、
空孔率70%、透水圧5 、3 kg/c+n”であっ
た。
Comparative Example 1 Example 1 except that the same high-density polyethylene was used alone instead of the blend of high-density polyethylene with a density of 0.964 g/cm'' and a crosslinked product of a copolymer of polyethylene and acrylic acid with zinc ions. A porous film was obtained in the same manner as above.The obtained porous film had a wall thickness of 23 μm,
The porosity was 70% and the water permeability pressure was 5.3 kg/c+n''.

(発明の効果) 本発明の方法によれば、多孔質フィルムの製造に当たっ
て抽出用の添加剤や溶剤を使用しないので安全衛生面で
の信頼性が高く、しかも、その多孔質構造が該フィルム
の一方の表面から他方の表面にかけて全体にわたってラ
メラと該ラメラ間をつなぐ多数のフィブリルとで囲まれ
てなる空間が連通してなるものであるため強度特性に優
れ、しかも一部分が詰まってもそこを迂回して一方の表
面から他方の面に抜けるバスが無数に取り得る構造であ
るため目詰まりが少ないという特徴を有し、しかも溶融
紡糸、延伸のみで他に特別な親水化処理を行なわずども
恒久的親水性が付与されているため医療用、食品工業を
はじめとして種々の用途に有利に使用できる優れた多孔
質フィルムである。
(Effects of the Invention) According to the method of the present invention, no extracting additives or solvents are used in producing the porous film, so it is highly reliable in terms of safety and hygiene.Moreover, the porous structure of the film It has excellent strength characteristics because it is a continuous space surrounded by lamellae and a large number of fibrils connecting the lamellae from one surface to the other surface, and even if a part becomes clogged, it can be bypassed. Because it has a structure in which an infinite number of baths can be formed by passing from one surface to the other, it is characterized by less clogging, and is durable even without any other special hydrophilic treatment using only melt spinning and stretching. Due to its hydrophilic properties, it is an excellent porous film that can be advantageously used in a variety of applications including medical and food industries.

特許出願人 三菱レイヨン株式会社Patent applicant: Mitsubishi Rayon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)ポリオレフィン95〜40重量%と親水性ポリオレ
フィン5〜60重量%とのブレンドポリマーからなる多
孔質ポリオレフィンフィルムであって、該フィルムの一
方の表面から他方の表面にかけて全体にわたってラメラ
と該ラメラ間をつなぐ多数のフィブリルとで囲まれてな
る空間が連通してなる多孔質構造を有していることを特
徴とする多孔質ポリオレフィンフィルム。
1) A porous polyolefin film made of a blend polymer of 95 to 40% by weight of polyolefin and 5 to 60% by weight of hydrophilic polyolefin, in which lamella-to-lamellae are formed throughout from one surface to the other surface of the film. A porous polyolefin film characterized by having a porous structure in which spaces surrounded by a large number of connecting fibrils are connected to each other.
JP29778388A 1988-11-25 1988-11-25 Porous polyolefin film Pending JPH02144132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29778388A JPH02144132A (en) 1988-11-25 1988-11-25 Porous polyolefin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29778388A JPH02144132A (en) 1988-11-25 1988-11-25 Porous polyolefin film

Publications (1)

Publication Number Publication Date
JPH02144132A true JPH02144132A (en) 1990-06-01

Family

ID=17851118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29778388A Pending JPH02144132A (en) 1988-11-25 1988-11-25 Porous polyolefin film

Country Status (1)

Country Link
JP (1) JPH02144132A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048066A1 (en) * 1999-12-24 2001-07-05 Yupo Corporation Porous resin film
WO2010072233A1 (en) * 2008-12-22 2010-07-01 Lydall Solutech B.V Hydrophilic porous polymer blend membrane
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048066A1 (en) * 1999-12-24 2001-07-05 Yupo Corporation Porous resin film
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
WO2010072233A1 (en) * 2008-12-22 2010-07-01 Lydall Solutech B.V Hydrophilic porous polymer blend membrane
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Similar Documents

Publication Publication Date Title
JPH02144132A (en) Porous polyolefin film
JPH0211619B2 (en)
US5746916A (en) Microporous membrane made of non-crystalline polymers and method of producing the same
JPS6335726B2 (en)
US20020180082A1 (en) Preparation of microporous films from immiscible blends via melt processing and stretching
JPH0428803B2 (en)
JPH0364334A (en) Microporous polyolefin film and its preparation
WO1995033549A1 (en) Porous polysulfone membrane and process for producing the same
US4530809A (en) Process for making microporous polyethylene hollow fibers
JPH04187224A (en) Production of fluorine-based porous hollow yarn membrane
JPH08182921A (en) Polyolefin composite fine porous film
JPS60139815A (en) Conjugate hollow yarn and production thereof
US5057218A (en) Porous membrane and production process thereof
JPH0549878A (en) Large-diameter-pore porous polyethylene hollow fiber membrane, its production and hydrophilic porous polyethylene hollow fiber membrane
JPS6342006B2 (en)
JPH11262764A (en) Water purifier
JPH02133608A (en) Porous polyolefin hollow fiber
WO1992014783A1 (en) Hydrophilic polymer alloy, fiber and porous film produced therefrom, and production of the same
JPH044028A (en) Porous membrane and production thereof
JPH0445830A (en) Production of conjugate hollow-fiber membrane
JP3281014B2 (en) Method for producing hydrophilic polymer alloy and method for producing porous membrane comprising hydrophilic polymer alloy
JPH02133607A (en) Porous polyolefin fiber
JPH04265134A (en) Hydrophilic polypropyrene hollow fiber membrane and its manufacture
KR20030042790A (en) A hollow fiber membrane made of polyacrylonitrile and a preparation method thereof
JPH119977A (en) Polyethylene composite microporous hollow fiber membrane