JPH02138851A - Particle measuring apparatus - Google Patents

Particle measuring apparatus

Info

Publication number
JPH02138851A
JPH02138851A JP63291566A JP29156688A JPH02138851A JP H02138851 A JPH02138851 A JP H02138851A JP 63291566 A JP63291566 A JP 63291566A JP 29156688 A JP29156688 A JP 29156688A JP H02138851 A JPH02138851 A JP H02138851A
Authority
JP
Japan
Prior art keywords
light
sample
sample particles
particle
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63291566A
Other languages
Japanese (ja)
Inventor
Moritoshi Miyamoto
守敏 宮本
Yuji Ito
勇二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63291566A priority Critical patent/JPH02138851A/en
Priority to US07/402,358 priority patent/US4999513A/en
Priority to DE3930027A priority patent/DE3930027C2/en
Priority to FR8911791A priority patent/FR2636429B1/en
Publication of JPH02138851A publication Critical patent/JPH02138851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain highly accurate information concerning a shape by a method wherein first and second photometry means to measure scattered light due to sample particles arranged at a position to which first and second light irradiation means correspond and output values of both the photometry means are compared with a comparison means and an identification is performed to determine whether the sample particles are spherical or not spherical from the results of the comparison. CONSTITUTION:A first light irradiation means is composed of a laser light source 1 with a wavelength lambda1 of a particle measuring device and an image forming optical system 3 while a second light irradiation means is composed of a laser light source 11 with a wavelength lambda2 and an image forming optical system 13. Irradiation light from both the irradiation means is made to irradiate the sample particles flowing sequentially through a passage section 2 within a flowcell 4 and scattered light from the sample particles is detected selectively first and second photo detectors 10 and 18 arranged in respective optical axes. Detection outputs thereof are stored into first and second memory sections of a memory means 19 in such a manner that a larger data and a smaller data correspond to the first and second memory sections among detection data from one sample particle and values thereof are computed by a computing means 20 to determine a shape of the sample particle.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は検体粒子に光を照射し、検体粒子からの光、例
えば透過光や散乱光を測光することにより粒子測定を行
なう粒子測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a particle measuring device that performs particle measurement by irradiating light onto sample particles and measuring light from the sample particles, such as transmitted light or scattered light. .

[従来の技術] 従来の粒子測定装置、例えばフローサイトメータでは、
1個ずつ高速で流れる生体細胞等の検体粒子に1方向か
ら光を照射し、それによって発生ずる散乱光や蛍光を測
光することにより、検体粒子の粒子径や性質に関する情
報が得られ、多数の細胞についてのこれらの情報の続開
から検体粒子の解析をしていた。また最近では抗体で感
作したラテックス粒子に被検試料を加え、抗原抗体反応
によってラテックス粒子の凝集が起こり、このラテック
ス凝集体の大きさをフローサイトメータを使って検出す
ることにより、抗原抗体反応を検知し被検試料中の特定
抗原の存在を検出する使い方もなされている。
[Prior Art] In conventional particle measuring devices, such as flow cytometers,
By irradiating light from one direction onto specimen particles such as biological cells that are flowing one by one at high speed, and measuring the scattered light and fluorescence generated by this, information about the particle size and properties of the specimen particles can be obtained, and a large number of specimen particles can be analyzed. Based on this information about cells, we analyzed the sample particles. Recently, a test sample is added to latex particles sensitized with antibodies, and the latex particles aggregate due to the antigen-antibody reaction, and the size of the latex aggregates is detected using a flow cytometer. It has also been used to detect the presence of specific antigens in test samples.

[発明か解決しようとしている問題点〕しかしながら、
従来型の1方向から光を照射する粒子測定装置では、検
体粒子か球形状か非球形状かの区別ができず、検体粒子
の形状に関する精度の高い解析か困難であった。
[The problem that the invention is trying to solve] However,
Conventional particle measuring devices that emit light from one direction cannot distinguish between spherical and non-spherical sample particles, making it difficult to accurately analyze the shape of sample particles.

本発明は複数方向から光を照射し複数の情報を得ること
により、検体粒子の粒子形状情報、例えば球形、非球形
の区別等の情報を得ることかてぎる装置の提供を目的と
する。
An object of the present invention is to provide an apparatus that can obtain particle shape information of sample particles, such as information on whether they are spherical or non-spherical, by irradiating light from a plurality of directions and obtaining a plurality of pieces of information.

[問題点を解決するだめの手段] 上述した問題点を解決するため、検体オ9子か通過する
被検部に光を照射し被検部からの光を測光することによ
り検体粒子の測定を行なう粒子測定装置において、第1
の方向から照射光を被検部に照射する第1の光照射手段
と、前記第1の方向とは異なる第2の方向から照射光を
被検部に照射する第2の光照射手段と、前記第1、第2
の光照射手段に対応する位置に配され検体粒子による散
乱光をそれぞれ測光する第1、第2の測光手段を備え、
該第1、第2の測光手段の出力値を比較する比較手段と
、該比較手段の比較結果から検体粒子の形状を識別する
演算手段を有する。
[Means to solve the problem] In order to solve the above-mentioned problem, the sample particles can be measured by irradiating light onto the test area through which the sample particle passes and measuring the light from the test part. In the particle measuring device that performs
a first light irradiation unit that irradiates the test area with irradiation light from a direction; and a second light irradiation unit that irradiates the test unit with irradiation light from a second direction different from the first direction. Said first and second
comprising first and second photometric means disposed at positions corresponding to the light irradiation means and respectively photometrically measuring the light scattered by the sample particles;
It has a comparing means for comparing the output values of the first and second photometric means, and an arithmetic means for identifying the shape of the sample particle from the comparison result of the comparing means.

[実施例] 以下、本発明の粒子測定装置の実施例を図面を用いて詳
細に説明する。
[Example] Hereinafter, an example of the particle measuring device of the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例の構成図てあり、1は波長λ1
のレーザ光を発射するレーザ光源、3はシリンドリカル
レンズ等から成る結像光学系であり、第1の光照射手段
を形成している。レーザ光源1から発射された波長^1
のレーザ光は、結像光学系3にて透明ガラスのフローセ
ル4内の流通部2に結像される。この時、結像光学系3
によって被検部に結像されるビームスポットの形状は、
検体粒子の流れに対して機長の楕円形状である。
FIG. 1 is a block diagram of an embodiment of the present invention, where 1 is the wavelength λ1
3 is an imaging optical system consisting of a cylindrical lens and the like, forming a first light irradiation means. Wavelength ^1 emitted from laser light source 1
The laser beam is imaged by the imaging optical system 3 onto the flow section 2 in the flow cell 4 made of transparent glass. At this time, the imaging optical system 3
The shape of the beam spot imaged on the test area by
It has an elliptical shape with respect to the flow of sample particles.

こねは被検部での検体粒子の流れ位置か紙面の」−下ま
たは左右方向に若干ずれたとしても、検体粒子に対して
ほぼ均一の強度で光照射を行なうことかてきるようにす
るためである。
The purpose of this is to ensure that the sample particles are irradiated with light at a nearly uniform intensity even if the flow position of the sample particles in the test area is slightly shifted downward or to the left or right. It is.

また、第2光照射手段として、前記レーザ光源1からの
レーザ光の光路及び検体粒子の流れ方向と直交する方向
からは、レーザ光源11ににつて先の波長λ1とは異な
る波長λ2のレーザ光か発射される。このレーザ光は」
−記憶1の光照射手段と同様に結像レンズ系13により
、フローセル中の被検部に対して、第1の光照射手段と
は直交する方向から結像される。
Further, as a second light irradiation means, a laser beam having a wavelength λ2 different from the previous wavelength λ1 is directed to the laser light source 11 from a direction perpendicular to the optical path of the laser beam from the laser light source 1 and the flow direction of the sample particles. Or fired. This laser light is
- Similar to the light irradiation means of the memory 1, the imaging lens system 13 forms an image of the test portion in the flow cell from a direction perpendicular to the first light irradiation means.

フローセル4内の流通部2には、例えは血球細胞やラテ
ックス凝集体等の検体粒子がシースフロ一方式によって
紙面垂直方向に1個あるいは1塊ずつ順次流され、波長
λ1のレーザ光及び波長λ2のレーザ光か結像されるフ
ローセル4内の被検部を順次通過する。ここで被検部に
検体粒子5が無い時は、レーザ光源1からのレーザ光は
フローセル4を直進してストッパ6によって遮断され、
同様にレーザ光源11からのレーザ光はストッパ14に
よフて遮断される。ところか被検部に検体粒子がさしか
かり、検体粒子にレーザ光か照射されると、検体粒子に
よって光散乱が起こり、波長λ1及びλ2の散乱光か発
生する。レーザ光源】及び11の光路直進方向には、そ
れぞれ集光レンズ7及び15が配置され、・所定角度の
散乱光か集光される。ここでレンズ7て集光された散乱
光は、バリアフィルタ8によって波長λ1の光のみか選
択的に透過される。すなわち第1の光照射手段によって
照射されて発生した散乱光のみが選択される。バリアフ
ィルタ8を透過した波長λの光は絞り9を通過して、光
検出器10にて光パルス強度か検出される。また、レン
ズ15て集光された散乱光は、バリアフィルタ16によ
って波長λ2の光のみが選択される。すなわち第2の光
照射手段による散乱光のみか選択され、絞り17、光検
出器18によって波長λ2の光パルス強度か検出される
。光検出器10及び18のパルス出力はそれぞれ不図示
の積分回路にて時間積分され1パルス毎の積分値が得ら
れる。被検部への検体粒子の通過毎に得られる2つの積
分値は、記憶手段19に別々に記憶される。こうして1
個の検体粒子につき異なる角度からの測定データか得ら
れ、この記憶手段19の内容を基に演算手段20にて粒
子測定の演算がなされ、演算結果は表示手段21にて表
示される。
Sample particles such as blood cells and latex aggregates are sequentially flowed one by one or one lump at a time in the direction perpendicular to the page of the paper into the flow section 2 in the flow cell 4 using a sheath flow system, and are exposed to a laser beam with a wavelength λ1 and a laser beam with a wavelength λ2. The laser beam sequentially passes through the test portions in the flow cell 4 where it is imaged. Here, when there are no sample particles 5 in the test area, the laser light from the laser light source 1 travels straight through the flow cell 4 and is blocked by the stopper 6.
Similarly, the laser light from the laser light source 11 is blocked by the stopper 14. However, when sample particles approach the test area and are irradiated with a laser beam, light scattering occurs due to the sample particles, and scattered light with wavelengths λ1 and λ2 is generated. Condensing lenses 7 and 15 are arranged in the straight direction of the optical paths of the laser light sources and 11, respectively, and the scattered light at a predetermined angle is condensed. Here, the scattered light collected by the lens 7 is selectively transmitted by the barrier filter 8, in which only the light having the wavelength λ1 is transmitted. That is, only the scattered light generated by irradiation by the first light irradiation means is selected. The light having the wavelength λ that has passed through the barrier filter 8 passes through the diaphragm 9 and is detected by the photodetector 10 as a light pulse intensity. Further, from the scattered light collected by the lens 15, only the light having the wavelength λ2 is selected by the barrier filter 16. That is, only the scattered light from the second light irradiation means is selected, and the light pulse intensity of wavelength λ2 is detected by the aperture 17 and photodetector 18. The pulse outputs of the photodetectors 10 and 18 are time-integrated by respective integration circuits (not shown) to obtain an integral value for each pulse. The two integral values obtained each time the sample particles pass through the test area are stored separately in the storage means 19. Thus 1
Measurement data from different angles are obtained for each sample particle, and based on the contents of the storage means 19, calculations for particle measurement are performed by the calculation means 20, and the calculation results are displayed on the display means 21.

次に検出データから検体粒子の形状を識別する演算方法
について説明する。
Next, a calculation method for identifying the shape of sample particles from detection data will be described.

記憶手段19内には第1の記憶部、第2の記憶部が設け
られ、第1の記憶部には一個の検体粒子から得られる2
つの散乱光検出データの内、大ぎい方のデータが記憶さ
れ、第2の記憶部には小さい方のデータが記憶されてい
る。同一値の場合は同一の値がそれぞれ記憶される。こ
の第11第2の記憶部に記憶されるそれぞれのデータを
ヒストグラムに表わしたものが第2図(a) 、 (b
)である。
The storage means 19 is provided with a first storage section and a second storage section.
Among the two pieces of scattered light detection data, the larger data is stored, and the smaller data is stored in the second storage section. In the case of the same value, the same value is stored respectively. The histograms of each data stored in the 11th second storage section are shown in FIGS. 2(a) and 2(b).
).

ここで横軸は散乱光検出強度、縦軸は検体粒子の個数で
ある。一般に散乱光強度は検体粒子か大きくなるほど検
出強度も大きくなることが知られており、検体粒子が完
全な球形であれば2方自からみた検体粒子の大ぎさは同
一であり、得られる2つの検出データもほぼ同じ値とな
る。一方、検体粒子が非球形である場合は、検体粒子を
見る方向によって大きさが変わってくる。よって第1、
第2の記憶部に記憶される値か異なってくる。これは検
体粒子か非球形状であればあるほど異なり度合いも大ぎ
くなる。すなわち第1、第2の記憶部に記憶されるデー
タの異なり度合いが検体粒子の非球形性を表わす。異な
り度合いは2つのデータの差で表わしても良いし、比を
とっても良い。
Here, the horizontal axis is the scattered light detection intensity, and the vertical axis is the number of sample particles. It is generally known that the detected intensity of scattered light increases as the size of the sample particle increases.If the sample particle is perfectly spherical, the size of the sample particle seen from two sides is the same, and the two obtained The detected data also has almost the same value. On the other hand, when the sample particles are non-spherical, the size changes depending on the direction from which the sample particles are viewed. Therefore, first,
The values stored in the second storage section differ. The more non-spherical the specimen particle is, the more different this becomes. That is, the degree of difference between the data stored in the first and second storage units represents the non-sphericity of the sample particles. The degree of difference may be expressed by the difference between two data, or may be expressed as a ratio.

第3図(a) 、 (b)は第1の記憶部、第2の記憶
部のデータの差を取ったもののヒストグラムであり、第
3図(a)は検体粒子か完全な球形であるときの結果、
第3図(b)は検体粒子か非球形である場合の結果であ
る。横軸は第1、第2の記憶部のデータの差、すなわち
検体粒子の非球形性であり、縦軸は検体粒子の個数であ
る。なお、横軸は差ではなく比を用いても良い。これか
ら明らかなように、球形の検体粒子は第3図(a)のよ
うにヒストグラム上て左端付近にデータか集中するのに
対して、非球形の検体粒子では第3図(b)のように大
きく広がる傾向を見せる。こうしてヒストグラムのパタ
ーンから球形と非球形を区別、さらには非球形の度合を
判別することができる。本実施例ではヒストグラムのパ
ターンの判別は演算手段20の判別回路でパターン認識
技術を用いて自動的に行なっているか、表示されたもの
を見て人間か判断しても良い。
Figures 3 (a) and (b) are histograms obtained by taking the difference between the data in the first storage section and the second storage section, and Figure 3 (a) shows when the sample particle is completely spherical. As a result,
FIG. 3(b) shows the results when the sample particles are non-spherical. The horizontal axis represents the difference between the data in the first and second storage units, that is, the non-sphericity of the sample particles, and the vertical axis represents the number of sample particles. Note that the horizontal axis may use a ratio instead of a difference. As is clear from this, data for spherical sample particles is concentrated near the left end of the histogram as shown in Figure 3 (a), whereas for non-spherical sample particles the data is concentrated near the left end as shown in Figure 3 (b). It shows a tendency to widen. In this way, it is possible to distinguish between spherical and non-spherical shapes from the histogram pattern, and further to determine the degree of non-spherical shape. In this embodiment, the discrimination of the histogram pattern is automatically performed by the discrimination circuit of the calculation means 20 using pattern recognition technology, or it may be determined whether it is a human by looking at the displayed image.

しかしながら、このヒストグラムからは検体粒子の非球
形性は判断できるものの検体粒子の大きさを同時に判断
することはできない。そこで第4図(a) 、 (b)
のようなサイトダラムを用いる。横軸は先と同じく第1
、第2の記憶部のデータの差、すなわち検体粒子の非球
形性であり、縦軸は第1、第2の記憶部のデータ平均値
、すなわち平均散乱光強度て、これは平均粒子径を表わ
す。各々の検体粒子のデータはサイトグラム上で1点と
してプロットされ、検体粒子の形状によってプロット集
合の傾向が異なり、例えば第4図(a)では完全な球形
の検体粒子でサイズの異なるものが区別されている。2
種類のサイズの異なる検体粒子は、それぞれおよそ点線
で囲まれた範囲にプロットされる。又、第4図(b)は
検体粒子の非球形の度合いに応じてのプロットの範囲が
横に広がり、検体粒子のサイズによって縦方向で分離さ
れたものを表わす。このようなサイ、トゲラムに表わす
ことにより、サイトグラム上でどのように表示されるか
によって検体粒子の形状(非球形性、大きさ)を判別す
ることができる。さらに複数種の形状の検体粒子が混在
している場合ても形状の区別やM数を行なうことができ
る。サイトダラムパターンの判断は先と同様、パターン
認識により自動的に行なっても良いし、人間が判断して
も良い。
However, although the non-sphericity of the sample particles can be determined from this histogram, the size of the sample particles cannot be determined at the same time. Therefore, Figure 4 (a) and (b)
Use a site duram like . The horizontal axis is the first one as before.
, the difference between the data in the second storage section, that is, the non-sphericity of the sample particles, and the vertical axis is the average value of the data in the first and second storage sections, that is, the average scattered light intensity, which represents the average particle diameter. represent. The data of each sample particle is plotted as one point on the cytogram, and the tendency of the plot set differs depending on the shape of the sample particle. For example, in Figure 4 (a), completely spherical sample particles of different sizes are distinguished. has been done. 2
Specimen particles of different sizes are each plotted in a range approximately surrounded by a dotted line. Further, FIG. 4(b) shows that the range of the plot expands horizontally depending on the degree of non-sphericity of the sample particles, and is separated in the vertical direction depending on the size of the sample particles. By displaying the sample particles in such a cytogram, the shape (non-sphericity, size) of the sample particle can be determined based on how it is displayed on the cytogram. Further, even when specimen particles having a plurality of shapes are mixed, the shapes can be distinguished and the M number can be determined. As before, the determination of the site duram pattern may be performed automatically by pattern recognition, or may be determined by a human.

以上の如く、検体粒子の形状を判別、計数して粒子解析
、例えば血球の種類の判別、計数、微生物の種類の判別
、計数、感作ラテツクスを用いた抗原抗体反応の検出等
を行なうことがてきる。なお、2方向からの散乱光と共
に、蛍光染色された検体粒子からの蛍光を測光し、蛍光
強度から得られる検体粒子の生化学的性質等を粒子解析
のパラメータとして加えることにより、より詳細なる解
析を行なうことができる。さらには若干精度は落ちるも
のの、散乱光の代りに透過光を用いることも可能である
As described above, particle analysis can be performed by determining and counting the shape of sample particles, such as determining and counting the type of blood cells, determining and counting the type of microorganisms, and detecting antigen-antibody reactions using sensitized latex. I'll come. In addition, in addition to the scattered light from two directions, more detailed analysis can be performed by measuring the fluorescence from fluorescently stained specimen particles and adding the biochemical properties of the specimen particles obtained from the fluorescence intensity as parameters for particle analysis. can be done. Furthermore, it is also possible to use transmitted light instead of scattered light, although the accuracy is slightly lower.

なお、」−述の実施例では、検体粒子を2方向から光照
射して、2方向からの情報を得たか、これには限定され
ず、3方向以十の複数方向から光照射することにより、
より詳細な解析を行なうことも可能である。
In addition, in the examples described in "--, information was obtained from two directions by irradiating the sample particles with light from two directions," but the information is not limited to this, but by irradiating light from three to ten directions. ,
It is also possible to perform a more detailed analysis.

又、実施例の如く流通部の同一位置に複数のレーザ光を
照射しても良いし、流通方向に位置をずらして別々に照
射しても良い。
Further, as in the embodiment, a plurality of laser beams may be irradiated at the same position in the flow section, or the positions may be shifted in the flow direction and irradiated separately.

さらに、実施例では好ましい形態として、異なるレーザ
光源を用いて異なる波長の照射光を照射し受光系で散乱
光の波長を選択してそれぞれ測光したか、複数のレーザ
光源として同一波長のものを用いることも可能である。
Furthermore, in the example, as a preferred embodiment, different laser light sources are used to irradiate irradiation light of different wavelengths, and the light receiving system selects the wavelength of the scattered light and performs photometry for each, or multiple laser light sources with the same wavelength are used. It is also possible.

これは一般に前方散乱光強度に比へて側方散乱光強度は
非常に微弱てあり、一方の前方散乱光出力に他方の側方
散乱光か混入しても大きな問題とノぼるほどのノイズ成
分とはならないためである。なおこの場合、複数の同一
レーザ光源を用意しなくても、単一のレーザ光源からの
レーザ光束ををヒームスプリツタ等て分割して複数方向
から同時に照射するという変形例も考えられる。
This is because the side scattered light intensity is generally very weak compared to the forward scattered light intensity, and even if one forward scattered light output is mixed with the other side scattered light, there is a noise component that will cause a big problem. This is because it does not become. In this case, instead of preparing a plurality of identical laser light sources, a modification may be considered in which the laser beam from a single laser light source is divided using a heam splitter or the like and irradiated from multiple directions simultaneously.

「発明の効果コ 以」−未発明によれは、個々の検体粒子の複数方向から
の情報を得て、検体粒子の形状等を判別することかてぎ
る。
``Effects of the Invention'' - According to the invention, it is possible to obtain information from multiple directions of each specimen particle to determine the shape, etc. of the specimen particle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は未発明の実施例の構成図、 第2図(a) 、 (b)は散乱光測定データのヒスト
グラム、 第3図(a) 、 (b)は検体粒子の非球形・冴を表
わすヒストグラム、 第4図(a) 、 (b)は検体粒子の形状を表わすサ
イトダラム、 てあり、図中の主な符号は、 1・・・・波長λ1のレーザ光源、 11・・・・波長λ2のレーザ光源、 8・・・・波長λ1の光を透過させるバリアフィルタ、 16・・・・波長λ2の光を透過させるハリアフイ】 
 1 ルタ、 6.14・・・・ストッパ、 19・・・・記憶手段、 20・・・・演算手段 21・・・・表示表示 壊婦 9覇 赳P 甲部 平部 択 許を驚モ涙煉 叔
Figure 1 is a configuration diagram of an uninvented embodiment, Figures 2 (a) and (b) are histograms of scattered light measurement data, and Figures 3 (a) and (b) are graphs showing the non-spherical shape and shape of the sample particles. The histograms in Figures 4(a) and 4(b) are cytograms representing the shape of the sample particles. Laser light source with wavelength λ2, 8... barrier filter that transmits light with wavelength λ1, 16... barrier filter that transmits light with wavelength λ2]
1 Ruta, 6.14...stopper, 19...memory means, 20...arithmetic means 21...display display ganglia 9 HashiP Kobe Hirabe's choice made me cry. Renshu

Claims (1)

【特許請求の範囲】 1、検体粒子が通過する被検部に光を照射し被検部から
の光を測光することにより検体粒子の測定を行なう粒子
測定装置において、第1の方向から照射光を被検部に照
射する第1の光照射手段と、前記第1の方向とは異なる
第2の方向から照射光を被検部に照射する第2の光照射
手段と、前記第1、第2の光照射手段に対応する位置に
配され検体粒子からの光をそれぞれ測光する第1、第2
の測光手段を備え、該第1、第2の測光手段の出力値を
比較する比較手段と、該比較手段の比較結果から検体粒
子の形状を判別する判別手段を有することを特徴とする
粒子測定装置。 2、各々の検体粒子の出力値を前記比較手段により比較
して得られた多数の比較データを用いて、前記判別手段
により統計処理を行なって検体粒子の形状を判別する請
求項1記載の粒子測定装置。
[Claims] 1. In a particle measuring device that measures sample particles by irradiating light onto a test area through which sample particles pass and measuring the light from the test area, the irradiated light is emitted from a first direction. a first light irradiation means that irradiates the test area with irradiation light; a second light irradiation unit that irradiates the test area with irradiation light from a second direction different from the first direction; A first and a second light emitting means arranged at positions corresponding to the light irradiation means of No. 2 and measuring the light from the sample particles, respectively.
A particle measurement method comprising: a photometric means, a comparing means for comparing the output values of the first and second photometric means, and a determining means for determining the shape of the sample particle from the comparison result of the comparing means. Device. 2. The particles according to claim 1, wherein the discrimination means performs statistical processing to discriminate the shape of the sample particles using a large number of comparison data obtained by comparing the output values of each sample particle by the comparison means. measuring device.
JP63291566A 1988-09-09 1988-11-18 Particle measuring apparatus Pending JPH02138851A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63291566A JPH02138851A (en) 1988-11-18 1988-11-18 Particle measuring apparatus
US07/402,358 US4999513A (en) 1988-09-09 1989-09-05 Particle measuring apparatus
DE3930027A DE3930027C2 (en) 1988-09-09 1989-09-08 Particle measuring device
FR8911791A FR2636429B1 (en) 1988-09-09 1989-09-08 PARTICLE MEASURING APPARATUS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63291566A JPH02138851A (en) 1988-11-18 1988-11-18 Particle measuring apparatus

Publications (1)

Publication Number Publication Date
JPH02138851A true JPH02138851A (en) 1990-05-28

Family

ID=17770578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63291566A Pending JPH02138851A (en) 1988-09-09 1988-11-18 Particle measuring apparatus

Country Status (1)

Country Link
JP (1) JPH02138851A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5723255A (en) * 1995-06-07 1998-03-03 Eastman Kodak Company Nanoparticulate thermal solvents
KR100499164B1 (en) * 1998-01-07 2005-10-07 삼성전자주식회사 Mirror unit for forming multi-beams and multi-beam particle counter and particle measuring method using same
JP2013526714A (en) * 2010-05-18 2013-06-24 パルテック ゲーエムベーハー Configuration for measuring the optical properties of dispersed particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5723255A (en) * 1995-06-07 1998-03-03 Eastman Kodak Company Nanoparticulate thermal solvents
KR100499164B1 (en) * 1998-01-07 2005-10-07 삼성전자주식회사 Mirror unit for forming multi-beams and multi-beam particle counter and particle measuring method using same
JP2013526714A (en) * 2010-05-18 2013-06-24 パルテック ゲーエムベーハー Configuration for measuring the optical properties of dispersed particles

Similar Documents

Publication Publication Date Title
JP3707620B2 (en) Reticulocyte analysis method and apparatus using light scattering technology
US5194909A (en) Apparatus and method for measuring volume and hemoglobin concentration of red blood cells
US7390662B2 (en) Method and apparatus for performing platelet measurement
US4999513A (en) Particle measuring apparatus
JP4814912B2 (en) Optical red blood cell and white blood cell discrimination
US4735504A (en) Method and apparatus for determining the volume & index of refraction of particles
CA1309328C (en) Method of classifying leukocytes by flow cytometry and reagents used in the method
US20140295488A1 (en) Blood cell analyzer and blood cell analyzing method
JPS6370166A (en) Classification of white corpuscle by flow sight metry
JPS61153546A (en) Particle analyzer
JP2009002963A (en) Particle measurement apparatus
JPH01308964A (en) Two-dimensional distribution sectioning
JPH0792077A (en) Grain analyzing device
JPS63298137A (en) Sample analyzer using image fiber
JPS6151569A (en) Cell identifying device
JPH02138851A (en) Particle measuring apparatus
JPH0486546A (en) Specimen inspection device
JPH03154850A (en) Specimen inspecting device
JPH046465A (en) Method for treating specimen and method and apparatus for measuring specimen
JP2749912B2 (en) Sample measuring device and sample measuring method
JPS61221633A (en) Flow cell and flow sight meter equipped with flow cell
JPH0783819A (en) Particle measuring apparatus
JP2720069B2 (en) Flow cell analyzer
JPH10267827A (en) Particle-aggregation measuring apparatus
JPS59102139A (en) Blood corpuscle counter