JPH02132860A - Close contact type image sensor - Google Patents

Close contact type image sensor

Info

Publication number
JPH02132860A
JPH02132860A JP63201421A JP20142188A JPH02132860A JP H02132860 A JPH02132860 A JP H02132860A JP 63201421 A JP63201421 A JP 63201421A JP 20142188 A JP20142188 A JP 20142188A JP H02132860 A JPH02132860 A JP H02132860A
Authority
JP
Japan
Prior art keywords
film
sensor
electrode
capacitance
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63201421A
Other languages
Japanese (ja)
Inventor
Kenji Yamamoto
健司 山本
Katsufumi Kumano
勝文 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Original Assignee
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Research Institute of General Electronics Co Ltd, Ricoh Co Ltd filed Critical Ricoh Research Institute of General Electronics Co Ltd
Priority to JP63201421A priority Critical patent/JPH02132860A/en
Publication of JPH02132860A publication Critical patent/JPH02132860A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To make an image sensor large in capacitance without increasing a sensor region by a method wherein a sensor section formed of a semiconductor film of a photoelectric conversion film and a capacitance section formed of a transparent insulating film are provided onto a plane extended from a lower electrode. CONSTITUTION:A lower electrode 12 divided into bits is formed on a glass substrate 11 extending in a secondary scanning direction. A transparent insulating film 13 is formed thereon, and an opening 13a is provided to a sensor region. Moreover, a semiconductor thin film serving as a photoelectric conversion film 14 is formed covering the opening 13a, and an upper transparent electrode 15 is formed on the photoelectric conversion film 14. The photoelectric conversion film 14 is covered with a transparent insulating film 16 leaving an opening 16a uncovered, the part of the upper transparent electrode 15 of the sensor section is opened, and an upper electrode 17 is formed as being connected to the upper transparent electrode 15. As mentioned above, the transparent insulating films 13 and 16 are formed on the plane extended from the lower electrode 12 of the sensor section and the upper electrode 17 is formed thereon, whereby they can be formed into one piece, and the insulating films are made thin to constitute a capacitance component, so that an image sensor of this design can be made large in capacitance without increasing a sensor region.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は,例えばファクシミリ送信機などにおいて原稿
像を光学的に読みとるための密着型イメージセンサに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a contact type image sensor for optically reading a document image in, for example, a facsimile transmitter.

〔従来技術〕[Prior art]

通常,一次元CCDイメージセンサはファクシミリ装置
のような光学的に原稿を読み取る装置に使用されている
.しかし、このCODは光電変換部が25a+m程度し
かないため,原稿を読み取るためには縮小光学系が必要
である.そのため装置の小型化が困難であった. 装置を小型化するためには、縮小光学系の不要なイメー
ジセンサが必要となってくる.このようなイメージセン
サでは読み取るべき原稿と少なくとも同一サイズの長さ
をもつことが必要になる.例えばA4サイズの原稿を読
み取るにはイメージセンサは少なくとも216+amの
長さを有しなければならない.このような216mmも
の長さのイメージセンサは結晶Siで作ることは不可能
であるが、非品質な薄膜半導体(例えばアモルファスS
i)を用いることにより製作が可能となる. 光電変換層として半導体薄膜を使用することにより原稿
と同一サイズの大面積イメージセンサを製作することが
可能となったため、半導体薄膜を用いた種々の密着型イ
メージセンサが製造されている.この密着型イメージセ
ンサは原稿と直接接触して原稿を読み取るため,縮小光
学系が不要となり,装置の小型化が可能である.このよ
うな密着型イメージセンサ構造としては、薄膜半導体を
下部および上部電極で挟んだサンドイッチ型と平面的に
両側から電極を引き出したコブレーナ型とに大別される
.このうち,光応答特性はサンドイッチ型のほうが薄膜
半導体の膜厚を薄くできるために有利である.第3図に
サンドイッチ型センサの断面図を示す.この第3図にお
いて,1はガラス基板あるいはセラミック等の透明絶縁
基板、2は下部金属電極、3は光電変換部の半導体膜、
4は上部透明電極をそれぞれ示す.従来、このようなセ
ンサでは,受光領域が下部および上部電極で挟まれた領
域で形成されるが、光入射が下部および上部電極の対向
領域外に入った場合にも光電流が検出されるため,受光
領域が対向電極で形成された領域よりも広がってしまい
、分解能の低下を生じるものである. また,蓄積型の密着センサの容量は下部および上部電極
の対向領域で形成されるため、長尺センサのようにビッ
ト分割した場合,面積が小さくなり、容量も限定される
ため,読み取りのための駆動回路との接続配線の影響を
受けやすい欠点を有するものである. これら蓄積型の密着センサの欠点を改善するものとして
、第4図に示されるように、下部および上部電極の対向
領域を大きくし、かつ受光領域を限定する遮光膜を設け
た構造のものが提案されている(特開昭61− 825
70号公報).なお,第4図において、5は上部遮光膜
を示し,その他は第3図と同様である.このようなイメ
ージセンサにおいては容量成分を形成する領域が光電変
換部と同じ層構成となっているため、暗電流がセンサ部
面積を増加した分だけ増加し,光電流は分解能を確保す
るため設けた上部遮光層のため、光電流は変化せず,セ
ンサの性能を示す光電流/暗電流比が低下するという問
題点を有するものである.また容量を形成する部分が光
電変換層として半導体を用いているが、蓄積型読み取り
の場合,一度容量レこ電荷を蓄え,光入射による光電流
によって電荷を放出するため,時間とともに容量の電圧
が変化する.従って.半導体で形成された容量は電圧が
変化するに伴って容量の値が変化する問題点を有する.
さらに,上部遮光層による遮光によって内部で発生する
電子ホールによっても容量の値が変動する問題点を有す
るものである. 〔目  的〕 本発明は上記したサンドイツチ構造の電荷蓄積型をなす
密着イメージセンサにおける従来の問題点を解消し、光
電流/暗電流比を低下させることなく、容量に加わる印
加電圧によっても容量の値が変動せず、絶縁膜を薄くし
て容量成分を形成することによりセンサ領域を増加せず
に容量を大きくすることができる密着型イメージセンサ
を提供することを目的とする,(構  成) 本発明は透明絶縁基板上に半導体薄膜が下部電極および
上部透明電極で挟まれたサンドイッチ構造の電荷蓄積型
をなす密着型センサーであって.下部電極の延長面上に
透明絶縁膜を設け,この透明絶縁膜上に上部透明電極に
接続させた上部電極を設けたことを特徴とするものであ
る。
Generally, one-dimensional CCD image sensors are used in devices that optically read documents, such as facsimile machines. However, since this COD has a photoelectric conversion section of only about 25a+m, a reduction optical system is required to read the original. This made it difficult to miniaturize the device. In order to miniaturize the device, an image sensor that does not require a reduction optical system becomes necessary. Such an image sensor needs to have a length that is at least the same size as the original to be read. For example, to read an A4 size document, the image sensor must have a length of at least 216+am. It is impossible to make an image sensor with a length of 216 mm using crystalline Si, but it is possible to make an image sensor using low-quality thin film semiconductors (for example, amorphous Si).
Production is possible by using i). By using a semiconductor thin film as a photoelectric conversion layer, it has become possible to manufacture a large-area image sensor that is the same size as the original, and various contact-type image sensors using semiconductor thin films have been manufactured. This contact image sensor reads the original by coming into direct contact with it, eliminating the need for a reduction optical system and allowing the device to be made more compact. Such contact-type image sensor structures are broadly divided into sandwich type, in which a thin film semiconductor is sandwiched between lower and upper electrodes, and coplanar type, in which electrodes are drawn out from both sides in a plane. Of these, the sandwich type is more advantageous in terms of photoresponse characteristics because the thickness of the thin film semiconductor can be made thinner. Figure 3 shows a cross-sectional view of the sandwich type sensor. In FIG. 3, 1 is a transparent insulating substrate such as a glass substrate or ceramic, 2 is a lower metal electrode, 3 is a semiconductor film of a photoelectric conversion section,
4 indicates the upper transparent electrode. Conventionally, in such sensors, the light-receiving area is formed in the area sandwiched between the lower and upper electrodes, but photocurrent is detected even if the incident light enters outside the opposing area of the lower and upper electrodes. , the light-receiving area becomes wider than the area formed by the counter electrode, resulting in a decrease in resolution. In addition, since the capacitance of an accumulation-type contact sensor is formed in the opposing regions of the lower and upper electrodes, if it is divided into bits like a long sensor, the area will be small and the capacity will be limited. This has the disadvantage that it is easily affected by the connection wiring with the drive circuit. In order to improve the shortcomings of these accumulation-type contact sensors, a structure has been proposed in which the opposing areas of the lower and upper electrodes are enlarged and a light-shielding film is provided to limit the light-receiving area, as shown in Figure 4. (Unexamined Japanese Patent Publication No. 61-825)
Publication No. 70). In addition, in FIG. 4, 5 indicates an upper light-shielding film, and the other parts are the same as in FIG. 3. In such an image sensor, the region forming the capacitive component has the same layer structure as the photoelectric conversion section, so the dark current increases by the increase in the area of the sensor section, and the photocurrent is Because of the upper light-shielding layer, the photocurrent does not change and the photocurrent/dark current ratio, which indicates sensor performance, decreases. In addition, the part that forms the capacitor uses a semiconductor as a photoelectric conversion layer, but in the case of storage type reading, the capacitor's charge is stored once and the charge is released by the photocurrent caused by light incidence, so the voltage of the capacitor increases over time. Change. Therefore. Capacitors made of semiconductors have the problem that the capacitance value changes as the voltage changes.
Furthermore, there is a problem in that the capacitance value fluctuates due to electron holes generated internally due to light shielding by the upper light shielding layer. [Purpose] The present invention solves the problems of the conventional contact image sensor having a charge accumulation type with a sandwich structure as described above, and increases the capacitance even by the applied voltage applied to the capacitor without reducing the photocurrent/dark current ratio. The purpose of the present invention is to provide a contact image sensor in which the value does not change and the capacitance can be increased without increasing the sensor area by thinning the insulating film and forming a capacitive component. (Structure) The present invention is a contact type sensor that has a charge storage type sandwich structure in which a semiconductor thin film is sandwiched between a lower electrode and an upper transparent electrode on a transparent insulating substrate. A transparent insulating film is provided on the extended surface of the lower electrode, and an upper electrode connected to the upper transparent electrode is provided on the transparent insulating film.

以下に実施例を示す図面を参照して本発明をさらに詳し
く説明する. 第1図は本発明密着型イメージセンサの第1実施例を示
す.第1図において,ガラス基板11上に下部電極l2
がビット分割され、副走査方向に延長した形で形成され
ている.その上に透明絶縁膜l3が形成され,センサ部
領域に開孔部l3aが設けられている.さらに光電変換
膜14をなす半導体薄膜が開孔部を覆うように形成され
ている.さらに、上部透明電極l5が光電変換膜14の
半導体膜上に形成されている.光電変換膜14の半導体
薄膜は開孔部16aを残して透明絶縁膜16で被覆され
、センサ部の上部透明電極15の部分が開孔されている
.さらに、上部透明電極15に接続して上部電極17が
形成されている。このように、本発明に係るイメージセ
ンサでは、センサ部の下部電極12の延長面上に透明絶
縁膜13,?6が形成され,さらにその上に上部電極1
7が形成されるように構成されるものである.次に、上
記のような第1実施例のイメージセンサの製造例につい
て説明する.ガラス基板11として、石英またはパイレ
ックス(登録商標)を用い、このガラス基板11上にC
rを真空蒸着により1500人程度成膜し、フォトリソ
技術により下部電極12を形成する.次に.SiO■あ
るいはSin)xNyをプラズマCVD法により500
0人程度成膜して透明絶縁@13を形成し、フオトリソ
技術によりセンサ部の開孔部13aを形成する.次いで
,光電変換膜14の半導体膜として水素化アモルファス
シリコン膜をSiH4ガス等を用いたP−CVD法によ
り、0.5 〜2.0μm成膜し、ITO等の透明導電
膜をスパッタリングまたは真空蒸着等により750人成
膜し、フォトリソ技術により上部透明電極l5、光電変
換膜14の半導体膜を形成する.その後、透明絶縁膜1
6としてプラズマCVD法によりSiO■あるいはS 
iC)xNyを3000人程度全面成膜し,フォトリソ
技術により,上部透明電極15の部分に開孔部16aを
形成する.そして最後にCrまたはA Q / C r
等を真空蒸着法により0.15〜0.5μm成膜し,フ
ォトリソ技術により上部電極l7を上部透明電極15に
接続して形成する. このようにして得られる密着型イメージセンサは光電流
/暗電流比を低下させることなく高い値が得られ、さら
に容量成分としては透明絶縁膜13. 16を下部電極
l2および上部電極l7で挟んで構成させるため、非常
に安定な容量を得ることができる。また、透明絶縁膜1
3. 16の厚さを変えることでノオトリソのパターン
の変更なしに容量の値を変化させることができ,容量の
最適化が容易となる.これにより,配線等の浮遊容量等
を低減でき、以下の実験結果にも示されるようにイメー
ジセンサからの大きくかつ安定した出力を得ることが可
能となる. 第2図は本発明の第2実施例を示すものである,第2図
において、ガラス基板11上には遮光7!J21が形成
され、その上に透明絶縁層22が形成されている.なお
、遮光層2lには開孔部21aが設けら九ている.そし
て、その上の下部電極12には遮光層2lと同じ位置に
光入射のための開孔部+2aが形成されており,さらに
最上部に保護層23が形成されており、その他は第1図
に示したものと同様に構成されてなる.第2図(a)は
主査方向に配列された複数の密着型イメージセンサを示
しているが、このような配列をとらなければならないわ
けではないことはもちろんである。
The present invention will be explained in more detail below with reference to the drawings showing examples. Figure 1 shows a first embodiment of the contact type image sensor of the present invention. In FIG. 1, a lower electrode l2 is placed on a glass substrate 11.
is divided into bits and extended in the sub-scanning direction. A transparent insulating film l3 is formed thereon, and an opening l3a is provided in the sensor region. Furthermore, a semiconductor thin film forming the photoelectric conversion film 14 is formed to cover the opening. Further, an upper transparent electrode l5 is formed on the semiconductor film of the photoelectric conversion film 14. The semiconductor thin film of the photoelectric conversion film 14 is covered with a transparent insulating film 16, leaving an opening 16a, and the upper transparent electrode 15 of the sensor section is opened. Further, an upper electrode 17 is formed connected to the upper transparent electrode 15. As described above, in the image sensor according to the present invention, the transparent insulating film 13, ? 6 is formed, and an upper electrode 1 is further formed thereon.
7 is formed. Next, an example of manufacturing the image sensor of the first embodiment as described above will be explained. As the glass substrate 11, quartz or Pyrex (registered trademark) is used.
Approximately 1,500 layers of R are deposited by vacuum evaporation, and the lower electrode 12 is formed by photolithography. next. 500% SiO■ or Sin)xNy by plasma CVD method
The transparent insulation @13 is formed by about 0 people, and the opening 13a of the sensor part is formed by photolithography. Next, a hydrogenated amorphous silicon film with a thickness of 0.5 to 2.0 μm is formed as a semiconductor film of the photoelectric conversion film 14 by P-CVD using SiH4 gas, etc., and a transparent conductive film such as ITO is sputtered or vacuum evaporated. A total of 750 people deposited the semiconductor film using photolithography techniques, and the upper transparent electrode 15 and the semiconductor film 14 of the photoelectric conversion film 14 were formed using the photolithography technique. After that, the transparent insulating film 1
As 6, SiO■ or S is deposited by plasma CVD method.
iC) A film of about 3,000 xNy is deposited on the entire surface, and an opening 16a is formed in the upper transparent electrode 15 using photolithography. And finally Cr or A Q / Cr
A film of 0.15 to 0.5 μm is formed by vacuum evaporation, and the upper electrode 17 is connected to the upper transparent electrode 15 by photolithography. The contact-type image sensor obtained in this manner can obtain a high value without reducing the photocurrent/dark current ratio, and furthermore, the capacitance component of the transparent insulating film 13. 16 is sandwiched between the lower electrode 12 and the upper electrode 17, a very stable capacitance can be obtained. In addition, transparent insulating film 1
3. By changing the thickness of 16, the capacitance value can be changed without changing the pattern of the nootorizo, making it easy to optimize the capacitance. This makes it possible to reduce stray capacitance in wiring, etc., and as shown in the experimental results below, it becomes possible to obtain a large and stable output from the image sensor. FIG. 2 shows a second embodiment of the present invention. In FIG. 2, there is a light shielding 7! on the glass substrate 11. J21 is formed, and a transparent insulating layer 22 is formed thereon. Note that the light shielding layer 2l is provided with apertures 21a. An opening +2a for light incidence is formed on the lower electrode 12 at the same position as the light shielding layer 2l, and a protective layer 23 is formed on the top, and the rest is as shown in FIG. The structure is similar to that shown in . Although FIG. 2(a) shows a plurality of contact type image sensors arranged in the main scanning direction, it is needless to say that such an arrangement is not required.

この第2図に示した構造のイメージセンサによれば,等
倍結像系を用いず,直接に原稿と保護層23とを接触さ
せることにより,原稿を読み取るものであるため,小型
化が可能となる。
According to the image sensor having the structure shown in Fig. 2, the original is read by bringing the original into direct contact with the protective layer 23 without using a 1-magnification imaging system, so it can be made smaller. becomes.

ここで、上記第2実施例のセンサを用い、容量(蓄積容
量)をパラメータとしたときの露光量−センサ出力特性
を示すと、第5図のようになる。測定は、まずセンサに
並列に接続(電気回路的に並列に接続)される容量を第
6図(a)に示される下部電極l2に対向する上部電極
17の長さを変えることにより変化させたセンサを用意
し,そのセンサ面照度を変化させ各露光量(照度X読み
取時間)でのセンサ出力を測定しグラフにプロットした
.容量値は計算により算出した。第6図(b)は第6図
(a)に示したイメージセンサの等価回路である.この
第6図(b)におけるCsはセンサ容量を示し.Caは
付加容量を示す.容量(蓄積容量)CはC=Cs+Ca
として示すことができる.この実験では第5図からわか
るように、容量に比例して飽和電圧、飽和露光量が増加
することがわかる.飽和露光量Esは、 Es=(C−■)/S C:蓄積容量CF) V:印加電圧(V) S:センサ感度(A/ρX) で表わされる。
Here, when using the sensor of the second embodiment and using the capacitance (storage capacitance) as a parameter, the exposure amount-sensor output characteristic is shown in FIG. 5. In the measurement, first, the capacitance connected in parallel to the sensor (connected in parallel in terms of electric circuit) was changed by changing the length of the upper electrode 17 facing the lower electrode l2 shown in FIG. 6(a). A sensor was prepared, and the sensor output was measured at each exposure level (illuminance x reading time) by varying the sensor surface illuminance and plotted on a graph. The capacitance value was calculated by calculation. Figure 6(b) is an equivalent circuit of the image sensor shown in Figure 6(a). Cs in FIG. 6(b) represents the sensor capacitance. Ca indicates additional capacity. Capacity (storage capacity) C is C=Cs+Ca
It can be shown as In this experiment, as can be seen from Figure 5, it can be seen that the saturation voltage and saturation exposure amount increase in proportion to the capacitance. The saturation exposure amount Es is expressed as follows: Es=(C-■)/SC C: Storage capacity CF) V: Applied voltage (V) S: Sensor sensitivity (A/ρX).

このため,蓄積容量は白原稿を読み取っても飽和しない
容量紮作り込む必要がある.そのため,充分な蓄積容量
(確保するために第6図(b)に示すようにセンサと並
列に容量(付加容量)を作り込むことにより、 Es=(Cs+Ca)・V/S   Cs:センサ容量
Ca:付加容量 と,このEsの露光量まで原稿を読み取ることができる
ことが可能となる.本発明ではこのため、上記したよう
な構成とすることにより、蓄積容量を増大したものであ
る。
For this reason, it is necessary to create a storage capacity that does not saturate even when reading a blank original. Therefore, in order to ensure sufficient storage capacity, a capacitor (additional capacitor) is built in parallel with the sensor as shown in Figure 6(b), so that Es=(Cs+Ca)・V/S Cs: Sensor capacitance Ca : It becomes possible to read the document up to the additional capacity and the exposure amount of Es. Therefore, in the present invention, the storage capacity is increased by using the above-mentioned configuration.

第7図は第2実施例のセンサに一定露光量(lQx−s
)で露光したとき、各容量値のセンサ出力をプロットし
た図である.この第7図より、センサ出力は容量に比例
し12pF以上で飽和する傾向にあり,容量を最適化す
ることにより高い出力が得られることがわかる. 第8図は第2実施例のセンサのセンサ電流(5V印加)
を明時(10(lQx″:550nm).暗時で測定し
た図である.この第8図より透明絶縁膜で容量を作り込
んだことにより,暗電流の増加がなく,高い光電流/暗
電流比が得られることがわかる. これらの実施例において,光電変換膜14の半導体薄膜
として,水素化アモルファスシリコン膜を用いているが
,水素化アモルファスシリコン膜は,単層または.p−
i接合.p−i−n接合であってもよい。さらにペテロ
接合として,酸素を含む.水素化アモルファスシリコン
膜と水素化アモルファスシリコン膜の2層以上の層構成
とすれば、光電流/暗電流の比が高く得られ、センサ特
性としてより良好な特性が得られる。
FIG. 7 shows a constant exposure amount (lQx-s) for the sensor of the second embodiment.
) is a diagram plotting the sensor output for each capacitance value when exposed to light. From FIG. 7, it can be seen that the sensor output is proportional to the capacitance and tends to saturate above 12 pF, and that a high output can be obtained by optimizing the capacitance. Figure 8 shows the sensor current of the sensor of the second embodiment (5V applied).
is measured in bright light (10 (lQx'': 550 nm) and in dark. From this figure, it can be seen that by creating a capacitance with a transparent insulating film, there is no increase in dark current and a high photocurrent/dark In these examples, a hydrogenated amorphous silicon film is used as the semiconductor thin film of the photoelectric conversion film 14, but the hydrogenated amorphous silicon film is a single layer or a p-
i-junction. It may be a pin junction. Furthermore, it contains oxygen as a peterojunction. If the structure has two or more layers of a hydrogenated amorphous silicon film and a hydrogenated amorphous silicon film, a high photocurrent/dark current ratio can be obtained, and better sensor characteristics can be obtained.

また、本発明において、13, 16. 22の透明絶
縁層は膜質として高抵抗、高耐圧,が要求されているが
本発明者等は成膜方法としてS i H 4ガス、CO
2ガスさらにN2ガスを用いたプラズマCVD法により
抵抗率101s〜10” Q m、耐圧8〜10Mv/
cmの高品質のSiOxNy膜が得られた.これを用い
ることで高い絶縁特性を有する容量を形成することがで
きた. 本発明において、光電変換膜の半導体薄膜は一体形であ
っても,ビット分割であってもよい。
Moreover, in the present invention, 13, 16. The transparent insulating layer No. 22 is required to have high resistance and high voltage resistance as film quality, but the inventors used SiH 4 gas, CO as a film forming method.
Resistivity 101s~10"Q m, breakdown voltage 8~10Mv/
A high-quality SiOxNy film with a thickness of 1.5 cm was obtained. By using this, we were able to form a capacitor with high insulation properties. In the present invention, the semiconductor thin film of the photoelectric conversion film may be integral or may be divided into bits.

さらに,下部および上部電極を入れ換えたものであって
もよく,上記実施例に何ら限定されるものでなく,本発
明の要旨を逸脱しない範囲で他の密着型イメージセンサ
なと種々の変更,改良などが可能であることは勿論であ
る。
Furthermore, the lower and upper electrodes may be replaced, and the present invention is not limited to the above embodiment, and various changes and improvements may be made to other contact type image sensors without departing from the gist of the present invention. Of course, the following is possible.

〔効  果〕〔effect〕

以上のような本発明によれば,センサ部を光電変換膜の
半導体薄膜、容量部を透明絶縁体により下部電極の延長
面上に形成することで一体化ができる.従って、このよ
うな容量を形成することにより蓄積読み取り方式におい
て高い信号出力が得られ、また駆動用の配線の線間容量
の影響を少くでき読み取り画像の鮮鋭度および再現性が
改善され,忠実な画像の読み取りが可能となる密着型イ
メージセンサが得られるという効果を有する.
According to the present invention as described above, the sensor part can be integrated by forming the semiconductor thin film of the photoelectric conversion film and the capacitor part by forming the transparent insulator on the extended surface of the lower electrode. Therefore, by forming such a capacitance, a high signal output can be obtained in the storage reading method, and the influence of the line capacitance of the drive wiring can be reduced, the sharpness and reproducibility of the read image can be improved, and high fidelity can be obtained. This has the effect of providing a close-contact image sensor that can read images.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る密着型イメージセンサの第1実施
例を示す断面説明図である。 第2図は本発明に係る密着型イメージセンサの第2実施
例の平面(a)および断面(b)をそれぞれ示す説明図
である。 第3図は従来の密着型イメージセンサの一例を示す断面
説明図である. 第4図は同一材料により容量形成した従来の密着型イメ
ージセンサの断面説明図である。 第5図は本発明に係る第2実施例における出カー露光量
特性図である。 第6図(a)は第2実施例における主要部を示す平面図
であり、第6図(b)は第2実施例の等価回路図である
。 第7図は本発明に係る第2実施例における容量と出力の
関係図である。 第8図は本発明に係る第2実施例における容量と光電流
、暗電流の関係図である. 1・・・ガラス基板    2・・・下部電極3・・・
光電変換瞑の半導体膜 4・・・上部透明電極 11・・・ガラス基板   12・・・下部電極13,
16.22・・・透明絶縁層 13 a ,16 a ,21 a −開孔部l4・・
・光電変換膜   15・・・上部透明電極l7・・・
上部電極    21・・・遮光層23・・・保謹層
FIG. 1 is an explanatory cross-sectional view showing a first embodiment of a contact type image sensor according to the present invention. FIG. 2 is an explanatory view showing a plane (a) and a cross section (b) of a second embodiment of a contact type image sensor according to the present invention, respectively. Figure 3 is a cross-sectional explanatory diagram showing an example of a conventional contact type image sensor. FIG. 4 is an explanatory cross-sectional view of a conventional contact type image sensor in which a capacitance is formed using the same material. FIG. 5 is an output exposure amount characteristic diagram in a second embodiment of the present invention. FIG. 6(a) is a plan view showing the main parts of the second embodiment, and FIG. 6(b) is an equivalent circuit diagram of the second embodiment. FIG. 7 is a diagram showing the relationship between capacity and output in the second embodiment of the present invention. FIG. 8 is a diagram showing the relationship between capacitance, photocurrent, and dark current in the second embodiment of the present invention. 1... Glass substrate 2... Lower electrode 3...
Semiconductor film 4 for photoelectric conversion... Upper transparent electrode 11... Glass substrate 12... Lower electrode 13,
16.22...Transparent insulating layer 13a, 16a, 21a - opening l4...
・Photoelectric conversion film 15... Upper transparent electrode l7...
Upper electrode 21... Light shielding layer 23... Protection layer

Claims (1)

【特許請求の範囲】[Claims] 1、透明絶縁基板上に半導体薄膜が下部電極および上部
透明電極で挟まれたサンドイッチ構造の電荷蓄積型をな
す密着型イメージセンサにおいて、下部電極の延長面上
に透明絶縁膜を設け、この透明絶縁膜上に上部透明電極
に接続させた上部電極を設けたことを特徴とする密着型
イメージセンサ。
1. In a contact image sensor that has a charge storage type sandwich structure in which a semiconductor thin film is sandwiched between a lower electrode and an upper transparent electrode on a transparent insulating substrate, a transparent insulating film is provided on the extended surface of the lower electrode, and the transparent insulating film is sandwiched between a lower electrode and an upper transparent electrode. A contact image sensor characterized by having an upper electrode connected to an upper transparent electrode provided on a film.
JP63201421A 1987-08-19 1988-08-11 Close contact type image sensor Pending JPH02132860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63201421A JPH02132860A (en) 1987-08-19 1988-08-11 Close contact type image sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP20597987 1987-08-19
JP62-205979 1987-08-19
JP63-180298 1988-07-21
JP63201421A JPH02132860A (en) 1987-08-19 1988-08-11 Close contact type image sensor

Publications (1)

Publication Number Publication Date
JPH02132860A true JPH02132860A (en) 1990-05-22

Family

ID=26512778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63201421A Pending JPH02132860A (en) 1987-08-19 1988-08-11 Close contact type image sensor

Country Status (1)

Country Link
JP (1) JPH02132860A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352921A (en) * 1991-03-18 1994-10-04 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and image sensor
US7280145B2 (en) 2002-07-30 2007-10-09 Olympus Optical Co., Ltd. Camera and image pick-up device unit having an optical member that is vibrated to remove dust
US7324149B2 (en) 2002-05-20 2008-01-29 Olympus Optical Co., Ltd. Camera and image pick-up device unit having an optical member that is vibrated to remove dust
US7324148B2 (en) 2002-04-26 2008-01-29 Olympus Optical Co., Ltd. Camera and image pickup device unit used therefor having a sealing structure between a dust proofing member and an image pick up device
US7339623B2 (en) 2002-05-27 2008-03-04 Olympus Optical Co., Ltd. Camera and image pickup device unit which reduce influence of dust image quality

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150879A (en) * 1980-04-23 1981-11-21 Canon Inc Photoelectric converter
JPS5866354A (en) * 1981-10-16 1983-04-20 Hitachi Ltd Photo receiving element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150879A (en) * 1980-04-23 1981-11-21 Canon Inc Photoelectric converter
JPS5866354A (en) * 1981-10-16 1983-04-20 Hitachi Ltd Photo receiving element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352921A (en) * 1991-03-18 1994-10-04 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and image sensor
US7324148B2 (en) 2002-04-26 2008-01-29 Olympus Optical Co., Ltd. Camera and image pickup device unit used therefor having a sealing structure between a dust proofing member and an image pick up device
US7589780B2 (en) 2002-04-26 2009-09-15 Olympus Optical Co., Ltd. Camera and image pick-up device unit used therefor having a sealing structure between a dust-proofing member and an image pick-up device
US7324149B2 (en) 2002-05-20 2008-01-29 Olympus Optical Co., Ltd. Camera and image pick-up device unit having an optical member that is vibrated to remove dust
US7339623B2 (en) 2002-05-27 2008-03-04 Olympus Optical Co., Ltd. Camera and image pickup device unit which reduce influence of dust image quality
US7280145B2 (en) 2002-07-30 2007-10-09 Olympus Optical Co., Ltd. Camera and image pick-up device unit having an optical member that is vibrated to remove dust
US7591598B2 (en) 2002-07-30 2009-09-22 Olympus Optical Co., Ltd. Camera having a dust-proofing member that is vibrated to remove dust, the dust-proofing member being pressed by a spring pressing member toward a sealing part that seals a space between the dust-proofing member and an image pickup-device
US7686524B2 (en) 2002-07-30 2010-03-30 Olympus Optical Co., Ltd. Image pick-up device unit having a dust-proofing member that is vibrated to remove dust, the dust-proofing member being pressed by a spring pressing member toward a sealing structure that seals an interval between the dust-proofing member and an image pick-up device

Similar Documents

Publication Publication Date Title
JPH05160379A (en) Image sensor and image reading device
US4943839A (en) Contact type image sensor
JPH02132860A (en) Close contact type image sensor
US4567374A (en) Photoelectric converting device with a plurality of divided electrodes
JPS63269567A (en) Solid-state image sensing device
JPS628951B2 (en)
JPS63128748A (en) Contact-type image sensor
JP3018669B2 (en) Semiconductor sensor
JPH04255269A (en) Photodetective device
JPS6211792B2 (en)
JPS63226061A (en) Color image sensor
JPS6317554A (en) Photoconductive device
JPS637473B2 (en)
JP2501107B2 (en) Photoelectric conversion device
JPH021865Y2 (en)
JPH02284474A (en) Contact type image sensor
JPH021866Y2 (en)
JPS60263457A (en) Photoelectric conversion element array for hybrid integrated photosenser
JPH02222172A (en) Contact type image sensor
JPH04250664A (en) Light sensor and production method
JPS6180854A (en) Image sensor
JPS58199561A (en) Thin film photodetector
JP2573342B2 (en) Light receiving element
JPS6214708Y2 (en)
JPS58162055A (en) Thin film photoelectric converter