JPH02132854A - Emitter-coupled logic circuit - Google Patents

Emitter-coupled logic circuit

Info

Publication number
JPH02132854A
JPH02132854A JP63285913A JP28591388A JPH02132854A JP H02132854 A JPH02132854 A JP H02132854A JP 63285913 A JP63285913 A JP 63285913A JP 28591388 A JP28591388 A JP 28591388A JP H02132854 A JPH02132854 A JP H02132854A
Authority
JP
Japan
Prior art keywords
semiconductor layer
conductivity type
layer
wiring
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63285913A
Other languages
Japanese (ja)
Inventor
Taichi Saito
斎藤 太一
Akio Kiso
木曽 昭男
Mamoru Kitasuji
北筋 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63285913A priority Critical patent/JPH02132854A/en
Publication of JPH02132854A publication Critical patent/JPH02132854A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve an integration degree and to contrive the improvement of a switching rate in a wiring region by a method wherein an element isolation region is covered with a thick insulating film and an electrostatic capacity is formed under the element isolation region. CONSTITUTION:In a wiring region, an opposite conductivity type semiconductor layer 3 isolated electrically from other regions is formed in a one conductivity type semiconductor layer 1 constituting one side of power supplies and a thick insulating film 6 is formed on the layer 3. The layer 3 penetrates the thick film 6, is connected to a reference voltage circuit and a reverse bias is applied between the layers 1 and 3. In such a way, an electrostatic capacity is formed under an element isolation region, which is covered with the thick layer 6 and is not used normally. Therefore, even if a wiring is formed on the film 6, a parasitic capacity is not generated between the wiring and the electrode on one side of electrodes, between which the electrostatic capacity is formed. Thereby, the improvement of a switching rate and an integration degree can be contrived simultaneously.

Description

【発明の詳細な説明】 〔概要〕 ゲートアレイ等として使用されるエミッタカップルドロ
ジック回路(以下ECL回路と云う。)の改良に関し、 集積度向上とスインチング速度向上とを同時に満足する
ECL回路を11供することを目的とし、電源の一方の
電極をなす一導電型の半導体層上に、反対導電型の半導
体層が形成され、この反対導電型の半導体層は他の領域
から電気的に分離されてなり、前記の反対導電型の半導
体層上に厚い絶縁膜が形成され、前記の反対R電型の半
導体層は前記の厚い絶縁膜を貫通して基準電圧回路に接
続され、前記の一導電型の半導体層と前記の反対導電型
の半導体層との間には逆バイアスが印加されるように構
成される。
[Detailed Description of the Invention] [Summary] Regarding the improvement of emitter-coupled logic circuits (hereinafter referred to as ECL circuits) used as gate arrays, etc., we have developed 11 ECL circuits that simultaneously satisfy increased integration and improved switching speed. A semiconductor layer of an opposite conductivity type is formed on a semiconductor layer of one conductivity type that forms one electrode of a power supply, and this semiconductor layer of an opposite conductivity type is electrically isolated from other regions. A thick insulating film is formed on the semiconductor layer of the opposite conductivity type, and the semiconductor layer of the opposite R conductivity type is connected to the reference voltage circuit through the thick insulating film. A reverse bias is applied between the semiconductor layer and the semiconductor layer of the opposite conductivity type.

〔産業上の利用分野〕[Industrial application field]

本発明は、ゲートアレイ等として使用されるエミッタカ
ップルドロジック回路(以下、ECL回路と呼ぶ)の改
良、特に、ゲートアレイ等として使用されるECL回路
の集積度の向上とスイッチング速度の向上とを同時に実
現する改良に関する.?従来の技術〕 第4図参照 第4図は、ECL回路の基本形の1例の回路図である. 二つのトランジスタT.−T.のエミッタは相互に接続
されて負の電B■■に接続され、コレクタはそれぞれ抵
抗R1 ・R8を介して接地電位VCeに接続され、ト
ランジスタT1のベースは信号入力回路INに接続され
、トランジスタT.のベースは基準電圧回路Vlに接続
されている.トランジスタT,の入力回路INに入力さ
れる信号が基準電圧回路■8の電圧より低い場合には、
トランジスタT,は導通せず、トランジスタT3のみが
導通するので、抵抗R8に発生する出力信号は”O”と
なり、抵抗R1に発生する出力信号は″1”となる.ト
ランジスタT,の入力回路INに入力される信号が基準
電圧回路V,の電圧より高い場合には、逆にトランジス
タT,は導通し、トランジスタTtは導通しないので、
抵抗R!に発生する出力信号は“1′となり、抵抗R,
に発生する出力信号は“0”となり、出力信号が反転す
る回路構成となっている. 信号入力回路INに入力される信号が変化すると、トラ
ンジスタT2に流れるベース電流が変動し、その影響を
受けて基準電圧回路■脆の電圧が変動し、スイッチング
速度が遅くなる.そこで、基準電圧回路vlの電圧変動
を抑制するために、it源VCCと基準電圧回路v宵と
の間、または、基準電圧回路■1と電源■.との間に静
電容1cを付加するようになった. 第5図参照 第5図は、ECLゲートアレイの一部$■域を示し、1
lはセル領域であり、12はセル領域間を接続する配線
頷域である.静電容量CをECLゲートアレイのセル領
域11の中に形成すると、セルサイズが大きくなって集
積度が低下する.静電容1cを配線領域12に形成すれ
ば集積度を低下させなくてすむ. 第6図参照 第6図は、配線領域に静電容ICを形成した場合の断面
図である.例えば、p型シリコン基仮1にn型不純物を
イオン注入してn型埋没層3を形成し、その上にCVD
法等を使用してシリコン層4を形成し、静電容量形成領
域を除いて厚い二酸化シリコン絶緑膜6を形成し、静電
容量形成領域にイオン注入時の損傷を防ぐための薄い二
酸化シリコン絶縁膜13を形成し、p型不純物をイオン
注入してp型拡敗層14を形成し、薄い二酸化シリコン
絶縁膜13の一部頷域に開口を形成して、そこに引き出
し@.極9を形成する.引き出し電極9を第4図に示す
基準電圧回路v5に接続し、n型埋没N3を電源■。に
接続すれば、p型拡散N14とn型埋没113との間に
逆バイアスが印加されて静電容量が形成される,ECL
ゲートアレイの各セル間を接続する配線は、薄い二酸化
シリコンvP!.縁膜13上に形成される. 〔発明が解決しようとする!i題〕 集積度を向上するために静電容量Cを配線領域12に形
成すると、p型拡散層14を形成するために形成された
薄い絶縁膜13上に配線を形成しなければならない.そ
のため、配線と静電容量Cの一方の電極であるp型拡散
J!il4との間に薄い絶縁膜13を介して寄生容量が
発生してスイッチング速度が低下する.一方、スイッチ
ング速度の低下を避けるために、静電容1cをセル頷域
11に形成すれば、集積度が低下する.すなわち、集積
度向上とスイッチング速度向上とは二律背反の関係にあ
り、従来技術においては、両方を同時に満足することは
不可能であった。
The present invention aims to improve emitter-coupled logic circuits (hereinafter referred to as ECL circuits) used as gate arrays, and in particular to improve the degree of integration and switching speed of ECL circuits used as gate arrays. Concerning improvements realized at the same time. ? Prior Art] See Figure 4 Figure 4 is a circuit diagram of an example of the basic form of an ECL circuit. Two transistors T. -T. The emitters of are connected to each other and connected to the negative voltage B■■, the collectors are connected to the ground potential VCe through resistors R1 and R8, respectively, the base of the transistor T1 is connected to the signal input circuit IN, and the base of the transistor T1 is connected to the signal input circuit IN. .. The base of is connected to the reference voltage circuit Vl. If the signal input to the input circuit IN of the transistor T is lower than the voltage of the reference voltage circuit ■8,
Since the transistor T is not conductive and only the transistor T3 is conductive, the output signal generated at the resistor R8 becomes "O" and the output signal generated at the resistor R1 becomes "1". When the signal input to the input circuit IN of the transistor T is higher than the voltage of the reference voltage circuit V, the transistor T is conductive and the transistor Tt is not conductive.
Resistance R! The output signal generated at is “1”, and the resistance R,
The output signal generated in this case is "0", and the circuit configuration is such that the output signal is inverted. When the signal input to the signal input circuit IN changes, the base current flowing through the transistor T2 changes, which causes the voltage of the reference voltage circuit to change and the switching speed to slow down. Therefore, in order to suppress the voltage fluctuation of the reference voltage circuit vl, it is necessary to connect the voltage between the it source VCC and the reference voltage circuit vyoi, or between the reference voltage circuit ■1 and the power source ■. A capacitance 1c is now added between. See Fig. 5 Fig. 5 shows a part of the ECL gate array in the $■ area.
1 is a cell area, and 12 is a wiring nod area connecting between cell areas. If the capacitance C is formed in the cell region 11 of the ECL gate array, the cell size will increase and the degree of integration will decrease. If the capacitance 1c is formed in the wiring region 12, there is no need to reduce the degree of integration. See FIG. 6 FIG. 6 is a cross-sectional view when a capacitive IC is formed in the wiring area. For example, an n-type impurity is ion-implanted into a p-type silicon base 1 to form an n-type buried layer 3, and then CVD is applied on top of the n-type buried layer 3.
A silicon layer 4 is formed using a method such as a method, and a thick silicon dioxide film 6 is formed except for the capacitance formation region, and a thin silicon dioxide film 6 is formed in the capacitance formation region to prevent damage during ion implantation. An insulating film 13 is formed, a p-type diffusion layer 14 is formed by ion-implanting p-type impurities, and an opening is formed in a partial region of the thin silicon dioxide insulating film 13, and an opening is drawn therein. Form pole 9. The extraction electrode 9 is connected to the reference voltage circuit v5 shown in FIG. 4, and the n-type buried N3 is connected to the power supply ■. When connected to the ECL, a reverse bias is applied between the p-type diffusion N14 and the n-type buried 113, forming a capacitance.
The wiring connecting each cell of the gate array is made of thin silicon dioxide vP! .. It is formed on the lamina 13. [Invention tries to solve it! Problem i] If the capacitance C is formed in the wiring region 12 in order to improve the degree of integration, the wiring must be formed on the thin insulating film 13 formed to form the p-type diffusion layer 14. Therefore, p-type diffusion J! which is one electrode of wiring and capacitance C! A parasitic capacitance is generated between the il4 and the thin insulating film 13, reducing the switching speed. On the other hand, if the capacitor 1c is formed in the cell nozzle region 11 in order to avoid a decrease in switching speed, the degree of integration will decrease. In other words, there is an antinomic relationship between improving the degree of integration and improving switching speed, and in the prior art, it has been impossible to satisfy both at the same time.

本発明の目的は、この欠点を解消することにあり、集積
度向上とスイッチング速度向上とを同時に満足するEC
L回路を提供することにある.〔課題を解決するための
手段〕 上記の目的は、電源の一方のiiiをなす一導電型の半
導体層(1)上に、反対導電型の半導体層(3)が形成
され、この反対導電型の半導体層(3)は他の領域から
電気的に分離されており、前記の反対導電型の半導体層
(3)上に厚い絶縁膜(6)が形成され、前記の反対導
電型の半導体層(3)は前記の厚い絶縁膜(6)を貫通
して基準電圧回路(Vl ’)に接続され、前記の一導
電型の半導体層(1)と前記の反対導電型の半導体層(
3)との間には逆バイアスが印加されているエミッタカ
ップルドロジック回路によって達成される. 〔作用〕 本発明に係るECL回路においては、厚いLOcoss
縁膜6に覆われ、通常は使用されない素子分離領域の下
に静電容1cを形成し、厚いLOcos1!縁膜6上に
配線が形成されても、配線と静電容量Cを構成する一方
の電極との間に寄生容量が発生しないようにして、スイ
ッチング速度の向上と集積度の向上とを同時に満足する
ようにした. 〔実施例〕 以下、図面を参照しつ一、本発明の一実施例に係るEC
L回路、特に、本発明の要旨であるECL回路に接続さ
れる静電容量について説明する.第1a図参照 第1a図は、ECL回路の基本形の1例の回路図である
.トランジスタT1 ・T2のエミッタは相互に接続さ
れ、定電流源l5を介して負の電源v0に接続され、コ
レクタはそれぞれ抵抗R+R2を介して接地電源VCC
に接続され、トランジスタT.のベースは信号入力回路
INに接続され、トランジスタT,のベースは基準電圧
回路vllに接続される.i!iv。と基準電圧回路■
7との間、または、基準電圧回路V,と電flV t 
tとの間に、本発明の要旨に係る静電容量Cを接続する
.入力信号の印加にともなって、トランジスタT3のベ
ース電圧が変動すること防止するためである.静電容1
cを第5図に示すECLゲートアレイの配線領域12に
形成する方法について以下に説明する. 第2図参照 例えば、p型シリコン基板1上に静電容量形成領域に開
口を有するレジスト膜2を形成し、ヒ素等のn型不純物
をイオン注入してn型埋没N3を形成する. 第3図参照 レジスト膜2を除去し、CVD法等を使用してn一型シ
リコン層4を形成し、その上に窒化シリコン膜5を形成
して、これをパターニングし、分離層形成頷域と静電容
量引き出し電極形成領域とに窒化シリコン膜5を残留し
、酸化して厚いLOCOS絶縁膜6を形成する。
The purpose of the present invention is to eliminate this drawback, and to provide an EC that satisfies both the degree of integration and the improvement of switching speed.
The objective is to provide an L circuit. [Means for Solving the Problems] The above object is such that a semiconductor layer (3) of an opposite conductivity type is formed on a semiconductor layer (1) of one conductivity type forming one III of the power supply, and The semiconductor layer (3) is electrically isolated from other regions, and a thick insulating film (6) is formed on the semiconductor layer (3) of the opposite conductivity type. (3) is connected to the reference voltage circuit (Vl') through the thick insulating film (6), and is connected to the semiconductor layer (1) of one conductivity type and the semiconductor layer (1) of the opposite conductivity type.
3) is achieved by an emitter-coupled logic circuit to which a reverse bias is applied. [Operation] In the ECL circuit according to the present invention, the thick LOcoss
A capacitance 1c is formed under the element isolation region that is covered with the edge film 6 and is not normally used, and a thick LOcos1! Even if the wiring is formed on the edge film 6, parasitic capacitance is not generated between the wiring and one electrode constituting the capacitance C, thereby simultaneously improving the switching speed and the degree of integration. I decided to do so. [Example] Hereinafter, with reference to the drawings, an EC according to an example of the present invention will be explained.
The capacitance connected to the L circuit, particularly the ECL circuit which is the gist of the present invention, will be explained. See Figure 1a Figure 1a is a circuit diagram of an example of the basic form of an ECL circuit. The emitters of transistors T1 and T2 are connected to each other and connected to the negative power supply v0 through a constant current source l5, and the collectors are connected to the ground power supply VCC through respective resistors R+R2.
and the transistor T. The base of the transistor T, is connected to the signal input circuit IN, and the base of the transistor T, is connected to the reference voltage circuit vll. i! iv. and reference voltage circuit■
7 or between the reference voltage circuit V, and the voltage flV t
A capacitance C according to the gist of the present invention is connected between t and t. This is to prevent the base voltage of the transistor T3 from varying due to the application of the input signal. Capacitance 1
A method for forming the ECL gate array wiring region 12 shown in FIG. 5 will be described below. Refer to FIG. 2. For example, a resist film 2 having an opening in a capacitance forming region is formed on a p-type silicon substrate 1, and an n-type impurity such as arsenic is ion-implanted to form an n-type buried N3. Refer to FIG. 3.Resist film 2 is removed, n-type silicon layer 4 is formed using CVD method, etc., silicon nitride film 5 is formed thereon, and this is patterned to form a separation layer. The silicon nitride film 5 remains in the capacitance extraction electrode formation region and is oxidized to form a thick LOCOS insulating film 6.

第1b図参照 分離層形成領域上の窒化シリコン膜5を除去し、ボロン
等のp型不純物をイオン注入して分離層7を形成する.
引き出し電橿形成領域上の窒化シリコン膜5を除去し、
分離N7上にレジスト膜を形成し、ヒ素等のn型不純物
をイオン注入して電極コンタクト領域8を形成する.レ
ジスト膜を除去し、全面にアルミニウム層を形成してこ
れをパターニングし、電極コンタクト領域8に接続して
引き出し電極9を形成する.引き出し1t極9を第1a
図の基準電圧回路V,に接続し、p型シリコン基板lを
一方のif B V。に接続すれば、n型埋没N3とp
型シリコン基板1との間に逆バイアスが印加され、静電
容量が形成される.セル間を接続する配線は厚い地縁膜
6上に形成される.なお、n型シリコン基板にp型埋没
層を形成する場合には、n型シリコン基板をtBvcc
に接続し、p型埋没層を基準電圧回路Vllに接続すれ
ばよい。
Referring to FIG. 1b, the silicon nitride film 5 on the isolation layer forming region is removed, and a p-type impurity such as boron is ion-implanted to form an isolation layer 7.
The silicon nitride film 5 on the lead-out electrode formation region is removed,
A resist film is formed on the isolation N7, and an n-type impurity such as arsenic is ion-implanted to form an electrode contact region 8. The resist film is removed, an aluminum layer is formed on the entire surface, and this is patterned to connect to the electrode contact region 8 to form an extraction electrode 9. The drawer 1t pole 9 is connected to the 1st a
The p-type silicon substrate l is connected to the reference voltage circuit V shown in the figure, and the p-type silicon substrate l is connected to one of the if B V. If connected to n-type buried N3 and p
A reverse bias is applied between the mold silicon substrate 1 and a capacitance is formed. The wiring connecting the cells is formed on the thick edge film 6. Note that when forming a p-type buried layer on an n-type silicon substrate, the n-type silicon substrate is
The p-type buried layer may be connected to the reference voltage circuit Vll.

n型埋没N3とn一型シリコンN4とを、分諦層7の代
わりに絶縁溝を使用して他の領域から電気的に分離する
場合について以下に説明する.第1c図参照 前記の方法と同様に、例えば、p型のシリコン基板1に
n型埋没層3を形成し、その上にn一型シリコン114
を形成した後、静電容量形成領域を囲んでn型埋没層3
とn一型シリコンN4とに分離溝を形成し、引き出し電
極9形成頷域に窒化シリコン膜を形成し、酸化して厚い
二酸化シリコン絶縁膜6と絶縁溝10とを形成する。次
いで、窒化シリコン膜を除去し、ヒ素等のn型不純物を
イオン注入して電極コンタクト領域8を形成し、さらに
、引き出し電極9を形成する. 〔発明の効果〕 以上説明せるとおり、本発明に係るECL回路において
は、セル形成領域外において、電源の一方をなす一導電
型の半導体層上に反対導電型の半導体層が形成され、こ
の反対導電型の半導体層は他の頷域から電気的に分離さ
れ、その上には厚い絶縁膜が形成され、この厚い絶縁膜
を貫通して基t41電圧回路に接続されており、一導電
型の半導体層と反対導電型の半導体層との間には一方の
TL’lHと基準電圧回路とかみ印加される逆バイアス
によって静電容量が形成されるので、静電容量をセル領
域に形成する場合に比べて集積度が向上する。
The case where the n-type buried N3 and the n-type silicon N4 are electrically isolated from other regions using an insulating trench instead of the isolation layer 7 will be described below. Refer to FIG. 1c. Similarly to the above method, for example, an n-type buried layer 3 is formed on a p-type silicon substrate 1, and an n-type silicon layer 114 is formed on the n-type buried layer 3.
After forming, an n-type buried layer 3 is formed surrounding the capacitance formation region.
A separation trench is formed between the silicon oxide film and the n-type silicon N4, and a silicon nitride film is formed in the region where the extraction electrode 9 is formed, and is oxidized to form a thick silicon dioxide insulating film 6 and an insulating trench 10. Next, the silicon nitride film is removed, and an n-type impurity such as arsenic is ion-implanted to form an electrode contact region 8, and further, an extraction electrode 9 is formed. [Effects of the Invention] As explained above, in the ECL circuit according to the present invention, outside the cell formation region, a semiconductor layer of an opposite conductivity type is formed on a semiconductor layer of one conductivity type that forms one side of the power supply, and The semiconductor layer of one conductivity type is electrically isolated from other regions, a thick insulating film is formed on it, and the semiconductor layer of one conductivity type is connected to the base T41 voltage circuit through this thick insulating film. A capacitance is formed between a semiconductor layer and a semiconductor layer of the opposite conductivity type by a reverse bias applied to one TL'lH and a reference voltage circuit, so when forming a capacitance in a cell region, The degree of integration is improved compared to .

また、ECLゲートアレイのセル相互間を接続する配線
は厚い絶縁膜上に形成されるので、配線と静電容量の一
方の電極を構成する反対導電型の半導体層との間に寄生
容量が形成されることがないので、スイッチング速度が
向上する。
In addition, since the wiring that connects the cells of the ECL gate array is formed on a thick insulating film, parasitic capacitance is formed between the wiring and the semiconductor layer of the opposite conductivity type that constitutes one electrode of the capacitance. The switching speed is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図は、本発明の一実施例に係るECL回路図であ
る。 第1b図、第1c図は、本発明の実施例に係るECL回
路に接続される静電容量の断面図である。 第2図、第3図は、静電容量の製造工程圓である。 第4図は、ECL基本形の回路閲である。 第5図は、ECLゲートアレイのセル令頁域と配線領域
との配列を示す図である。 第6図は、従来技術に係るECL回路に接続される静電
容量の断面図である。 一導電型半導体層、 レジスト層、 反対導電型半導体層(埋没層)、 反対導電型半導体層、 窒化シリコン層、 6 ・ ・ 7 ・ ・ 8 ・ ・ 9 ・ 1l  ・ 12・ 13・ ・ 14・ ・ 15・ ・ T1 、 ■o、 ■3 ・ R,、 C ・ ・ ・厚い絶縁膜、 ・分離層、 ・電掻コンタクト領域、 ・引き出し電極、 ・絶縁溝、 ・セル領域、 ・配線領域、 ・薄い絶縁嗅、 ・p型拡fPI.層、 ・定電流源、 T2 ・・・トランジスタ、 VEt・・・電源、 ・・基準電圧回路、 R2 ・・・抵抗、 ・静電容蟹. V冫E 本発明 第10図 第2図
FIG. 1a is an ECL circuit diagram according to an embodiment of the present invention. FIGS. 1b and 1c are cross-sectional views of capacitors connected to an ECL circuit according to an embodiment of the present invention. FIG. 2 and FIG. 3 show the capacitor manufacturing process circle. FIG. 4 is a circuit diagram of the ECL basic form. FIG. 5 is a diagram showing the arrangement of the cell size area and wiring area of the ECL gate array. FIG. 6 is a cross-sectional view of a capacitor connected to an ECL circuit according to the prior art. One conductivity type semiconductor layer, resist layer, opposite conductivity type semiconductor layer (buried layer), opposite conductivity type semiconductor layer, silicon nitride layer, 6 ・ ・ 7 ・ 8 ・ 9 ・ 1l ・ 12 ・ 13 ・ 14 ・15. ・ T1 , ■o, ■3 ・ R,, C ・ ・ ・Thick insulating film, ・Separation layer, ・Electric scraping contact area, ・Extraction electrode, ・Insulating groove, ・Cell area, ・Wiring area, ・Thin Insulated olfactory, p-type expanded fPI. Layer, - constant current source, T2...transistor, VEt...power supply,...reference voltage circuit, R2...resistance, -electrostatic capacitance crab. V冫E Present invention Figure 10 Figure 2

Claims (1)

【特許請求の範囲】 電源の一方の電極をなす一導電型の半導体層(1)上に
、反対導電型の半導体層(3)が形成され、 該反対導電型の半導体層(3)は他の領域から電気的に
分離されてなり、 前記反対導電型の半導体層(3)上に厚い絶縁膜(6)
が形成され、 前記反対導電型の半導体層(3)は前記厚い絶縁膜(6
)を貫通して基準電圧回路(V_R)に接続され、 前記一導電型の半導体層(1)と前記反対導電型の半導
体層(3)との間には逆バイアスが印加されてなる ことを特徴とするエミッタカップルドロジック回路。
[Claims] A semiconductor layer (3) of an opposite conductivity type is formed on a semiconductor layer (1) of one conductivity type forming one electrode of a power source, and the semiconductor layer (3) of the opposite conductivity type is a semiconductor layer (3) of another conductivity type. a thick insulating film (6) on the semiconductor layer (3) of the opposite conductivity type;
is formed, and the opposite conductivity type semiconductor layer (3) is formed as the thick insulating film (6).
) and connected to the reference voltage circuit (V_R), and a reverse bias is applied between the semiconductor layer (1) of one conductivity type and the semiconductor layer (3) of the opposite conductivity type. Features an emitter-coupled logic circuit.
JP63285913A 1988-11-14 1988-11-14 Emitter-coupled logic circuit Pending JPH02132854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63285913A JPH02132854A (en) 1988-11-14 1988-11-14 Emitter-coupled logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63285913A JPH02132854A (en) 1988-11-14 1988-11-14 Emitter-coupled logic circuit

Publications (1)

Publication Number Publication Date
JPH02132854A true JPH02132854A (en) 1990-05-22

Family

ID=17697637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63285913A Pending JPH02132854A (en) 1988-11-14 1988-11-14 Emitter-coupled logic circuit

Country Status (1)

Country Link
JP (1) JPH02132854A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962205A (en) * 1988-04-14 1990-10-09 Nippon Shokubai Kagaku Kogyo, Co., Ltd. Method for transportation and storage of N-phenyl maleimide in molten form
US5128484A (en) * 1987-12-28 1992-07-07 Sokubai Kagaku Kogyo, Co., Ltd. Acrylonitrile maleimides solution composition of improved shelf life and method for production thereof
US5149827A (en) * 1990-01-10 1992-09-22 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for handling maleimides

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128484A (en) * 1987-12-28 1992-07-07 Sokubai Kagaku Kogyo, Co., Ltd. Acrylonitrile maleimides solution composition of improved shelf life and method for production thereof
US4962205A (en) * 1988-04-14 1990-10-09 Nippon Shokubai Kagaku Kogyo, Co., Ltd. Method for transportation and storage of N-phenyl maleimide in molten form
US5149827A (en) * 1990-01-10 1992-09-22 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for handling maleimides

Similar Documents

Publication Publication Date Title
US6084255A (en) Gate array semiconductor device
US3609479A (en) Semiconductor integrated circuit having mis and bipolar transistor elements
JP2950558B2 (en) Semiconductor device
JP2703970B2 (en) MOS type semiconductor device
US5872037A (en) Method for manufacturing a vertical mosfet including a back gate electrode
US4425516A (en) Buffer circuit and integrated semiconductor circuit structure formed of bipolar and CMOS transistor elements
US5376816A (en) Bi-cmos integrated circuit device having buried region use in common for bipolar and mos transistors
US5808344A (en) Single-transistor logic and CMOS inverters
EP0243603B1 (en) Binary logic circuit
US5095347A (en) Plural transistor silicon on insulator structure with shared electrodes
JP2001352077A (en) Soi field effect transistor
US4547791A (en) CMOS-Bipolar Darlington device
EP0431290B1 (en) MOS switching circuit having gate enhanced lateral bipolar transistor
JPS63182848A (en) Integrated circuit
JP2710113B2 (en) Integrated circuits using complementary circuit technology
US4893164A (en) Complementary semiconductor device having high switching speed and latchup-free capability
GB1563863A (en) Igfet inverters and methods of fabrication thereof
US5583363A (en) Inverter gate circuit of a bi-CMOS structure having common layers between fets and bipolar transistors
JPH02132854A (en) Emitter-coupled logic circuit
JP2001028423A (en) Semiconductor integrated circuit device
JPS635552A (en) Bipolar/mos device
JP2714996B2 (en) Semiconductor integrated circuit device
JP2609746B2 (en) Semiconductor device
JPS61280650A (en) Input circuit
JPS6328500B2 (en)