JPH02120259A - Sealed and bonded glass and production thereof - Google Patents

Sealed and bonded glass and production thereof

Info

Publication number
JPH02120259A
JPH02120259A JP27203988A JP27203988A JPH02120259A JP H02120259 A JPH02120259 A JP H02120259A JP 27203988 A JP27203988 A JP 27203988A JP 27203988 A JP27203988 A JP 27203988A JP H02120259 A JPH02120259 A JP H02120259A
Authority
JP
Japan
Prior art keywords
glass
light
absorbing thin
bonded
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27203988A
Other languages
Japanese (ja)
Inventor
Akitoshi Yoshinaga
吉永 彰俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27203988A priority Critical patent/JPH02120259A/en
Publication of JPH02120259A publication Critical patent/JPH02120259A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

PURPOSE:To obtain a sealed and bonded glass having improved reliability of the bonded part by closely contacting a pair of transparent glass materials interposing a light-absorbing thin member composed of a transparent colored glass and melting the light-absorbing thin member with laser light to bond both transparent glass materials. CONSTITUTION:A NESA glass 12 is placed on a light-absorbing colored thin film 13 formed on a bonding face of a substrate glass 11 beforehand and the positions of both glass materials 11 and 12 are aligned. A YAG laser beam 14 is radiated e.g., against the glass 12 from above while moving in the direction of the arrow. The laser light transmitting through the glass 12 is absorbed in the thin film 33, which is melted by the heat generated by the absorption of light. The contacting faces of the glass materials 11, 12 contacting with the thin film 13 are also melted by the heat of molten thin film 13. Accordingly, the glass 11 can be stably bonded to the glass 12 without causing the displacement between the glass plates. The objective sealed and bonded glass is produced by the above process.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、たとえば第1.第2のガラス透明体を光吸
収薄材を介して密着させ、前記光吸収薄材をレーザ光の
照射によって溶解させることにより、前記第1.第2の
ガラス透明体を接合してなるガラスの封止接合体および
その製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is directed to, for example, the first aspect. By bringing the second transparent glass body into close contact with the light-absorbing thin material via the light-absorbing thin material and melting the light-absorbing thin material by irradiating the laser beam, The present invention relates to a glass sealed bonded body formed by bonding a second glass transparent body and a manufacturing method thereof.

(従来の技術) 近年、封止のためにガラスを接合する場合、あらかじめ
ガラスの接合部に金属薄膜からなる光吸収薄膜を形成し
ておき、この光吸収薄膜をレーザ光の照射によって溶解
させることにより接合する方法が提案されている。この
方法によれば、従来の有機系の接着剤を用いて接着する
方法において、接青時に位置ずれが生じ易い、接着部の
輪郭形状を精密に制御できないといった欠点を補うこと
ができる。
(Prior art) In recent years, when glass is bonded for sealing, a light-absorbing thin film made of a thin metal film is formed in advance at the bonded portion of the glass, and this light-absorbing thin film is melted by irradiation with laser light. A method of joining has been proposed. According to this method, it is possible to compensate for the drawbacks of conventional bonding methods using organic adhesives, such as the tendency for positional deviation to occur during engraving and the inability to precisely control the contour shape of the bonded portion.

しかしながら、上記した光吸収薄膜をレーザ光によって
溶解することにより接合する方法には、この方法を適用
可能なガラスと金属薄膜との接合用材料の組合わせに制
限があり、また接合部の信頼性が悪いという欠点があっ
た。すなわち、一般に、ガラスと金属との熱膨張係数が
異なるため、接合を行うためには、熱膨張係数の近い材
料を選択する必要があり、ガラスと金属薄膜との接合用
材料の組合わせがごく限られたものとなってしまう。ま
た、ガラスと金属との熱膨張特性は本質的に異なり、た
とえばガラスにはガラス転移点があるのに対し、金属に
は存在しない。このように、上記の方法には、ガラスと
金属とて熱膨張係数およびその特性が異なるため、ある
条件のもとて接合がなされた場合であっても、温度変化
などの環境の変化、あるいは時間の経過により接合部が
破地され易いといった欠点があった。
However, the method of bonding the light-absorbing thin film described above by melting it with laser light has limitations on the combinations of bonding materials between glass and thin metal films to which this method can be applied, and the reliability of the bonded portion is limited. The problem was that it was bad. In other words, since glass and metal generally have different coefficients of thermal expansion, it is necessary to select materials with similar coefficients of thermal expansion for bonding, and there are very few combinations of materials for bonding glass and metal thin films. It becomes limited. Additionally, the thermal expansion properties of glass and metal are essentially different; for example, glass has a glass transition point, whereas metal does not. In this way, the above method has different thermal expansion coefficients and characteristics for glass and metal, so even if bonding is performed under certain conditions, environmental changes such as temperature changes, or There was a drawback that the joints were likely to break down over time.

(発明が解決しようとする課題) この発明は、金属薄膜にレーザ光を照射し、この金属薄
膜の溶解によってガラスを接合する従来の方法には、接
合用材料の組合わせに制限があり、また接合部の信頼性
が悪いものであったという欠点を除去すべくなされたも
ので、接合用材料に制限されることなく、しかも接合部
の信頼性を向上することができるガラスの封止接合体お
よびその製造方法を提供することを目的とする。
(Problems to be Solved by the Invention) This invention solves the problem that the conventional method of bonding glass by irradiating a metal thin film with a laser beam and melting the metal thin film has limitations on the combination of bonding materials. This glass sealing joint was created to eliminate the drawback that the reliability of the joint was poor, and it is not limited by the joining material and can improve the reliability of the joint. The purpose is to provide a method for producing the same.

(課題を解決するための手段) この発明は、第1.第2のガラス透明体を光吸収薄材を
介して密着させ、前記光吸収薄材をレーザ光の照射によ
って溶解させることにより、前記第1.第2のガラス透
明体を接合してなるガラスの封止接合体において、前記
光吸収薄材として青色されたガラス透明体を用いた構成
とされている。
(Means for Solving the Problems) This invention has the following features: 1. By bringing the second transparent glass body into close contact with the light-absorbing thin material via the light-absorbing thin material and melting the light-absorbing thin material by irradiating the laser beam, In the glass sealing assembly formed by joining the second transparent glass body, a blue-tinted glass transparent body is used as the light-absorbing thin material.

(作用) この発明は、光吸収薄材として着色されたガラス透明体
を用いることにより、前記光吸収薄材の光吸収係数を増
大させるとともに、第1.第2のガラス透明体と光吸収
薄材との熱膨張特性をほぼ等しくするようにしたもので
ある。
(Function) This invention increases the light absorption coefficient of the light-absorbing thin material by using a colored glass transparent body as the light-absorbing thin material. The second glass transparent body and the light-absorbing thin material are made to have approximately the same thermal expansion characteristics.

(実施例) 以下、この発明の一実施例について図面を参照して説明
する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、この発明のガラスの封止接合体を示すもので
、たとえば液晶、EL(Electr。
FIG. 1 shows a glass sealing assembly of the present invention, such as liquid crystal, EL (Electr).

Lum1nescence)、ECD (Electr
ochromic  Display)などのデイスプ
レィ素子の基板ガラス11とネサガラス12とを全面に
わたって気密に接合する場合を例に示すものである。な
お、(a)図は上面図、(b)図は側面図である。
Luminescence), ECD (Electr
This example shows a case where a substrate glass 11 and a Nesa glass 12 of a display element such as an ochromic display are hermetically bonded over the entire surface. Note that (a) is a top view, and (b) is a side view.

上記基板ガラス11は通常のフロートガラスであり、基
板ガラス11の接合面上には、あらがしめ光吸収薄材と
しての光吸収薄膜13がスパッタ法によって付若される
。また、上記ネサガラス12も通常のフロートガラスで
ある。
The substrate glass 11 is a normal float glass, and a light-absorbing thin film 13 as a roughening light-absorbing thin material is deposited on the bonding surface of the substrate glass 11 by sputtering. Further, the Nesa glass 12 is also a normal float glass.

上記光吸収薄膜13としては、たとえばフロートガラス
に鉄(Fe)イオンを1重量パーセント添加(ドープ)
したガラスがターゲツト材となる。
As the light-absorbing thin film 13, for example, float glass is doped with 1% by weight of iron (Fe) ions.
The glass becomes the target material.

この場合、上記光吸収薄膜13は、鉄イオン特有の色に
着色され、光の吸収係数が増大するようになる。
In this case, the light-absorbing thin film 13 is colored in a color unique to iron ions, and the light absorption coefficient increases.

第2図は、フロートガラスに1重−パーセントの遷移金
属イオンをドープした際の光の吸収特性を示すものであ
る。この特性図からも明らかなように、鉄以外の遷移金
属イオンであっても、フロートガラスにたとえばマンガ
ン(Mn)、コバルト(co)、クロム(Cr)、ニッ
ケル(Ni)、銅(Cu)などの遷移金属イオンをドー
プすれば、フロートガラスはそれぞれの金属イオン特有
の色に青色されるため、いずれの場合にも光の吸収係数
を増大させることができる。
FIG. 2 shows the light absorption characteristics when float glass is doped with 1% by weight of transition metal ions. As is clear from this characteristic diagram, even transition metal ions other than iron can be used in float glass, such as manganese (Mn), cobalt (co), chromium (Cr), nickel (Ni), copper (Cu), etc. If the float glass is doped with transition metal ions, the float glass will be blued to a color specific to each metal ion, so the light absorption coefficient can be increased in either case.

接合方法について説明すると、第1図(a)。The joining method will be explained as shown in FIG. 1(a).

(b)に示す如く、まず基板ガラス11の接合面上にあ
らかじめ形成された光吸収薄膜13の上に上記ネサガラ
ス12を重ね、2枚のガラス11゜12の位置を合わせ
る。この状態において、たとえば上記ネサガラス12の
上方からYAGレーザ光1光合4示破線で示す矢印方向
に移動させながら照射する。すると、上記レーザ光14
は、透明なネサガラス12内においては吸収されずに透
過するが、光吸収薄膜13によって吸収される。このた
め、光吸収薄膜13は光吸収による熱によって溶解する
。さらに、光吸収薄膜13の溶解時の熱によって、上記
薄膜13と接した基板ガラス11およびネサガラス12
の接触面も溶解する。
As shown in (b), first, the Nesa glass 12 is placed on the light-absorbing thin film 13 previously formed on the bonding surface of the substrate glass 11, and the two glasses 11 and 12 are aligned. In this state, for example, the YAG laser beam is irradiated from above the Nesa glass 12 while moving the YAG laser beam in the direction of the arrow shown by the dashed line. Then, the laser beam 14
The light passes through the transparent Nesa glass 12 without being absorbed, but is absorbed by the light-absorbing thin film 13. Therefore, the light-absorbing thin film 13 is melted by the heat generated by light absorption. Furthermore, the heat generated when the light-absorbing thin film 13 is melted causes the substrate glass 11 and Nesa glass 12 in contact with the thin film 13 to
The contact surfaces also dissolve.

したがって、上記基板ガラス11とネサガラス12とは
位置ずれすることなく、安定に接合されるようになる。
Therefore, the substrate glass 11 and the Nesa glass 12 can be stably joined without being displaced.

この場合、フロートガラスに数重量パーセント程度の遷
移金属イオンをドープしても、ガラスの熱膨張係数の物
性はほとんど変化しないので、温度変化などの環境の変
化などに対しても、また長期的にも安定した接合状態を
維持することができる。
In this case, even if float glass is doped with a few percent by weight of transition metal ions, the physical property of the glass's coefficient of thermal expansion will hardly change, so it will be resistant to changes in the environment such as temperature changes and over the long term. It is also possible to maintain a stable bonded state.

上記のようにして製造したガラスの封止接合体は、基板
ガラスおよびネサガラスの素材であるフロートガラスに
遷移金属イオンをドープした光吸収薄膜を用いて、上記
基板ガラスとネサガラスとを接合しているので、基板ガ
ラスとネサガラスとを、これらと熱膨張係数の近い材料
であるほぼ同一組成の光吸収薄膜を介して接合すること
になる。
The glass sealed bonded body manufactured as described above uses a light-absorbing thin film in which float glass, which is the material of the substrate glass and Nesa Glass, is doped with transition metal ions to bond the substrate glass and Nesa Glass. Therefore, the substrate glass and Nesa glass are bonded via a light-absorbing thin film of substantially the same composition, which is a material with a coefficient of thermal expansion similar to that of the substrate glass and Nesa glass.

このため、従来のような接合用材料の組合わせの制限な
どを受けず、しかも温度変化などの環境の変化や長時間
のうちに接合部が破壊されることのない安定した接合を
実現することができる。
For this reason, it is possible to achieve stable bonding without being subject to conventional restrictions on the combination of bonding materials, and in addition, the bonded portion will not be destroyed by changes in the environment such as temperature changes or over a long period of time. Can be done.

第3図は、この発明の他の実施例を示すものである。こ
こでは、イオン交換法によって形成されたガラス光導波
路31の所定の場所に、波長分離用の光学フィルタ32
を接着剤33により固定した光合分波器に対し、上記光
学フィルタ32の特性を安定に保つために、ガラス体3
4を光学フィルタ32の周辺に接合して気密に封止する
場合を例に示している。
FIG. 3 shows another embodiment of the invention. Here, an optical filter 32 for wavelength separation is placed at a predetermined location of a glass optical waveguide 31 formed by an ion exchange method.
In order to keep the characteristics of the optical filter 32 stable, the glass body 3 is fixed with an adhesive 33.
4 is bonded around the optical filter 32 and hermetically sealed.

一般に、上記ガラス光導波路31およびガラス体34は
同一の組成物である。そこで、上記ガラス光導波路31
とガラス体34とを、同一組成の光吸収薄板(光吸収薄
材)35を介して接合する。
Generally, the glass optical waveguide 31 and glass body 34 are of the same composition. Therefore, the glass optical waveguide 31
and the glass body 34 are joined via a light-absorbing thin plate (light-absorbing thin material) 35 having the same composition.

この光吸収薄板35は、たとえばガンマ線や紫外線など
の電磁波の照射によって青色し、これにより光の吸収係
数を増大させておく。第4図に、上記ガラス光導波路3
1およびガラス体34をたとえばソーダ石灰ガラスを素
材として構成した場合に、上記ソーダ石灰ガラスにコバ
ルト60を線源とするガンマ線を10bレントゲン照射
したときの、上記光吸収薄板35の吸収スペクトルを示
す。
The light-absorbing thin plate 35 turns blue when irradiated with electromagnetic waves such as gamma rays and ultraviolet rays, thereby increasing the light absorption coefficient. FIG. 4 shows the glass optical waveguide 3
1 and the glass body 34 are made of soda-lime glass, for example, and the absorption spectrum of the light-absorbing thin plate 35 is shown when the soda-lime glass is irradiated with 10b X-rays using gamma rays from cobalt-60 as a radiation source.

そして、上記光吸収薄板35を介して、上記ガラス先導
波路31とガラス体34とを位置合せして接触させた状
態において、たとえば上記ガラス体34の上方からYA
Gレーザ光3光査6射すれば、上記した先の実施例と同
様に、ガラス先導波路31とガラス体34とを容易に接
合することができ、温度変化などの環境の変化などに対
しても、また長期的にも安定した状態でガラス先導波路
31とガラス体34とを接合することができる。
Then, in a state where the glass guide waveguide 31 and the glass body 34 are aligned and in contact with each other via the light absorption thin plate 35, for example, YA is applied from above the glass body 34.
By emitting 6 beams of 3 beams of the G laser beam, the glass guide waveguide 31 and the glass body 34 can be easily bonded together, as in the previous embodiment described above, and are resistant to environmental changes such as temperature changes. Also, the glass guide waveguide 31 and the glass body 34 can be bonded in a stable state over a long period of time.

なお、この発明は上記実施例に限定されるものではなく
、発明の要旨を変えない範囲において、種々変形実施可
能なことは勿論である。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the gist of the invention.

[発明の効果] 以上、詳述したようにこの発明によれば、接合用材料に
制限されることなく、しかも接合部の信頼性を向上する
ことができるガラスの封止接合体およびその製造方法を
提供できる。
[Effects of the Invention] As detailed above, according to the present invention, there is provided a glass sealed bonded body and a method for manufacturing the same, which can improve the reliability of the bonded portion without being limited by the bonding material. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すもので、同図(a)
はガラスの封止接合体を示す上面図、同図(b)は同じ
く側面図、第2図はフロートガラスに各種の遷移金属イ
オンを1重量パーセントずつドープしたときの光の吸収
係数の変化を示す特性図、第3図はこの発明の他の実施
例を示す断面図、第4図はソーダ石灰ガラスにコバルト
60を線源とするガンマ線を10bレントゲン照射した
ときの光の吸収スペクトルを示す図である。 11・・・基板ガラス、12・・・ネサガラス、13・
・・光吸収薄膜(光吸収薄材)、14・・・YAGレー
ザ光、31・・・ガラス光導波路、32・・・光学フィ
ルタ、34・・・ガラス体、35・・・光吸収薄板(光
吸収薄材)、36・・・YAGレーザ光。
FIG. 1 shows an embodiment of the present invention, and FIG.
Figure 2 shows the top view of the sealed glass assembly, Figure 2 (b) shows the same side view, and Figure 2 shows the changes in the light absorption coefficient when float glass is doped with 1% by weight of various transition metal ions. FIG. 3 is a sectional view showing another embodiment of the present invention, and FIG. 4 is a diagram showing the absorption spectrum of light when soda lime glass is irradiated with gamma rays from a cobalt-60 source using a 10b X-ray. It is. 11...Substrate glass, 12...Nesa glass, 13.
... Light absorption thin film (light absorption thin material), 14 ... YAG laser beam, 31 ... Glass optical waveguide, 32 ... Optical filter, 34 ... Glass body, 35 ... Light absorption thin plate ( light absorbing thin material), 36...YAG laser light.

Claims (4)

【特許請求の範囲】[Claims] (1)第1、第2のガラス透明体を光吸収薄材を介して
密着させ、前記光吸収薄材をレーザ光の照射によって溶
解させることにより、前記第1、第2のガラス透明体を
接合してなるガラスの封止接合体において、 前記光吸収薄材は着色されたガラス透明体よりなること
を特徴とするガラスの封止接合体。
(1) The first and second glass transparent bodies are brought into close contact with each other through a light-absorbing thin material, and the light-absorbing thin material is melted by irradiation with laser light. What is claimed is: 1. A glass sealing assembly formed by bonding, wherein the light-absorbing thin material is made of a colored glass transparent body.
(2)前記光吸収薄材は、前記第1、第2のガラス透明
体とほぼ同じ組成のガラス透明体に遷移金属イオンをド
ープして着色したものであることを特徴とする請求項(
1)記載のガラスの封止接合体。
(2) The light-absorbing thin material is a glass transparent body having substantially the same composition as the first and second glass transparent bodies, doped with transition metal ions and colored.
1) A sealed bonded body of glass as described above.
(3)前記光吸収薄材は、前記第1、第2のガラス透明
体とほぼ同じ組成のガラス透明体に電磁波を照射して着
色したものであることを特徴とする請求項(1)記載の
ガラスの封止接合体。
(3) The light-absorbing thin material is a glass transparent body having substantially the same composition as the first and second glass transparent bodies, and is colored by irradiating electromagnetic waves. glass sealing joint.
(4)第1のガラス透明体と第2のガラス透明体との間
に、着色されたガラス透明体よりなる光吸収薄材を配置
し、前記ガラス透明体を介して前記光吸収薄材にレーザ
光を照射して前記光吸収薄材を溶解することにより、前
記第1のガラス透明体と第2のガラス透明体とを接合す
るようにしたことを特徴とするガラスの封止接合体の製
造方法。
(4) A light-absorbing thin material made of a colored glass transparent body is arranged between the first glass transparent body and the second glass transparent body, and the light-absorbing thin material is connected to the light-absorbing thin material through the glass transparent body. A glass sealed bonded body, characterized in that the first glass transparent body and the second glass transparent body are bonded by irradiating laser light to melt the light-absorbing thin material. Production method.
JP27203988A 1988-10-28 1988-10-28 Sealed and bonded glass and production thereof Pending JPH02120259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27203988A JPH02120259A (en) 1988-10-28 1988-10-28 Sealed and bonded glass and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27203988A JPH02120259A (en) 1988-10-28 1988-10-28 Sealed and bonded glass and production thereof

Publications (1)

Publication Number Publication Date
JPH02120259A true JPH02120259A (en) 1990-05-08

Family

ID=17508272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27203988A Pending JPH02120259A (en) 1988-10-28 1988-10-28 Sealed and bonded glass and production thereof

Country Status (1)

Country Link
JP (1) JPH02120259A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209413A (en) * 2004-01-20 2005-08-04 Sanyo Electric Co Ltd Manufacturing method of display panel and display panel
JP2006206372A (en) * 2005-01-27 2006-08-10 Sharp Corp Method of repairing glass substrate
JP2006524419A (en) * 2003-04-16 2006-10-26 コーニング インコーポレイテッド Glass package sealed with frit and manufacturing method thereof
JP2008516409A (en) * 2004-10-13 2008-05-15 コーニング インコーポレイテッド Hermetically sealed glass package and manufacturing method
JP2008524872A (en) * 2005-12-06 2008-07-10 コーニング インコーポレイテッド Method for sealing a display element
WO2009131144A1 (en) * 2008-04-25 2009-10-29 浜松ホトニクス株式会社 Process for fusing glass
JP2009263172A (en) * 2008-04-25 2009-11-12 Hamamatsu Photonics Kk Method for fusing glass
JP2009263173A (en) * 2008-04-25 2009-11-12 Hamamatsu Photonics Kk Method for fusing glass
WO2009145044A1 (en) * 2008-05-26 2009-12-03 浜松ホトニクス株式会社 Glass welding method
JP2009280470A (en) * 2008-05-26 2009-12-03 Hamamatsu Photonics Kk Method for welding glass
JP2010043000A (en) * 2009-11-25 2010-02-25 Hamamatsu Photonics Kk Fixing method of glass layer
JP2010042999A (en) * 2009-11-25 2010-02-25 Hamamatsu Photonics Kk Method for fixing glass layer
JP2012525312A (en) * 2009-04-30 2012-10-22 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Device having first and second substrates and method for manufacturing the same
US8839643B2 (en) 2008-06-11 2014-09-23 Hamamatsu Photonics K.K. Fusion bonding process for glass
US9016091B2 (en) 2009-11-25 2015-04-28 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9021836B2 (en) 2009-11-25 2015-05-05 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9045365B2 (en) 2008-06-23 2015-06-02 Hamamatsu Photonics K.K. Fusion-bonding process for glass
US9073778B2 (en) 2009-11-12 2015-07-07 Hamamatsu Photonics K.K. Glass welding method
US9227871B2 (en) 2009-11-25 2016-01-05 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9233872B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9236213B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9701582B2 (en) 2009-11-25 2017-07-11 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9887059B2 (en) 2009-11-25 2018-02-06 Hamamatsu Photonics K.K. Glass welding method
US9922790B2 (en) 2009-11-25 2018-03-20 Hamamatsu Photonics K.K. Glass welding method
US10322469B2 (en) 2008-06-11 2019-06-18 Hamamatsu Photonics K.K. Fusion bonding process for glass

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006524419A (en) * 2003-04-16 2006-10-26 コーニング インコーポレイテッド Glass package sealed with frit and manufacturing method thereof
JP2005209413A (en) * 2004-01-20 2005-08-04 Sanyo Electric Co Ltd Manufacturing method of display panel and display panel
JP2008516409A (en) * 2004-10-13 2008-05-15 コーニング インコーポレイテッド Hermetically sealed glass package and manufacturing method
JP4522872B2 (en) * 2005-01-27 2010-08-11 シャープ株式会社 Glass substrate repair method
JP2006206372A (en) * 2005-01-27 2006-08-10 Sharp Corp Method of repairing glass substrate
JP2008524872A (en) * 2005-12-06 2008-07-10 コーニング インコーポレイテッド Method for sealing a display element
WO2009131144A1 (en) * 2008-04-25 2009-10-29 浜松ホトニクス株式会社 Process for fusing glass
JP2009263172A (en) * 2008-04-25 2009-11-12 Hamamatsu Photonics Kk Method for fusing glass
JP2009263173A (en) * 2008-04-25 2009-11-12 Hamamatsu Photonics Kk Method for fusing glass
US8490430B2 (en) 2008-04-25 2013-07-23 Hamamatsu Photonics K.K. Process for fusing glass
WO2009145044A1 (en) * 2008-05-26 2009-12-03 浜松ホトニクス株式会社 Glass welding method
US9181126B2 (en) 2008-05-26 2015-11-10 Hamamatsu Photonics K.K. Glass fusion method
JP2009280470A (en) * 2008-05-26 2009-12-03 Hamamatsu Photonics Kk Method for welding glass
JP2009280469A (en) * 2008-05-26 2009-12-03 Hamamatsu Photonics Kk Glass welding method
US8516852B2 (en) 2008-05-26 2013-08-27 Hamamatsu Photonics K.K. Glass fusion method
US8863553B2 (en) 2008-05-26 2014-10-21 Hamamatsu Photonics K.K. Glass welding method
WO2009145046A1 (en) * 2008-05-26 2009-12-03 浜松ホトニクス株式会社 Glass fusion method
US10322469B2 (en) 2008-06-11 2019-06-18 Hamamatsu Photonics K.K. Fusion bonding process for glass
US8839643B2 (en) 2008-06-11 2014-09-23 Hamamatsu Photonics K.K. Fusion bonding process for glass
US9045365B2 (en) 2008-06-23 2015-06-02 Hamamatsu Photonics K.K. Fusion-bonding process for glass
JP2012525312A (en) * 2009-04-30 2012-10-22 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Device having first and second substrates and method for manufacturing the same
US9073778B2 (en) 2009-11-12 2015-07-07 Hamamatsu Photonics K.K. Glass welding method
US9021836B2 (en) 2009-11-25 2015-05-05 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9016091B2 (en) 2009-11-25 2015-04-28 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
JP2010042999A (en) * 2009-11-25 2010-02-25 Hamamatsu Photonics Kk Method for fixing glass layer
US9227871B2 (en) 2009-11-25 2016-01-05 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9233872B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9236213B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9701582B2 (en) 2009-11-25 2017-07-11 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9887059B2 (en) 2009-11-25 2018-02-06 Hamamatsu Photonics K.K. Glass welding method
US9922790B2 (en) 2009-11-25 2018-03-20 Hamamatsu Photonics K.K. Glass welding method
JP2010043000A (en) * 2009-11-25 2010-02-25 Hamamatsu Photonics Kk Fixing method of glass layer

Similar Documents

Publication Publication Date Title
JPH02120259A (en) Sealed and bonded glass and production thereof
TWI737690B (en) Sealed devices comprising transparent laser weld regions
JP6666838B2 (en) Laminated sealing sheet
KR100942118B1 (en) Optimization of parameters for sealing organic emitting light diodeoled displays
US3217088A (en) Joining glass members and encapsulation of small electrical components
CN101536133B (en) Method of making a glass envelope
US4649085A (en) Cryogenic glass-to-metal seal
US8590343B2 (en) Vacuum insulating glass unit including infrared meltable glass frit, and/or method of making the same
WO1996002473A1 (en) Welding/sealing glass-enclosed space in a vacuum
US4158485A (en) Liquid crystal cell with a glass solder seal
TW201734503A (en) Sealed devices comprising UV-absorbing films
US5745989A (en) Method of preparation of an optically transparent article with an embedded mesh
JP2019035945A (en) Multi-stack joined body and method for manufacturing the same, and display including the same
US5341235A (en) Optical isolator and method for preparing same
US4726507A (en) Cryogenic glass-to-metal seal
JP2003506846A (en) Gas discharge lamp manufacturing method
US3608265A (en) Glazing unit and method of making same
GB2064843A (en) Large-area liquid crystal display panel and method for making it
CN109071325A (en) Sealing device comprising transparent laser welding region
JP2000026127A (en) Method for adhesion of glass plate
JP2001247321A (en) Method and apparatus for junction of glass by laser beam
KR20050104423A (en) Display panel and process for producing the same
JPH0575707B2 (en)
EP2917023A1 (en) Method for joining a joining partner made of a thermoplastic material to a joining partner made of glass
JP2023105894A (en) Bonding method