JPH02112757A - Instrument for measuring concentration of particulate matter in piping - Google Patents

Instrument for measuring concentration of particulate matter in piping

Info

Publication number
JPH02112757A
JPH02112757A JP63265428A JP26542888A JPH02112757A JP H02112757 A JPH02112757 A JP H02112757A JP 63265428 A JP63265428 A JP 63265428A JP 26542888 A JP26542888 A JP 26542888A JP H02112757 A JPH02112757 A JP H02112757A
Authority
JP
Japan
Prior art keywords
receivers
piping
powder
ultrasonic
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63265428A
Other languages
Japanese (ja)
Inventor
Hidehisa Yoshizako
秀久 吉廻
Noriyuki Imada
典幸 今田
Hiroyuki Fujimoto
浩之 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP63265428A priority Critical patent/JPH02112757A/en
Publication of JPH02112757A publication Critical patent/JPH02112757A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make prompt measurement by providing >=1 pairs of ultrasonic oscillators and receivers to the circumference of a piping, measuring the attenuation quantity of the ultrasonic waves in the ultrasonic propagation routes formed therebetween and detecting the concn. of particulate matter in accordance with the attenuation quantity. CONSTITUTION:Three pairs of the oscillators 3 and receivers 4 are mounted to the outer side of a circular piping 1 in which pulverized coal and the air for transporting this coal flow in the form of solid-gas two-phase flow 2. The instrument is constituted in such a manner and the signal from a computer 7 is amplified by an amplifier 6 to drive the transmitters 3. The ultrasonic waves received by the receivers 4 are converted to electric signals by the receivers. The electric signals are amplified by an amplifier 6A and are returned to the computer 7. The attenuation quantity of the respective propagation lines connecting the oscillators 2 and the receivers 4 from the reception level is determined at this time and the concn. of the powder is detected from the calibration chart of the previously measured ultrasonic transmittance and the concn. of the pulverized coal. The detected concns. are respectively displayed on a distribution display device 8 and an average value display device 9. The pressure drop in the piping is eliminated in this way and the errors by the moisture in the fluid are eliminated as well.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は配管内の粉粒体の計測装置に係り、特に配管内
の固気2相流中の粉粒体を非接触で計測するのに好適な
粉粒体濃度計測装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a measuring device for powder and granular materials in piping, and particularly to a non-contact measuring device for powder and granular materials in a solid-gas two-phase flow in piping. The present invention relates to a powder/granular material concentration measuring device suitable for.

〔従来の技術〕[Conventional technology]

近年、大型の事業用ボイラでは、これまでの石油に代り
安価な石炭が燃料として用いられるようになっている。
In recent years, cheap coal has been used as fuel in large commercial boilers instead of oil.

しかし、石炭の場合、固体の輸送になるため液体である
石油の場合と異なり、輸送に関する技術課題が多い。特
に、粉砕した微粉炭をミルからバーナに送る際の微粉炭
の流量の計測は、多数のバーナの燃焼を円滑に行い、燃
焼効率を向上させるのに必要であるが、即応性をもって
正確に計測する技術はいまだ確立されていない。
However, in the case of coal, because it is transported as a solid, there are many technical issues related to transportation, unlike in the case of oil, which is a liquid. In particular, measuring the flow rate of pulverized coal when it is sent from a mill to a burner is necessary to ensure smooth combustion in multiple burners and improve combustion efficiency. The technology to do so has not yet been established.

管内の固気2相流の粉体濃度を計測する方法として、一
般には第8図に示すようなベンチュリ式のものが用いら
れている。これは圧力損失が粉体の存在によって変化す
ることを利用したものである。第8図において、1は空
気と微粉炭との混合流体輸送用の円管、2は固気2相流
、41は絞り部、42は直管部、43は拡大部である。
As a method for measuring the powder concentration in a solid-gas two-phase flow within a pipe, a venturi type as shown in FIG. 8 is generally used. This takes advantage of the fact that pressure loss changes depending on the presence of powder. In FIG. 8, 1 is a circular pipe for transporting a mixed fluid of air and pulverized coal, 2 is a solid gas two-phase flow, 41 is a constricted part, 42 is a straight pipe part, and 43 is an enlarged part.

また第8A図は、第8図における流れ方向位置と静圧分
布の関係を示す図である。拡大部43では粉体が空気の
速度より速くなるので、適当な長さ間におけるAの圧力
損失44は粉体がない場合(B)とほとんど変わらない
。従って、この圧力損失から空気量が求まる。一方、絞
り部4工の圧力損失は粉体がある場合は、粉体が無い場
合に比べて大きくなるので、この差から粉体量を算出す
る。さらに、これらの空気量および粉体量から粉体濃度
を算出する。なお、ベンチュリ形状の代りにオリフィス
を用いるものもあるが原理は同じである。
Moreover, FIG. 8A is a diagram showing the relationship between the flow direction position and the static pressure distribution in FIG. 8. Since the velocity of the powder is higher than that of air in the enlarged portion 43, the pressure loss 44 of A over a suitable length is almost the same as in the case (B) without powder. Therefore, the amount of air can be determined from this pressure loss. On the other hand, the pressure loss in the four constricted parts is larger when there is powder than when there is no powder, so the amount of powder is calculated from this difference. Furthermore, the powder concentration is calculated from these air amounts and powder amounts. Note that some devices use an orifice instead of a venturi shape, but the principle is the same.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、第8図の方法では、配管中に絞り部を設
けるため100龍水柱程度の圧力損失が生じ、輸送に要
する動力費が高くなり、また水平配管に用いると粉体濃
度が下方に偏るため、平均濃度が測定しに<<、従って
、垂直配管にしか使えない欠点がある。
However, in the method shown in Figure 8, a pressure loss of about 100 dragons of water occurs due to the provision of a constriction part in the piping, which increases the power cost required for transportation, and when used in horizontal piping, the powder concentration is biased downward. , the average concentration is less than <<, so it has the disadvantage that it can only be used in vertical piping.

この他に管内の固気2相流の流量を計測する方法として
、粉体の帯電量を利用するものもあるが、上記の欠点が
克服されておらず、実用には至っていない。
In addition, there is a method of measuring the flow rate of solid-gas two-phase flow in a pipe that uses the amount of charge on powder, but the above-mentioned drawbacks have not been overcome and this method has not been put to practical use.

また、−時的な計測法として配管中に直接サンプリング
プローブを挿入し、粉体濃度を計測する方法もあるが、
常時針側には通さない。
There is also a method of measuring powder concentration by inserting a sampling probe directly into the pipe as a temporary measurement method.
Do not pass through the needle side at all times.

以上のように、従来の計測法はいずれも粉体の流動状況
とか物理的な性状に左右されたりして、固気2相流の流
量を正確に測定することができなかった。
As described above, all conventional measurement methods are affected by the flow conditions and physical properties of powder, and cannot accurately measure the flow rate of a solid-gas two-phase flow.

本発明の目的は、固気2相流の粉体濃度を正確に測定で
きる装置を提供することにある。
An object of the present invention is to provide an apparatus that can accurately measure powder concentration in a solid-gas two-phase flow.

〔課題を解決するための手段〕[Means to solve the problem]

上記した本発明の目的は、粉粒体と該粉粒体輸送用気体
との混合流体を流す配管内の粉粒体の濃度を計測する装
置において、上記配管の周囲に配置した1対以上の超音
波発信器および受信器と、上記発信器と受信器間で形成
される超音波伝播経路における超音波減衰量を測定する
装置と、上記減衰量に基づき粉粒体の濃度を算出する装
置とを備えたことを特徴とする配管内の粉粒体濃度計測
装置により達成される。
The object of the present invention described above is to provide a device for measuring the concentration of powder and granular material in a pipe through which a mixed fluid of powder and granular material and a gas for transporting the powder and granular material is provided. An ultrasonic transmitter and a receiver, a device for measuring the amount of ultrasonic attenuation in an ultrasonic propagation path formed between the transmitter and the receiver, and a device for calculating the concentration of powder or granular material based on the amount of attenuation. This is achieved by a device for measuring the concentration of powder or granule in a pipe, which is characterized by comprising:

〔実施例〕〔Example〕

本発明の一実施例を第1図に示す。第1図において、円
形配管lの内部には微粉炭とこれを輸送するための空気
が固気2相流2となって流れている。円形配管の外部に
は超音波の発信器3と受信器4が3対取り付けである。
An embodiment of the present invention is shown in FIG. In FIG. 1, pulverized coal and air for transporting it flow as a solid-gas two-phase flow 2 inside a circular pipe 1. Three pairs of ultrasonic transmitters 3 and receivers 4 are attached to the outside of the circular pipe.

コンピュータ7から出た信号がアンプ(増幅器)6で増
幅され発信器3を駆動する。受信された超音波は受信器
4で電気信号に変えられアンプ6Aで増幅されてコンピ
ュータ7に戻る。このときの受信レベルから発信器3と
受信器4を結ぶ各伝播経路の減衰量が求められ、予め測
定しておいた第2図に示す超音波透過率と微粉炭濃度の
較正図からそれぞれの粉体濃度が算出され、分布表示器
8および平均値表示器9に表示される。
A signal output from the computer 7 is amplified by an amplifier 6 and drives the oscillator 3. The received ultrasonic waves are converted into electrical signals by the receiver 4, amplified by the amplifier 6A, and returned to the computer 7. The attenuation of each propagation path connecting the transmitter 3 and receiver 4 is calculated from the reception level at this time, and the attenuation of each propagation path connecting the transmitter 3 and receiver 4 is determined from the calibration diagram of ultrasonic transmittance and pulverized coal concentration shown in Figure 2, which was measured in advance. The powder concentration is calculated and displayed on the distribution display 8 and the average value display 9.

本実施例で用いた空気の平均流速は15m/s、空気流
量は70キログラム/ m i nであり、円管の直径
は300 +nである。輸送される微粉炭の平均粒径は
70ミクロン、流量は70キログラム/m i nであ
る。
The average flow velocity of the air used in this example was 15 m/s, the air flow rate was 70 kg/min, and the diameter of the circular tube was 300 + n. The average particle size of the pulverized coal to be transported is 70 microns, and the flow rate is 70 kg/min.

第3図に発信器3の取付は部分の断面図を示す。FIG. 3 shows a sectional view of a portion of the mounting of the transmitter 3.

発信器3と受信器4は対向するようにとりつけである。The transmitter 3 and receiver 4 are mounted so as to face each other.

発信器3および受信器4は、円管1とは防音材11で隔
離されている。また管内側にはフィルター10が張って
あり、微細な微粉炭の侵入や発信器および受信器への衝
突を避けるようになっている。
The transmitter 3 and the receiver 4 are separated from the circular tube 1 by a soundproof material 11. A filter 10 is placed inside the tube to prevent fine pulverized coal from entering and colliding with the transmitter and receiver.

発信器4には300キロヘルツの電気パルスが送られる
。パルス信号を用いているのは管内での共鳴を避けるた
めである。共鳴が生じると超音波の減衰が正しく測定で
きなくなる。用いた周波数は20キロヘルツから1メガ
ヘルツまで変化させて選んだものである。セメント粉の
ように微粉炭より細かいものでは500キロヘルツ程度
がS/N(ノイズと受信信号の比)比が高く適していた
A 300 kilohertz electrical pulse is sent to the transmitter 4. The reason why a pulse signal is used is to avoid resonance within the tube. When resonance occurs, the attenuation of ultrasound waves cannot be measured correctly. The frequencies used were selected varying from 20 kilohertz to 1 megahertz. For materials that are finer than pulverized coal, such as cement powder, a frequency of around 500 kilohertz has a high S/N (noise to received signal ratio) ratio and is suitable.

また、本発明では受信した超音波のレベル検出が精度に
影響するので、電気信号はバンドパスフィルタを通し雑
音を低下させ、さらにパルスを20回発射し、その平均
をとるようにしている。
Furthermore, in the present invention, since the level detection of the received ultrasonic wave affects the accuracy, the electric signal is passed through a band-pass filter to reduce noise, and further pulses are emitted 20 times and the average thereof is taken.

第4図に示した実施例は、エックス線CT法に類似した
もので、超音波の発信兼受信器15を8個設置し、第5
図の断面図で示すように可能な限りの伝播経路20で減
衰量を測定するようにしたものである。複数の減衰量か
ら第6図に点線で区画して示す多数要素21についての
粉体濃度を求め、第7図のように管内の粉体濃度を表示
する。
The embodiment shown in FIG. 4 is similar to the X-ray CT method, and eight ultrasonic transmitter/receivers 15 are installed.
As shown in the cross-sectional view of the figure, the attenuation amount is measured along as many propagation paths 20 as possible. From a plurality of attenuation amounts, the powder concentration for the multiple elements 21 shown as divided by dotted lines in FIG. 6 is determined, and the powder concentration in the pipe is displayed as shown in FIG. 7.

水平配管において微粉炭の濃度分布が発生した場合にも
適用できるようにしたものである。
This method can also be applied when a concentration distribution of pulverized coal occurs in horizontal piping.

この他に、流量をを計るためのオリフィスとかベンチュ
リを併用すれば流量の絶対量も知ることができる。
In addition, if you use an orifice or venturi to measure the flow rate, you can also find out the absolute amount of flow rate.

また、粉体の水分が変化しない場合には本例の超音波の
代りに電磁波を用いても同等の計測ができる。
Further, if the moisture content of the powder does not change, the same measurement can be performed using electromagnetic waves instead of the ultrasonic waves in this example.

〔発明の効果〕〔Effect of the invention〕

本発明の装置によれば、配管中の圧力損失を生じること
なく、また被測定流体中の水分による誤差もなく、即応
的に常時配管中の粉粒体濃度の計測が可能であり、また
測定に際して流体の流れを乱すことがない。
According to the device of the present invention, it is possible to immediately measure the concentration of powder or granular material in the piping at all times without causing pressure loss in the piping and without errors due to moisture in the fluid to be measured. It does not disturb the flow of fluid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例図、第2図は微粉炭と空気の
混合流体における微粉炭濃度と超音波透過率との関係図
、第3図は超音波発信器配管への取付は図、第4図は本
発明の他の実施例図、第5図は超音波の伝播経路を示す
断面図、第6図は被測定断面内の要素分割側図、第7図
は配管内の粉粒体濃度の分布別図、第8図は従来技術の
説明図第8A図は第8図における流れ方向位置と静圧分
布の関係を示す図である。 1・・・円管、2・・・微粉炭と空気の混合流、3・・
・発信器、4・・・受信器、5・・・ケーブル、6.6
A・・・増幅器、7・・・コンピュータ、8・・・濃度
分布表示器、9・・・平均値表示器、10・・・フィル
タ、11・・・防音材。 出願人 バブコック日立株式会社 代理人 弁理士 川 北 武 長
Fig. 1 shows an example of the present invention, Fig. 2 shows the relationship between pulverized coal concentration and ultrasonic transmittance in a mixed fluid of pulverized coal and air, and Fig. 3 shows how the ultrasonic transmitter is attached to piping. 4 is a diagram of another embodiment of the present invention, FIG. 5 is a sectional view showing the propagation path of ultrasonic waves, FIG. 6 is a side view of the element division within the cross section to be measured, and FIG. FIG. 8 is an explanatory diagram of the prior art. FIG. 8A is a diagram showing the relationship between the position in the flow direction and the static pressure distribution in FIG. 8. 1... Circular pipe, 2... Mixed flow of pulverized coal and air, 3...
- Transmitter, 4... Receiver, 5... Cable, 6.6
A... Amplifier, 7... Computer, 8... Concentration distribution display, 9... Average value display, 10... Filter, 11... Soundproofing material. Applicant Babcock Hitachi Co., Ltd. Agent Patent Attorney Takeshi Kawakita

Claims (1)

【特許請求の範囲】[Claims] (1)粉粒体と該粉粒体輸送用気体の混合流体を流す配
管内の粉粒体の濃度を計測する装置において、上記配管
の周囲に配置した1対以上の超音波発信器および受信器
と、上記発信器と受信器間で形成される超音波伝播経路
における超音波減衰量を測定する装置と、上記減衰量に
基づき粉粒体の濃度を算出する装置とを備えたことを特
徴とする配管内の粉粒体濃度計測装置。
(1) In a device that measures the concentration of a powder or granule in a pipe through which a mixed fluid of a powder or a gas for transporting the powder or granule flows, one or more pairs of ultrasonic transmitters and receivers are arranged around the pipe. A device for measuring the amount of ultrasonic attenuation in the ultrasonic propagation path formed between the transmitter and the receiver, and a device for calculating the concentration of the powder based on the amount of attenuation. A device for measuring the concentration of powder and granules in piping.
JP63265428A 1988-10-21 1988-10-21 Instrument for measuring concentration of particulate matter in piping Pending JPH02112757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63265428A JPH02112757A (en) 1988-10-21 1988-10-21 Instrument for measuring concentration of particulate matter in piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63265428A JPH02112757A (en) 1988-10-21 1988-10-21 Instrument for measuring concentration of particulate matter in piping

Publications (1)

Publication Number Publication Date
JPH02112757A true JPH02112757A (en) 1990-04-25

Family

ID=17417020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63265428A Pending JPH02112757A (en) 1988-10-21 1988-10-21 Instrument for measuring concentration of particulate matter in piping

Country Status (1)

Country Link
JP (1) JPH02112757A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512652A (en) * 2004-09-07 2008-04-24 トランソニック システムズ インク Non-intrusive test for materials between spaced walls
JP2009109248A (en) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd System for measuring floating particles
US8133185B2 (en) 2002-02-20 2012-03-13 Transonic Systems, Inc. Catheter with common guide wire and indicator lumen
CN102519830A (en) * 2012-01-12 2012-06-27 山东电力研究院 Method and device for measuring concentration of coal powder
CN108490068A (en) * 2018-01-19 2018-09-04 天津大学 Plane of ultrasound wave scan-type multiphase flow visual measuring device
CN109188016A (en) * 2018-08-28 2019-01-11 天津大学 Oil-gas-water three-phase flow split-phase flow velocity acoustic-electric bimodal measurement method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133185B2 (en) 2002-02-20 2012-03-13 Transonic Systems, Inc. Catheter with common guide wire and indicator lumen
JP2008512652A (en) * 2004-09-07 2008-04-24 トランソニック システムズ インク Non-intrusive test for materials between spaced walls
JP4879179B2 (en) * 2004-09-07 2012-02-22 トランソニック システムズ インク Non-intrusive test for materials between spaced walls
US8214168B2 (en) * 2004-09-07 2012-07-03 Transonic Systems, Inc. Noninvasive testing of a material intermediate spaced walls
JP2009109248A (en) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd System for measuring floating particles
CN102519830A (en) * 2012-01-12 2012-06-27 山东电力研究院 Method and device for measuring concentration of coal powder
CN108490068A (en) * 2018-01-19 2018-09-04 天津大学 Plane of ultrasound wave scan-type multiphase flow visual measuring device
CN109188016A (en) * 2018-08-28 2019-01-11 天津大学 Oil-gas-water three-phase flow split-phase flow velocity acoustic-electric bimodal measurement method
CN109188016B (en) * 2018-08-28 2020-05-05 天津大学 Acoustic-electric bimodal measurement method for phase-splitting flow velocity of oil-gas-water three-phase flow

Similar Documents

Publication Publication Date Title
US4598593A (en) Acoustic cross-correlation flowmeter for solid-gas flow
US6575043B1 (en) Method and apparatus for characterizing flows based on attenuation of in-wall propagating wave modes
US3906791A (en) Area averaging ultrasonic flowmeters
JP3028723B2 (en) Ultrasonic fluid flow meter
WO1990005283A1 (en) Method and apparatus for measuring mass flow
CN101970991A (en) Flow rate determination of a gas-liquid fluid mixture
SK95995A3 (en) Flow indicator
JP5960721B2 (en) Apparatus and method for measuring the flow rate of a fluid or fluid component in a pipeline
JPH04248466A (en) Speed measuring device for fluid
JPH04218779A (en) Method and apparatus for monitoring flow speed of fluid
US20190154479A1 (en) Estimating flow velocity in pipes by correlating multi-frequency signals
US3370463A (en) Mass flow meter
JPH02112757A (en) Instrument for measuring concentration of particulate matter in piping
KR890004447B1 (en) Spiral fluid meter
CN210089772U (en) Ultrasonic flowmeter
US4528857A (en) Phase modulation, ultrasonic flowmeter
KR100311855B1 (en) Fluid flow meter
US3204457A (en) Ultrasonic flowmeter
US3314289A (en) Swirl flow meter transducer system
CN206281534U (en) A kind of oblique angle reflectance ultrasound low
GB2155635A (en) Monitoring fluid flow
US3204455A (en) Ultrasonic flowmeter
JPS60115810A (en) Ultrasonic flowmeter
CN112747260A (en) Ultrasonic flow measuring device capable of preventing noise interference
JP2632041B2 (en) Current meter