JPH02110358A - Automatic selecting method of vegetable - Google Patents

Automatic selecting method of vegetable

Info

Publication number
JPH02110358A
JPH02110358A JP26456788A JP26456788A JPH02110358A JP H02110358 A JPH02110358 A JP H02110358A JP 26456788 A JP26456788 A JP 26456788A JP 26456788 A JP26456788 A JP 26456788A JP H02110358 A JPH02110358 A JP H02110358A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic resonance
gradient magnetic
resonance signal
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26456788A
Other languages
Japanese (ja)
Inventor
Ryuji Kaneda
隆二 金田
Takashi Noguchi
隆 野口
Junichi Hatta
純一 八田
Kenji Oyamada
小山田 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26456788A priority Critical patent/JPH02110358A/en
Publication of JPH02110358A publication Critical patent/JPH02110358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorting Of Articles (AREA)

Abstract

PURPOSE:To distinguish a recessed part of a body from a void inside said body to be checked by limiting a take-out region of a magnetic resonance signal in said body to be checked to a desired size in directions of two gradient magnetic fields, taking out and processing a magnetic resonance signal from said limited region, whereby the inner structure of said body to be checked is checked. CONSTITUTION:Main components of a static magnetic field generating unit 4 are permanent magnets 5a, 5b which add a predetermined static magnetic field to a body to be checked, for example, a water melon 3. A first selecting wireless frequency pulse 16 forming a high frequency magnetic field is added to the body 3 in existence of a first gradiant magnetic field Gx, and a succeeding second selecting wireless frequency pulse 17 is added to the body 3 in existence of a gradient magnetic field Gy orthogonal to the first gradient magnetic field Gx, so that the take-out region of a magnetic resonance signal in the body 3 is limited to an optional size in the directions of the two gradient magnetic fields Gx and Gy. A magnetic resonance signal is taken out from this limited region and processed to check the inner structure of the body 3. Accordingly, data of a recessed part on the surface of the body 3 is removed from the magnetic resonance signal, whereby the presence or absence of a void inside the body 3 can be correctly detected.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、野菜や果物の自動選別方法に係り。[Detailed description of the invention] (b) Industrial application field The present invention relates to an automatic sorting method for vegetables and fruits.

特に青果を構成する原子の磁気共鳴現象を利用して含水
率や内部空洞の検出を非破壊的に検査する自動選別方法
に関する。
In particular, the present invention relates to an automatic sorting method for nondestructively inspecting moisture content and detecting internal cavities using the magnetic resonance phenomenon of atoms constituting fruits and vegetables.

(ロ) 従来の技術 近年野菜や果物等の自動選別装置がこれらの産地の農業
協同組合(以下ataと云う)に普及しつつある。これ
は、 ■ 等級選別の基準を数値化して、指令した基準値によ
る選別が可能となり、市場での信頼が高まる。
(b) Prior Art In recent years, automatic sorting devices for vegetables, fruits, etc. are becoming popular in agricultural cooperatives (hereinafter referred to as ATA) in these production areas. This is because: - By quantifying the criteria for grading, it becomes possible to sort according to the specified standard values, increasing trust in the market.

■ 比較的高く売れる品質の特選品を選び出すことや、
仕向先の要望に合致した等級を調整して出荷できる等、
産地の特長を生がした販売戦略に威力を発揮する。
■ Selecting high-quality products that sell at relatively high prices,
We can adjust and ship the grade to match the destination's requests, etc.
It is effective in sales strategies that take advantage of the characteristics of the production area.

■ 最も人手を要する等級選別の省力化が図れる。■ Labor-saving can be achieved in grade sorting, which requires the most manpower.

等の理由による。Due to reasons such as.

例えばスイカの自動選別装置において、従来の専門検査
員の打音によって生ずる衝撃波をコンビ二一タで解析し
て内部裂果を判定する装置がアグリビジネス°88  
Vol、3  NQIOPP。
For example, in an automatic watermelon sorting system, a conventional device that uses a combination machine to analyze the shock waves generated by the tapping sound of a professional inspector and determines whether there are internal tears is agribusiness°88.
Vol, 3 NQIOPP.

11〜17(株) システム農業発行で紹介されるとと
もに、X線等の電磁波による透視画像を撮影しコンピュ
ータを用いて2値化することにより空洞に相当する領域
の面積を計算して判定する装置が昭和63年9月26日
付の農業ニュースに紹介されている。
11-17 Introduced in System Agriculture Co., Ltd., a device that calculates and determines the area of a region corresponding to a cavity by taking a fluoroscopic image using electromagnetic waves such as X-rays and binarizing it using a computer. was introduced in the Agricultural News dated September 26, 1986.

前者の場合叩く位置によっては存在する空洞を適確に捕
えられないし、且つ被検体の損傷を誘引するという欠点
があり、また後者においては、非破壊のまま内部を画像
として見ることができるので検査精度を著しく向上でき
るものの、投影画像であるため外形状の異なる被検体に
対応させると十分なコントラスト分解能が得られないし
、また移動する被検体に対しては不向きであり、且つ電
磁波特にX線使用については市場での印象が悪いという
欠点がある。
In the former case, the existing cavity cannot be accurately captured depending on the location of the tap, and it may cause damage to the subject. In the latter case, the inside can be seen as an image without destroying it, so it is difficult to inspect. Although the accuracy can be significantly improved, since it is a projection image, sufficient contrast resolution cannot be obtained when dealing with objects with different external shapes, and it is not suitable for moving objects. The disadvantage of this is that it gives a bad impression in the market.

(ハ) 発明が解決しようとする課題 磁気共鳴による被検体の信号を処理し、各断面位で資す
からこの種青果選別方法としては適切でない。このため
被検体の特定の断面からの信号を抽出してデータ処理時
間を短縮することを実行しなければならないが、この方
法だと、被検体表面の凹みと内部空洞とを誤認する恐れ
がある。本発明が解決しようとする課題は斯かる問題点
に考えて成されたものであり、被検体表面の凹みのデー
タを磁気共鳴信号から除去し、内部空洞の有無のみを正
確に検出する方法を見出すことである。
(c) Problems to be Solved by the Invention Since the signal of the object to be examined by magnetic resonance is processed and used at each cross section, it is not suitable as a method for sorting fruits and vegetables of this kind. For this reason, it is necessary to extract signals from a specific cross-section of the object to reduce data processing time, but with this method, there is a risk of misidentifying a depression on the object's surface as an internal cavity. . The problem to be solved by the present invention was made in consideration of such problems, and it is a method to remove the data of the depressions on the surface of the specimen from the magnetic resonance signal and accurately detect only the presence or absence of internal cavities. It's about finding out.

(ニ)課題を解決するための手段 静磁場発生装置内に置かれた被検体に、勾配磁の内部構
造を検査することにより等級選別を行う青果自動選別方
法において、前記高周波磁場を形無線周波パルスを前記
第1勾配磁場と直交する勾配磁場の存在下で被検体に印
加して、該被検体における磁気共鳴信号取り出し領域を
前記2つの勾配磁場方向に対して任意の大きさに限定し
、この限られた領域から磁気共鳴信号を取り出し、この
信号を処理して被検体の内部構造を検査する。
(d) Means for solving the problem In an automatic fruit and vegetable sorting method in which grades are sorted by inspecting the internal structure of a gradient magnetic field on a subject placed in a static magnetic field generator, the high frequency magnetic field is applying a pulse to the subject in the presence of a gradient magnetic field orthogonal to the first gradient magnetic field to limit a magnetic resonance signal extraction region in the subject to an arbitrary size with respect to the two gradient magnetic field directions; Magnetic resonance signals are extracted from this limited area and processed to examine the internal structure of the subject.

印加により、被検体の任意の断面の所望の領域からのみ
の磁気共鳴信号が得られ、被検体表面の不必要なデータ
を除去する。
By applying magnetic resonance signals only from a desired region of an arbitrary cross section of the object, unnecessary data on the surface of the object is removed.

(へ)実施例 以下本発明青果自動選別方法を図面の一実施例について
詳細に説明する。
(f) Example The automatic fruit and vegetable sorting method of the present invention will be described in detail below with reference to an example of the drawings.

第2図は自動選別機の構成を示し、同図において(1)
は送果コンベア、(2)は被検体としてのスイカ(3)
をコンベア(1)に載置するための専用トレー、(4)
は自動選別機の心臓部となる静磁場発生装置であり、コ
ンベア(1)によって運ばれてきたスイカ(3)は該静
磁場発生装置(4)内を通過する。前記静磁場発生装置
(4)は全体に電波シールドが施されて外部の雑音によ
る高周波磁場印加時における電波障害への対策が成され
ている、この静磁場発生装置(4)の主構成l要素はス
イカ(3)に一定の静磁場を加える磁石、とりわけ維持
管理の容易な永久磁石(5a) (5blである。スイ
カ(3)は水分含有率が豊富で且つ得られる磁気共鳴信
号ら強い為比較的低磁場でも良く、維持費等の観点がら
永久磁石(5a) (5b)が最良である。(6a) 
(6b)は上下に間隔を置いて位置する平板状ヨーク、
(7a) (7b)は謹上・下ヨーク(6a) (6b
lの間隔を保持し且つ閉じた磁気回路を形成する4本の
柱状ヨークであり、これらヨーク(6a) (6b) 
、 (7al (7b)は何れも鉄製で、前記永久磁石
(5a) (5blは上・下ヨーク(6a)(6b)の
内面側に自身の磁力によって吸着されている。また永久
磁石(5a) (5b)は鉄製のポールピースを前記永
久磁石(5a) (5b)の各対向面側に磁気吸着して
おり、該ポールピースによって永久磁石(5a)(5b
)が作る静磁場の均一性を上げている。また前記永久磁
石(5al (5b)は温度依存性を持っているが、そ
れ自身熱容竜が大きいので平均温度を一定に保持するよ
うな温度制御装置が必要で、例えば温度コントローラ付
きの空調装置を装置させるのが好ましい。そして静磁場
発生装置(11)内に磁性粉等が侵入すると前記磁気回
!各を構成する部分に吸着されるため、該静磁場発生装
置(4)内への出に受信=1イル(9)で受けた信号を
増幅して検波する無線周波(以下RFと云う)送受信t
f1. (+21は該RF送受信tfi(11)及び前
記電源(10)に予めプログラムされた制御信号を送る
パルスプログラマ、(13)はこのパルスプログラマ(
12)にデータやコマれる為導電性のカーテンを設ける
か、或いは静磁場発生装置(4)の中心部への侵入距離
を稼ぐため筒状のシールドを設けても良い。
Figure 2 shows the configuration of the automatic sorting machine, and in the figure (1)
is the fruit delivery conveyor, (2) is the watermelon as the test object (3)
A special tray for placing the on the conveyor (1), (4)
is a static magnetic field generating device which is the heart of the automatic sorting machine, and the watermelon (3) carried by the conveyor (1) passes through the static magnetic field generating device (4). The main component of the static magnetic field generator (4) is that the entire static magnetic field generator (4) is radio-shielded to take measures against radio interference caused by external noise when applying a high-frequency magnetic field. is a magnet that applies a constant static magnetic field to the watermelon (3), especially a permanent magnet (5a) (5bl) that is easy to maintain.Watermelon (3) has a rich moisture content and the obtained magnetic resonance signal is strong. Permanent magnets (5a) (5b) are the best since they can be used in a relatively low magnetic field, and from the viewpoint of maintenance costs, etc. (6a)
(6b) is a flat yoke located vertically at intervals;
(7a) (7b) is the upper and lower yoke (6a) (6b)
These yokes (6a) (6b) are four columnar yokes that maintain a distance of l and form a closed magnetic circuit.
, (7al (7b) are both made of iron, and the permanent magnet (5a) (5bl is attracted to the inner surface of the upper and lower yokes (6a) and (6b) by their own magnetic force. Also, the permanent magnet (5a) (5b) has an iron pole piece magnetically attracted to each opposing surface side of the permanent magnets (5a) (5b), and the permanent magnets (5a) (5b) are magnetized by the pole pieces.
) increases the uniformity of the static magnetic field created. In addition, although the permanent magnet (5al (5b)) has temperature dependence, it itself has a large heat capacity, so a temperature control device is required to maintain a constant average temperature.For example, an air conditioner with a temperature controller is required. It is preferable to install a magnetic powder etc. into the static magnetic field generator (11), because it will be attracted to the parts constituting each of the magnetic circuits. Reception = 1 Radio frequency (hereinafter referred to as RF) transmission and reception that amplifies and detects the signal received at Il (9)
f1. (+21 is a pulse programmer that sends preprogrammed control signals to the RF transmission/reception TFI (11) and the power supply (10); (13) is this pulse programmer (
12) may be provided with a conductive curtain to prevent data or frame failure, or a cylindrical shield may be provided to increase the penetration distance to the center of the static magnetic field generator (4).

前記ポールピースの表面には前記静磁場に勾配磁場を重
畳するためのX、y、z3方向の勾配磁場発生コイル(
8a) (8b)を固定し、またスイカ(3)とコンベ
アベルト(1a)とが貫通する部分を設けた高周波磁場
パルスコイル兼用受信コイル(9)をスイカ(3)に近
接して配設する。
On the surface of the pole piece, gradient magnetic field generating coils (
8a) (8b) is fixed, and a receiving coil (9) that also serves as a high-frequency magnetic field pulse coil is provided in the vicinity of the watermelon (3) and has a portion where the watermelon (3) and the conveyor belt (1a) pass through. .

(lO)は前記勾配磁場発生コイル(8al (8bl
に所定の波形の電流を流す電源、(11)は前記高周波
磁場発生用コイル(9)に高周波電力を供給するととも
装置である。
(lO) is the gradient magnetic field generating coil (8al (8bl
A power source (11) is a device that supplies high frequency power to the high frequency magnetic field generating coil (9).

以上の構成を有する静磁場発生装置(4)を主体とする
自動選別機は判別するスイカの個数に応じて1台〜3台
程度送果コンベア(1)の搬送ラインとともに設置され
る。
Depending on the number of watermelons to be discriminated, one to three automatic sorting machines having the static magnetic field generator (4) having the above configuration as a main body are installed together with the conveyance line of the fruit conveyor (1).

ところでスイカ(3)の磁気共鳴信号を得るための最#
J簡単な方法はコンベア(1)の移動を−1停止させて
スイカ(3)を静磁場発生装置(4)内部の中心に位置
せしめ、スイカ(3)が静止した状態で勾配磁場発生コ
イル(8a) (8b)と高周波磁場発生用コイル(9
)を所定のパルスシーケンス(後述する1個当たり1回
のシーケンス)でfIE動し、静磁場内に勾配磁場を重
畳し、スイカ(3)に高周波磁場パルスを印加すること
により、スイカ(3)の一部または全部の水プロトンを
139起し、励起された水プロトンの磁気共鳴信号(一
つの信号をフーリエ変換してスペクトルに分解すると様
々な情報に分けられる)を読み出し用の勾配磁場を印加
しながら検出する。このようにして得られた信号をRF
送受信機(11)を介して増幅・検波及びデジタル化し
て中央情報処理装置へ送り、ここでデータ処理すること
により、スイカ(3)のプロトン密度やス層揖像装置で
あり、核磁気共鳴医学石ハ究会編NMR医学−基礎と臨
床−に詳しく説明されているを行わないようにして通常
必要な256回や128回のパルスシーケンスを一回で
済ませ、判別速度を1個/秒まで高めるようにしている
By the way, the best way to obtain the magnetic resonance signal of watermelon (3) is
A simple method is to stop the conveyor (1) by -1, position the watermelon (3) at the center of the static magnetic field generator (4), and with the watermelon (3) stationary, move the gradient magnetic field generator coil ( 8a) (8b) and high frequency magnetic field generation coil (9
) with a predetermined pulse sequence (one sequence per piece as described later), a gradient magnetic field is superimposed on the static magnetic field, and a high-frequency magnetic field pulse is applied to the watermelon (3). Some or all of the water protons are excited, and a gradient magnetic field is applied to read out the magnetic resonance signal of the excited water protons (when one signal is Fourier transformed and decomposed into a spectrum, it can be divided into various information). while detecting. The signal obtained in this way is RF
Through the transceiver (11), the signals are amplified, detected, digitized, and sent to the central information processing unit, where the data is processed.It is a device that can measure the proton density of watermelon (3) and its layer, and is used for nuclear magnetic resonance medicine. By avoiding the steps described in detail in NMR Medicine - Basic and Clinical - edited by Ishiha Research Association, the normally required 256 or 128 pulse sequences can be completed in one time, increasing the discrimination speed to 1 pulse/second. That's what I do.

得られた分布データは、スイカ(3)の部分的(点・線
・面・体積)な信号強度分布であり、観測部位の一部に
空洞が存在すればそこだけ信号はゼロとなるので空洞の
有無が判定できるととらりの判定ができる。
The obtained distribution data is a partial (point, line, area, volume) signal intensity distribution of watermelon (3), and if there is a cavity in a part of the observation area, the signal will be zero only there, so there is no cavity. If you can determine the presence or absence of , you can determine if it is true.

もちろん上記の判別はスイカのみに限らず、キャベツや
リンゴ等様々な青果の自動選別に応用できる。
Of course, the above discrimination is not limited to watermelons, but can also be applied to automatic sorting of various fruits and vegetables such as cabbage and apples.

ところて上記方法には一つの問題かある。即ち第3図の
ようなスピンエコー法を用いて、90゛及び180’ 
RF励起パルスを勾配磁場Gy、G2の存在下でスイカ
(3)に印加すると、1つのパルスシーケンスで得られ
るエコー信号(磁気共鳴)をフーリエ変taシて得られ
るスペクトルが第11図に示すスイカ(3)内部の空洞
(14)と表面の凹み(15)とで区別がつかないとい
うことである。第4LK(a)(b)(c)は良品ノス
イカ、空洞(14)のあるスイカ、凹み(15)のある
スイカとそのスベクトルを示しているが、空洞(14)
と凹み(15)はスペクトルでは全く同じ形で出てしま
う。
However, there is one problem with the above method. That is, using the spin echo method as shown in Figure 3, 90' and 180'
When an RF excitation pulse is applied to a watermelon (3) in the presence of gradient magnetic fields Gy and G2, the spectrum obtained by Fourier transformation of the echo signal (magnetic resonance) obtained with one pulse sequence is shown in Figure 11. (3) The internal cavity (14) and the surface depression (15) are indistinguishable. 4th LK (a), (b), and (c) show a good watermelon, a watermelon with a cavity (14), a watermelon with a dent (15), and its svector, but the cavity (14)
and the concavity (15) appear in exactly the same shape in the spectrum.

この問題を解決するためのパルスシーケンスを第1図に
示す。同図のシーケンスの破線X−Xより右側の部分は
第3図と同じであり、スイカ(3)のある断面を選択励
起するためのパルスシーケンスであり、スイカ(3)を
静磁場方向をZとして任意のXY平面から磁気共鳴信号
を取り出すためのものである。
A pulse sequence for solving this problem is shown in FIG. The part on the right side of the broken line This is for extracting magnetic resonance signals from an arbitrary XY plane.

一方X−Xより左側の部分は、選択励起を行う2方自と
直交する勾配磁場Gx、Gyと2つの90°RF励起パ
ルスからなるシーケンスであり、このパルスシーケンス
における励起の過程を第5図に示す。まず、勾配磁場G
xと第1の90゛RF励起パルス(16)とによってス
イカ(3)をX方向に選択励起するとXY千面において
同図(a)で斜線で示された部分のプロトン原子核スピ
ンが90゛倒される。次に勾配磁場Gyと第2の90’
RF励起パルス(17)とによってスイカ(3)をX方
向に選択励起すると同図(b)で斜線で示されたように
勾配磁場Gxと第190゛励起パルス(16)によって
励起された部分と交差する領域のスピンは更に90°倒
されて180゛倒されたことになり、その他の部分のス
ピンは90゛倒される。
On the other hand, the part to the left of X-X is a sequence consisting of gradient magnetic fields Gx and Gy perpendicular to the two directions for selective excitation and two 90° RF excitation pulses. The excitation process in this pulse sequence is shown in Figure 5. Shown below. First, the gradient magnetic field G
When a watermelon (3) is selectively excited in the X direction by x and the first 90° RF excitation pulse (16), the proton nuclear spin in the shaded area in the same figure (a) is tilted by 90° in the XY thousand plane. It will be done. Next, the gradient magnetic field Gy and the second 90'
When the watermelon (3) is selectively excited in the X direction by the RF excitation pulse (17), the part excited by the gradient magnetic field Gx and the 190゛ excitation pulse (16), as indicated by diagonal lines in FIG. The spins in the intersecting region are further inverted by 90 degrees, meaning they are inverted by 180 degrees, and the spins in other parts are inverted by 90 degrees.

この後X−Xより右側の部分のパルスシーケンスを実行
すると左側の部分のパルスシーケンスによってスピンが
180°倒された部分からのみのエコー信号が得られ、
90゛倒された部分からは出てこなくなる。この手法を
用いて第4図(a)(b)(c)に示した3つのスイカ
に対して磁気共鳴信号を取り出し、これをフーリエ変換
してスペクトルによると、第6図(a)(b)(c)に
示すように、良品と表面に凹み(15)のあるスイカが
同じ矩形のスペクトルとなり、空洞(!4)を有するス
イカ(3)のみ前記両者と区別される。そして良品と表
面に凹み(15)のあるスイカの区別は視覚で判別する
か、別の自動選別機を用いて第5図(b)のスピンが9
0゛倒された部分のみから磁気共鳴信号を得るようにし
て判別すれば良い。
After this, when the pulse sequence on the right side of X-X is executed, an echo signal is obtained only from the part where the spins are tilted 180 degrees by the pulse sequence on the left side.
It will not come out from the part where it has been knocked down by 90 degrees. Using this method, we extract the magnetic resonance signals for the three watermelons shown in Figures 4(a), (b), and (c), Fourier transform them, and obtain spectra as shown in Figures 6(a), (b). ) As shown in (c), the non-defective watermelon and the watermelon with a dent (15) on the surface have the same rectangular spectrum, and only the watermelon (3) with a cavity (!4) is distinguished from the two. The difference between good watermelons and watermelons with dents (15) on the surface can be determined visually or by using another automatic sorting machine.
Discrimination can be made by obtaining magnetic resonance signals only from the 0° tilted portion.

第7図は第1図のパルスシーケンスにおいてX−Xより
右側部分の90’ RF励起パルスダW周波数を順次変
えながら複数回励起することにより相異なるXYスライ
ス面■■■・・・からの磁気共鳴信号を得ることもでき
るマルチ・スライスの技法を示したらめである。このよ
うにスイカ(3)の異なる断面から磁気共鳴信号を取り
、この磁気共鳴ばスイカ(3)の立体的な内部情報を得
ることも可能である 。ただしこの場合検査時間をでき
るだけ短縮するためにスライス面の数を少なく抑える方
が良い。
Figure 7 shows magnetic resonance from different XY slice planes by excitation multiple times while sequentially changing the 90' RF excitation pulse frequency on the right side of X-X in the pulse sequence of Figure 1. This is a bullshit showing a multi-slice technique that can also obtain signals. In this way, it is also possible to obtain magnetic resonance signals from different cross sections of the watermelon (3) and obtain three-dimensional internal information of the watermelon (3) from this magnetic resonance. However, in this case, it is better to keep the number of slice planes small in order to shorten the inspection time as much as possible.

の 更に第1図パルスシーケンスにおいて勾配磁場^ やRF選択励起パルスの周波数を調整することにより、
磁気共鳴信号の出る領域を被検体の大きさに合わせて拡
大・縮小することが可能である。
Furthermore, by adjusting the gradient magnetic field^ and the frequency of the RF selective excitation pulse in the pulse sequence shown in Figure 1,
It is possible to enlarge or reduce the area where magnetic resonance signals are emitted in accordance with the size of the subject.

(ト)  発明の効果 本発明は以上の説明の如く、静磁場発生装置内に置かれ
た被検体に、勾配磁場及び高周波磁場を印加して磁気共
鳴を起こさせ、この磁気共鳴による信号を処理して該被
検体の内部構造を検査することにより等級選別を行う青
果自動選別方法におI尺 いて、前記高周波磁場を形成する第1の!!期無線周波
パルスを第1の勾配磁場の存在下で被検体に印加し、続
く第2の選択無線周波パルスを前記第領域を前記2つの
勾配磁場方向に対して任意の大きさに限定し、この限ら
れた領域がら磁気共鳴信号を取り出し、この信号を処理
して被検体の内部構造を検査することにより、被検体表
面の凹所と内部空洞とを明確に区別でき、等級選別の信
顆度を向上させる効果がある。
(G) Effects of the Invention As described above, the present invention applies a gradient magnetic field and a high-frequency magnetic field to a subject placed in a static magnetic field generator to cause magnetic resonance, and processes signals caused by this magnetic resonance. In addition to the automatic fruit and vegetable sorting method in which grades are sorted by inspecting the internal structure of the specimen, the first step is to form the high-frequency magnetic field. ! applying a selective radio frequency pulse to the subject in the presence of a first gradient magnetic field, followed by a second selective radio frequency pulse limiting the first region to an arbitrary magnitude with respect to the two gradient magnetic field directions; By extracting the magnetic resonance signal from this limited area and processing this signal to inspect the internal structure of the specimen, it is possible to clearly distinguish between the recesses on the surface of the specimen and the internal cavities, which can be used to improve grade selection. It has the effect of improving the degree of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の青果自動選別方法に用いられ概要を示
す正面図、第3図は第1図に示す信号取出し領域決定の
パルスシーケンスのないパルスシーケンスの図、第4図
(a)(b)(c)は夫々第3図のパルスシーケンスを
用いて得られた良品、空洞有り、表面凹部有りのスイカ
のスペクトル図、第5図(a)(b)は第1図に示す信
号取出し領域決定のパルスシーケンスによる領域の縮小
状況を示す図、第6図(a)(b)(c)は第1図のパ
ルスシーケンスを用いて得られた第4図に相当するスイ
カのスペクトル図、第7図は第1図のパルスシーケンス
を基本形とするマルチ・スライス法による各断面から出
る信号スペクトル図を示す。 (4)・・・静磁S発生装置、(3)・・・被検体(ス
イカ) 、 (GX) (GF) (Gxl−・・勾配
磁場、<16) (17+=−無線周波パルス。
FIG. 1 is a front view showing an outline of the method used in the automatic fruit and vegetable sorting method of the present invention, FIG. 3 is a diagram of a pulse sequence without the pulse sequence for determining the signal extraction area shown in FIG. 1, and FIG. b) and (c) are spectrum diagrams of watermelons of good quality, with cavities, and with surface depressions, respectively, obtained using the pulse sequence shown in Fig. 3, and Fig. 5 (a) and (b) are the signal extraction shown in Fig. 1. 6(a), (b), and (c) are spectrum diagrams of a watermelon corresponding to FIG. 4 obtained using the pulse sequence of FIG. 1; FIG. 7 shows a signal spectrum diagram emitted from each cross section by a multi-slice method using the pulse sequence of FIG. 1 as a basic form. (4)... Static magnetic S generator, (3)... Subject (watermelon), (GX) (GF) (Gxl-... Gradient magnetic field, <16) (17+=-Radio frequency pulse.

Claims (1)

【特許請求の範囲】[Claims] (1)静磁場発生装置内に置かれた被検体に、勾配磁場
及び高周波磁場を印加して磁気共鳴を起こさせ、この磁
気共鳴による信号を処理して該被検体の内部構造を検査
すことにより等級選別を行う青果自動選別方法において
、前記高周波磁場を形成する第1の選択無線周波パルス
を第1の勾配磁場の存在下で被検体に印加し、続く第2
の選択無線周波パルスを前記第1勾配磁場と直交する勾
配磁場の存在下で被検体に印加して、該被検体における
磁気共鳴信号取り出し領域を前記2つの勾配磁場方向に
対して任意の大きさに限定し、この限られた領域から磁
気共鳴信号を取り出し、この信号を処理して被検体の内
部構造を検査することを特徴とする青果自動選別方法。
(1) Applying a gradient magnetic field and a high-frequency magnetic field to a subject placed in a static magnetic field generator to cause magnetic resonance, and processing the signals caused by this magnetic resonance to inspect the internal structure of the subject. In an automatic fruit and vegetable sorting method for sorting grades, a first selective radio frequency pulse forming the high frequency magnetic field is applied to the subject in the presence of a first gradient magnetic field, followed by a second selective radio frequency pulse forming the high frequency magnetic field.
A selected radio frequency pulse is applied to the subject in the presence of a gradient magnetic field orthogonal to the first gradient magnetic field, so that the magnetic resonance signal extraction area in the subject is set to an arbitrary size with respect to the two gradient magnetic field directions. 1. An automatic fruit and vegetable sorting method characterized by extracting a magnetic resonance signal from this limited area and processing this signal to inspect the internal structure of a subject.
JP26456788A 1988-10-20 1988-10-20 Automatic selecting method of vegetable Pending JPH02110358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26456788A JPH02110358A (en) 1988-10-20 1988-10-20 Automatic selecting method of vegetable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26456788A JPH02110358A (en) 1988-10-20 1988-10-20 Automatic selecting method of vegetable

Publications (1)

Publication Number Publication Date
JPH02110358A true JPH02110358A (en) 1990-04-23

Family

ID=17405083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26456788A Pending JPH02110358A (en) 1988-10-20 1988-10-20 Automatic selecting method of vegetable

Country Status (1)

Country Link
JP (1) JPH02110358A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120998A (en) * 2005-10-25 2007-05-17 Meiji Milk Prod Co Ltd Automatic inspection device and inspection method of food quality
JP2008544217A (en) * 2005-06-09 2008-12-04 ウリ ラポポート Portable quality / process control system for simultaneous magnetic resonance imaging of multiple samples
US10345251B2 (en) 2017-02-23 2019-07-09 Aspect Imaging Ltd. Portable NMR device for detecting an oil concentration in water
US11300531B2 (en) 2014-06-25 2022-04-12 Aspect Ai Ltd. Accurate water cut measurement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544217A (en) * 2005-06-09 2008-12-04 ウリ ラポポート Portable quality / process control system for simultaneous magnetic resonance imaging of multiple samples
JP2007120998A (en) * 2005-10-25 2007-05-17 Meiji Milk Prod Co Ltd Automatic inspection device and inspection method of food quality
US11300531B2 (en) 2014-06-25 2022-04-12 Aspect Ai Ltd. Accurate water cut measurement
US10345251B2 (en) 2017-02-23 2019-07-09 Aspect Imaging Ltd. Portable NMR device for detecting an oil concentration in water

Similar Documents

Publication Publication Date Title
US5789257A (en) Method and apparatus for measuring samples and for localizing a first substance within a surrounding second substance by means of nuclear magnetic resonance
US6566873B1 (en) Method of and apparatus for nuclear quadrupole resonance testing a sample
US7061239B2 (en) Method for magnetic field tracking in a NMR check weighing system
JP2002501204A (en) On-line NMR imaging of solid or liquid objects undergoing continuous translation
Kim et al. Fruit internal quality evaluation using on-line nuclear magnetic resonance sensors
Saito et al. Application of magnetic resonance imaging to non-destructive void detection in watermelon
Zion et al. Real-time detection of pits in processed cherries by magnetic resonance projections
US8816685B2 (en) Pulsed EPR detection
JPH02110358A (en) Automatic selecting method of vegetable
NL194950C (en) Method and device for testing a sample.
Dobmann et al. Magnetic leakage flux testing with probes: physical principles and restrictions for application
US7084627B2 (en) Method for triggering NMR measurement in a NMR check weighing system
WO2006081615A1 (en) Method and apparatus for detecting significant shielded volumes
US20150301139A1 (en) Method and system for inspection of composite material components
Walstedt et al. Site assignment for copper nuclear-quadrupole-resonance lines in Y Ba 2 Cu 3 O 7− δ
EP1743145A2 (en) Method for compensation of near-neighbor sample effects in a nmr check weighing system
JPH02110360A (en) Automatic fruit selecting machine and selecting method
RU2248560C2 (en) Method and device for scanning non-metal objects for availability of substances containing nuclei having quadrupole moment
Pathaveerat ON–LINE NMR EVALUATION OF AVOCADO FRUIT QUALITY
JPH02110359A (en) Automatic fruit selecting method
Ryabov Coronal magnetic field measurements through quasi-transverse propagation
JPH09101273A (en) Nondestructive method for inspecting watermelon for internal quality using nuclear magnetic resonance
KR0173674B1 (en) Non-destructive examination apparatus and magnet box for agricultural products using nmr
JPH08313462A (en) Evaluating method of degree of maturity of watermelon
Henriksson et al. Fast Imaging of Void Defects in Conductive Half-space