JPH02105054A - Ultrasonic flaw detecting method - Google Patents

Ultrasonic flaw detecting method

Info

Publication number
JPH02105054A
JPH02105054A JP63258127A JP25812788A JPH02105054A JP H02105054 A JPH02105054 A JP H02105054A JP 63258127 A JP63258127 A JP 63258127A JP 25812788 A JP25812788 A JP 25812788A JP H02105054 A JPH02105054 A JP H02105054A
Authority
JP
Japan
Prior art keywords
echo
noise
frequency components
defective
ultrasonic flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63258127A
Other languages
Japanese (ja)
Inventor
Yoshihiko Minami
南 義彦
Katsuji Takami
高見 勝治
Hideshi Tagami
田上 秀史
Yutaka Otomo
裕 大友
Kosuke Itoga
糸賀 興右
Takamasa Ogata
隆昌 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWAJU KENSA SERVICE KK
Kawasaki Heavy Industries Ltd
Idemitsu Engineering Co Ltd
Original Assignee
KAWAJU KENSA SERVICE KK
Kawasaki Heavy Industries Ltd
Idemitsu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWAJU KENSA SERVICE KK, Kawasaki Heavy Industries Ltd, Idemitsu Engineering Co Ltd filed Critical KAWAJU KENSA SERVICE KK
Priority to JP63258127A priority Critical patent/JPH02105054A/en
Publication of JPH02105054A publication Critical patent/JPH02105054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To improve S/N fetching plural pieces of waves in an area where the difference of frequency components of a defective echo and a noise echo obtained by an ultrasonic flaw detection is the largest, so that a beam path to a defect does not generate a shift exceeding a half-wave of an ultrasonic wave, bringing the waves to addition average by the same phase, and thereafter, bringing its result to integer multiple or exponent multiple. CONSTITUTION:The result of analysis of frequencies of a defective echo and a noise echo of waveforms obtained by an ultrasonic flaw detection of a body to be inspected is shown in a graph, and as for a specific frequency area for executing an addition average, an area A where the difference of frequency components of the defective echo and the noise echo is the largest is selected. Thereafter, plural pieces of waves consisting of the frequency component peculiar to the defective echo in the area A are fetched after the A/D conversion, brought to addition average, and thereafter, brought to integer multiple or exponent multiple. In such a manner, the small S/N of the defective echo and the noise echo obtained by bringing a probe to tremor can be increased, and for instance, with regard to a minute defect generated by hydrogen attack, as well, whether it exists or not can be detected.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、超音波探傷方法に関するもので、特に欠陥
エコーとノイズエコーのSN比を向上させる超音波探傷
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an ultrasonic flaw detection method, and particularly to an ultrasonic flaw detection method that improves the S/N ratio between defect echoes and noise echoes.

(従来の技術) 綱材を超音波探傷することにより得られる波形には欠陥
エコーだけでなく林状エコー、遅れエコーなどのノイズ
エコーが重畳して表れるため、従来より欠陥エコーとノ
イズエコーO3N比を向丘させることにより欠陥を早期
に正確に検出するための手法が講じられている。
(Conventional technology) The waveform obtained by ultrasonic flaw detection of rope contains not only defect echoes but also noise echoes such as forest echoes and delayed echoes. Techniques have been taken to detect defects early and accurately by detecting defects.

従来の手法は、探傷波形を同位相で取り込み加算平均を
行うものであった。
In the conventional method, flaw detection waveforms are captured in the same phase and averaged.

(発明が解決しようとする課題) しかし、従来の方法ではSN比を充分に満足できる程度
に効果的に向上させることが困難で、微細欠陥、たとえ
ばオーステナイト系ステンレス鋼の溶接部や鋳鋼品など
の水素侵食に伴う欠陥に対しては充分な検出能力が得ら
れず、そのような微細欠陥の有無が問題とされる製品の
品質信幀性を充分に確保することに困難があった。
(Problems to be Solved by the Invention) However, with conventional methods, it is difficult to effectively improve the S/N ratio to a sufficiently satisfactory level, and micro defects, such as welded parts of austenitic stainless steel and cast steel products, It is not possible to obtain sufficient detection ability for defects associated with hydrogen attack, and it is difficult to sufficiently ensure quality reliability of products in which the presence or absence of such minute defects is a problem.

この発明は以上の問題に鑑みてなされたもので、探傷波
形を同位相で取り込み加算平均を行うものでありながら
、欠陥エコーとノイズエコーのSN比を効果的に向上す
ることが可能な超音波探傷方法を提供することを目的と
する。
This invention was made in view of the above problems, and uses ultrasonic waves that can effectively improve the S/N ratio between defect echoes and noise echoes while capturing and averaging the flaw detection waveforms in the same phase. The purpose is to provide a flaw detection method.

(課題を解決するための手段) この発明による超音波探傷方法は、超音波探傷して得ら
れる欠陥エコーとノイズエコーの周波数成分の差が最も
大きい領域での周波数成分から構成される波を、欠陥ま
でのビーム路程が超音波の半波長以上のずれを生じない
ように複数個取り出し、それらの波を同位相で加算平均
して整数倍あるいは指数倍するものである。
(Means for Solving the Problems) The ultrasonic flaw detection method according to the present invention detects waves consisting of frequency components in a region where the difference in frequency components between a defect echo and a noise echo obtained by ultrasonic flaw detection is the largest. A plurality of waves are taken out so that the beam path to the defect does not deviate by more than a half wavelength of the ultrasonic waves, and the waves are averaged in the same phase and multiplied by an integer or an exponential.

(作用) この発明によれば、加算平均される複数個の波は欠陥エ
コーとノイズエコーの周波数成分の差が最も大きい領域
でのものであるから、加算平均する以前においても、欠
陥エコーとノイズエコーの比は増大する効果をもつと共
に、周波数領域を限定させることにより、加算平均時に
は、ノイズはほぼランダムの位相で発生することから、
それらの相殺する率は高くなるが、一方、欠陥エコーは
欠陥までのビーム路程が超音波の半波長未満のずれであ
るからその相殺作用は小さく、そのため、加算平均され
た欠陥エコーとノイズエコーO3N比はさらに相乗効果
的に大きくなり、それを整数倍あるいは指数倍すること
によりSN比が顕著に向上する。
(Operation) According to the present invention, since the plurality of waves to be averaged are in the region where the difference in frequency components between the defect echo and the noise echo is the largest, even before the wave is averaged, the defect echo and the noise The echo ratio has the effect of increasing, and by limiting the frequency domain, noise is generated with almost random phase during averaging.
Their canceling rate is high, but on the other hand, since the beam path to the defect is less than half the wavelength of the ultrasonic wave, the canceling effect is small, so the averaged defect echo and noise echo O3N The ratio increases synergistically, and by multiplying it by an integer or an exponential, the S/N ratio is significantly improved.

また、周波数成分の取り出しをAD変換後に行うように
した場合には、アナログ信号の周波数フィルタのような
回路に固有の周波数特性に左右されることなく欠陥エコ
ーが最も顕著に表れている任意の領域を選定することが
可能になり、このことによりSN比を一層効果的に向上
させることができる。
In addition, if the frequency component is extracted after AD conversion, it is possible to extract the frequency component from any region where the defective echo is most prominent, without being affected by the frequency characteristics inherent in a circuit such as a frequency filter for an analog signal. This allows the S/N ratio to be improved even more effectively.

(実施例) 第1図は被検査体の超音波探傷により得られた波形の欠
陥エコーとノイズエコーの周波数解析結果を示すグラフ
であり、加算平均を行う特定周波数領域には欠陥エコー
とノイズエコーの周波数成分の差が最も大きい領域Aを
選定する。そして、このように選定した領域Aにおける
欠陥エコー特有の周波数成分から構成される波をAD変
換後に複数個取り出す。特定の周波数成分の取り出しを
AD変換後に行うことにより、欠陥エコーとノイズエコ
ーの周波数成分の差が最も大きい領域Aを、アナログ信
号の周波数フィルタのような回路に固有の周波数特性に
左右されることなく、任意に選定することが可能である
。また、周波数成分の取り出しに際しては欠陥までのビ
ーム路程が超音波の半波長以上のずれを生じないように
する必要があり、そのためには探触子を微動させるか、
あるいは探触子を定位置にセットしたまま超音波探傷を
行う。探触子を微動させた場合には後述するノイズエコ
ーの相殺効果が向上する利点がある。
(Example) Figure 1 is a graph showing the frequency analysis results of defect echoes and noise echoes in the waveform obtained by ultrasonic flaw detection of the inspected object. The region A in which the difference in frequency components is the largest is selected. Then, a plurality of waves composed of frequency components unique to the defect echo in the region A selected in this manner are extracted after AD conversion. By extracting specific frequency components after AD conversion, it is possible to determine the region A where the difference between the frequency components of defective echoes and noise echoes is the largest, depending on the frequency characteristics specific to the circuit, such as the analog signal frequency filter. It is possible to arbitrarily select one. In addition, when extracting frequency components, it is necessary to ensure that the beam path to the defect does not deviate by more than half the wavelength of the ultrasonic wave. To do this, it is necessary to move the probe slightly or
Alternatively, perform ultrasonic flaw detection with the probe set in the fixed position. When the probe is slightly moved, there is an advantage that the effect of canceling out noise echoes, which will be described later, is improved.

第2図(a)及び同図(b)は探触子を微動させること
によって取り出された上記領域Aにおける欠陥エコー特
有の周波数成分の波形を示している。また、同図(C)
は同図(a)及び同図(b)の周波数成分を同位相で加
算平均することにより得られた波形を示している。これ
らから明らかなように、同図(a)及び同図(b)の周
波数成分については欠陥エコーとノイズエコーO3N比
が比較的小さいけれども、加算平均された同図(C)の
周波数成分についてはSN比が増大している。これは、
同図(a)及び同図(b)の周波数成分におけるノイズ
エコーの相互間では位相の変動が大きいため加算平均を
行うことによってノイズエコーが相殺されて小さくなる
のに対し、欠陥エコーは位相の変動が小さいため相殺さ
れないからである。
FIGS. 2(a) and 2(b) show waveforms of frequency components peculiar to defect echoes in the region A extracted by slightly moving the probe. Also, the same figure (C)
shows a waveform obtained by averaging the frequency components in FIGS. 3A and 3B with the same phase. As is clear from these, the defect echo to noise echo O3N ratio is relatively small for the frequency components in Figures (a) and (B), but for the averaged frequency component in Figure (C), The signal-to-noise ratio is increasing. this is,
Since there is a large phase variation between the noise echoes in the frequency components in Figures (a) and (b), the noise echoes are canceled out and reduced by averaging, whereas the defective echoes have a phase difference. This is because the fluctuations are small and cannot be canceled out.

こうして加算平均した波形を整数倍あるいは指数倍する
ことにより欠陥信号が任意の大きさまで増大する。した
がって、水素侵食に伴う欠陥のような微細欠陥に対して
も充分な検出能力が確保される。また本手法の効果は、
微細欠陥の検出のみならず、超音波探傷試験においてS
N比の勤王を必要とする場合の全般で得られることは明
らかである。
By multiplying the averaged waveform by an integral number or an exponential number, the defect signal can be increased to an arbitrary size. Therefore, sufficient detection ability is ensured even for minute defects such as defects caused by hydrogen erosion. In addition, the effect of this method is
In addition to detecting minute defects, S
It is clear that this can be obtained in all cases where N-ratio duty is required.

(発明の効果) 以上のようにこの発明方法は、欠陥エコーが最も顕著に
表れている領域の周波数成分から構成される波のみを複
数個取り出すものであるから、それらの周波数成分を加
算平均することによりSN比が向上し、さらに加算平均
後には波形を整数倍あるいは指数倍するものであるから
欠陥信号を任意の大きさまで増大することができる。そ
のため、水素侵食に伴う欠陥のような微細欠陥の有無が
問題とされる製品の品質信頼性を充分に確保することが
できるようになる。
(Effects of the Invention) As described above, the method of this invention extracts only a plurality of waves consisting of frequency components in the region where defective echoes are most prominent, so these frequency components are averaged. This improves the SN ratio, and since the waveform is multiplied by an integral number or an exponential number after averaging, the defect signal can be increased to an arbitrary size. Therefore, it becomes possible to sufficiently ensure the quality reliability of products in which the presence or absence of minute defects such as defects caused by hydrogen attack is a problem.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加算平均を行う特定周波数領域の選定方法を説
明するための図面代用グラフ、第2図(a)(b) (
C)は加算平均の効果を示す波形図である。 A・・・欠陥エコーとノイズエコーの周波数成分の差が
最も大きい9■域。 特許出願人   出光エンジニアリング株式会社同  
  川重検査サービス株式会社 同     川崎重工業株式会社 第1図 第2図
Figure 1 is a graph substituted for a drawing to explain the method of selecting a specific frequency region for averaging, and Figure 2 (a) (b) (
C) is a waveform diagram showing the effect of averaging. A: Area 9■ where the difference in frequency components between defect echo and noise echo is greatest. Patent applicant: Idemitsu Engineering Co., Ltd.
Kawasaki Heavy Industries Inspection Service Co., Ltd. Kawasaki Heavy Industries Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、超音波探傷して得られる欠陥エコーとノイズエコー
の周波数成分の差が最も大きい領域での周波数成分より
構成される波を、欠陥までのビーム路程が超音波の半波
長以上のずれを生じないように複数個取り出し、それら
の周波数成分より構成される波を同位相で加算平均して
整数倍あるいは指数倍することを特徴とする超音波探傷
方法。
1. A wave composed of frequency components in the region where the difference between the frequency components of the defect echo and the noise echo obtained by ultrasonic flaw detection is the largest is detected when the beam path to the defect deviates by more than half the wavelength of the ultrasonic wave. An ultrasonic flaw detection method characterized by taking out a plurality of flaws and averaging the waves made up of those frequency components in the same phase and multiplying by an integer or an exponential.
JP63258127A 1988-10-13 1988-10-13 Ultrasonic flaw detecting method Pending JPH02105054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63258127A JPH02105054A (en) 1988-10-13 1988-10-13 Ultrasonic flaw detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63258127A JPH02105054A (en) 1988-10-13 1988-10-13 Ultrasonic flaw detecting method

Publications (1)

Publication Number Publication Date
JPH02105054A true JPH02105054A (en) 1990-04-17

Family

ID=17315887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63258127A Pending JPH02105054A (en) 1988-10-13 1988-10-13 Ultrasonic flaw detecting method

Country Status (1)

Country Link
JP (1) JPH02105054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1357381A1 (en) * 2000-11-02 2003-10-29 Ishikawajima-Harima Heavy Industries Co., Ltd. Ultrasonic flaw detection method and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899748A (en) * 1981-12-10 1983-06-14 Toshiba Corp Ultrasonic test equipment
JPS6014165A (en) * 1983-07-06 1985-01-24 Toshiba Corp Ultrasonic examination device
JPS61138160A (en) * 1984-12-11 1986-06-25 Toshiba Corp Ultrasonic flaw detector
JPS61180267A (en) * 1984-12-14 1986-08-12 ゼロツクス コ−ポレ−シヨン Toner charger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899748A (en) * 1981-12-10 1983-06-14 Toshiba Corp Ultrasonic test equipment
JPS6014165A (en) * 1983-07-06 1985-01-24 Toshiba Corp Ultrasonic examination device
JPS61138160A (en) * 1984-12-11 1986-06-25 Toshiba Corp Ultrasonic flaw detector
JPS61180267A (en) * 1984-12-14 1986-08-12 ゼロツクス コ−ポレ−シヨン Toner charger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1357381A1 (en) * 2000-11-02 2003-10-29 Ishikawajima-Harima Heavy Industries Co., Ltd. Ultrasonic flaw detection method and apparatus
US6640632B1 (en) 2000-11-02 2003-11-04 Ishikawajima-Harima Heavy Industries Co., Ltd. Ultrasonic flaw detection method and apparatus

Similar Documents

Publication Publication Date Title
US6640632B1 (en) Ultrasonic flaw detection method and apparatus
Drai et al. Elaboration of some signal processing algorithms in ultrasonic techniques: application to materials NDT
US20060206275A1 (en) Method and a device for detecting discontinuities in a medium
Manjula et al. Quality enhancement of ultrasonic TOFD signals from carbon steel weld pad with notches
Li et al. Acoustic microscopy signal processing method for detecting near-surface defects in metal materials
WO2015072365A1 (en) Eddy current flaw detection device
JP4437656B2 (en) Ultrasonic flaw detector
JPS6314905B2 (en)
JPH02105054A (en) Ultrasonic flaw detecting method
JP3266899B2 (en) Method and apparatus for flaw detection of magnetic metal body
Fritsch et al. Detecting small flaws near the interface in pulse-echo
JP5904154B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP4606860B2 (en) Defect identification method and apparatus by ultrasonic inspection
JP3036387B2 (en) Ultrasonic flaw detection method and device
Ericsson et al. Algorithms for suppressing ultrasonic backscattering from material structure
JP2014528570A (en) Method for processing ultrasonic analog signal, digital signal processing apparatus and ultrasonic inspection apparatus
JP2006162321A5 (en)
Kachanov et al. Problems of extracting ultrasonic signals from structural noise during inspection of articles produced from materials with complex structures
Ericsson et al. Cut spectrum processing: a novel signal processing algorithm for ultrasonic flaw detection
Davis et al. Surface acoustic wave suppression for near-surface defect imaging using laser induced phased arrays
Meng et al. Spectral analysis for crack detection during TIG welding using acoustic emission techniques
JPS6215454A (en) Processing method for eddy current flaw detecting signal
Park et al. Image enhancement for sub-harmonic phased array by removing surface wave interference with spatial frequency filter
RU2292544C2 (en) Method of improving noise immunity of ultrasonic inspection
JPH06194321A (en) Flaw detector and noise removing method