JPH02102894A - Heat protective system - Google Patents

Heat protective system

Info

Publication number
JPH02102894A
JPH02102894A JP1247842A JP24784289A JPH02102894A JP H02102894 A JPH02102894 A JP H02102894A JP 1247842 A JP1247842 A JP 1247842A JP 24784289 A JP24784289 A JP 24784289A JP H02102894 A JPH02102894 A JP H02102894A
Authority
JP
Japan
Prior art keywords
thermal protection
core
protection system
support structure
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1247842A
Other languages
Japanese (ja)
Other versions
JP2538351B2 (en
Inventor
Harry A Scott
ハリー・エィ・スコット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing North American Inc
Original Assignee
Rockwell International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwell International Corp filed Critical Rockwell International Corp
Publication of JPH02102894A publication Critical patent/JPH02102894A/en
Application granted granted Critical
Publication of JP2538351B2 publication Critical patent/JP2538351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/36Structures adapted to reduce effects of aerodynamic or other external heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/38Constructions adapted to reduce effects of aerodynamic or other external heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/52Protection, safety or emergency devices; Survival aids
    • B64G1/58Thermal protection, e.g. heat shields
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/008Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/028Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • C04B2237/406Iron, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Critical Care (AREA)
  • Emergency Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Remote Sensing (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE: To provide a resistant, lightweight and reusable thermal protection and structure system suitable for a hypersonic aerospace vehicle by integrally connecting an outer sheet formed of a ceramic matrix to a rigid insulator core containing porous foamed ceramic, and connecting the core to an inner support structure. CONSTITUTION: A thermal protection system is constituted of an outer face sheet or an external shell 10 for forming a hard resistant outer front surface, a rigid insulator core 12 to which the cuter face sheet 10 is integrally connected, and a main load carrier or a structural member 15 to be attached to the insulator core 12 by bonding. The structural member 15 is provided with an inner face sheet 16 and connected to the other structural element 14. The outer face sheet 10 is a ceramic matrix basically formed of high-temperature ceramic, and preferred ceramic preferable to be used is silicon carbide. The rigid insulator core 12 is formed of foamed ceramic, and a specified ceramic material to be used is silicon carbide of silicon nitride.

Description

【発明の詳細な説明】 発明の背景 この発明は極超音速航空宇宙船に熱抵抗または保護を与
えるためのシステムに関し、特にこのような運搬具に対
する組合わせられた一体構造および熱保護システム(I
s/TPS)の生産に向けられる。
BACKGROUND OF THE INVENTION This invention relates to systems for providing thermal resistance or protection to hypersonic aerospace vehicles, and more particularly to systems for providing thermal resistance or protection to hypersonic aerospace vehicles, and more particularly to systems for providing thermal resistance or protection to such vehicles.
s/TPS).

航空宇宙船の熱保護システムの設計において、このよう
なシステムは基本運搬具構造に過度な熱を伝えるべきで
はなく、低いff1lを持ち、そして低い熱応力を生じ
るべきである。現在の熱保護システムの概念は再使用可
能表面防熱材として多数のセラミックタイルを使用し、
結果的にかなり望ましくない重さとなる多数の継手と構
造の熱膨張差を受ける。このようなタイルは弱く、脆く
、表面亀裂を受けやすく、生産および維持の両方に対し
て労働集約的であるというさらなる欠点を有する。
In the design of thermal protection systems for aerospace vehicles, such systems should not transfer excessive heat to the basic vehicle structure, have low ff1l, and produce low thermal stresses. Current thermal protection system concepts use large numbers of ceramic tiles as reusable surface insulation,
Numerous joints and structures are subject to differential thermal expansion which results in considerable undesirable weight. Such tiles have the further disadvantage of being weak, brittle, susceptible to surface cracking, and labor intensive both for production and maintenance.

種々の熱保護システムがこれらの問題を克服するために
先行技術において開発された。したがって、米国特許番
号節4.344.591は先行技術のタイルシステムを
置換する多重壁の熱保護システムに向けられる。この特
許は硬い外部表面のパネル概念を使用する。1つの実施
例において、多重壁パネルは窪んだまた平坦なチタン合
金箔シートおよびビードされたスカーフされた端縁シー
ルの交互層によって形成される。付加的な実施例は挾持
パネルに中間の繊維状防熱材を使用し、第3の実施例は
外側パネル表皮として蛙化物コーティングされたコロン
ビウムワッフルおよび繊維状層の中間保護を使用する。
Various thermal protection systems have been developed in the prior art to overcome these problems. Accordingly, US Patent No. 4.344.591 is directed to a multi-wall thermal protection system that replaces prior art tile systems. This patent uses a hard exterior surface panel concept. In one embodiment, a multi-wall panel is formed by alternating layers of recessed and flat titanium alloy foil sheets and beaded scarfed edge seals. Additional embodiments use an intermediate fibrous insulation in the sandwich panels, and a third embodiment uses a frog coated columbium waffle as the outer panel skin and an intermediate protection of a fibrous layer.

この特許のパネルは熱荷重を補償するためにそれるクリ
ップによって機体の一部である荷重耐性チャネルに装着
される。
The panels of this patent are attached to load-bearing channels that are part of the fuselage by deflecting clips to compensate for thermal loads.

その他の温度防熱材および保護システムの例は特許番号
節3.177.811 ;第3,793゜861;第3
.955.034;第4.173゜187:第3.23
6.476;TS3,920゜339;第4.112,
179に開示される。
Other examples of thermal insulation and protection systems are found in Patent Nos. 3.177.811; 3,793°861;
.. 955.034; No. 4.173゜187: No. 3.23
6.476; TS3,920°339; No. 4.112,
179.

したがって本発明の目的は極超音速運搬具に対して改善
された新規の熱保護システムを提供することである。
It is therefore an object of the present invention to provide a new and improved thermal protection system for hypersonic vehicles.

この発明の別の目的は高速航空宇宙船に対して耐性で軽
量の再使用可能熱保護および構造システムを提供するこ
とである。
Another object of this invention is to provide a durable, lightweight, reusable thermal protection and structural system for high speed aerospace vehicles.

この発明のさらなる目的は簡単に構造化および維持され
、かつ航空宇宙船の胴体、翼または垂直尾翼のような機
体の構成要素と一体的に形成される高速航空宇宙船のた
めの改善されたコスト有効熱保護または防熱材システム
を提供することである。
A further object of this invention is to provide improved cost for high speed aerospace vehicles that are easily constructed and maintained and are integrally formed with airframe components such as the aerospacecraft's fuselage, wings or vertical tail. The objective is to provide an effective thermal protection or insulation system.

発明の要約 上記の目的および利点はこの発明に従って一体構造およ
び熱保護システム(Is/TPS)の提供によって達成
され、硬い耐性の外部表面部材、剛性の絶縁体コアを本
質的に含む極超音速航空機のために特に設計され、外部
表面部材は絶縁体コアに一体的に接続され、内部主要荷
重キャリア構造は絶縁体コアに適当に連結または取付け
られる。
SUMMARY OF THE INVENTION The above objects and advantages are achieved in accordance with the present invention by providing an integral structure and thermal protection system (Is/TPS) for a hypersonic aircraft comprising essentially a hard resistant exterior surface member, a rigid insulator core. The external surface member is integrally connected to the insulator core and the internal primary load carrier structure is suitably connected or attached to the insulator core.

1つの実施例に従って、外部表面部材は炭化硅素材料で
あり、剛性絶縁体コアは発泡された炭化硅素であり、主
要荷重キャリア構造は黒鉛エポキシ複合材からなる。
According to one embodiment, the exterior surface member is a silicon carbide material, the rigid insulator core is foamed silicon carbide, and the primary load carrier structure is comprised of a graphite epoxy composite.

この取りあわせは熱保護システムが主要荷重キャリア構
造を支持また安定化して挟持として機能する。熱保護シ
ステムの絶縁体コアは適当なコンパチブル処理たとえば
、接合、ろう付け、または化学的気相成長によって荷重
キャリア構造またはそこの構成要素に連結される。
This arrangement functions as a crimp, with the thermal protection system supporting and stabilizing the primary load carrier structure. The insulator core of the thermal protection system is connected to the load carrier structure or components thereof by a suitable compatible process, such as bonding, brazing, or chemical vapor deposition.

この発明の熱保護システムの硬い外部表面は異物からの
取扱いおよび損傷に耐える。この発明のシステムは直面
する最大の温度においても酸化に耐え、また防水である
。この発明のIs/TPSは薄い外部表面および荷重の
伝搬に主要構造を援助する低い密度の絶縁体コアの使用
によって軽量である。この発明のシステムは航空宇宙船
の連続した動作が熱保護システムを劣化または消散しな
いので再使用可能である。
The hard exterior surface of the thermal protection system of this invention resists handling and damage from foreign objects. The system of the invention resists oxidation even at the highest temperatures encountered and is waterproof. The Is/TPS of this invention is lightweight due to the use of thin exterior surfaces and a low density insulator core that aids the primary structure in load propagation. The system of the present invention is reusable because continuous operation of the aerospace vehicle does not degrade or dissipate the thermal protection system.

発明の詳細な説明および好ましい実施例図面の第1図を
参照すると、この発明に従った一体構造および熱保護シ
ステムを図示して、その配置は硬い耐性外部表面を形成
する外部フェースシートまたは外側シェル、外側フェー
スシート10が一体的に接続される剛性の絶縁体コア1
2、およびたとえば接合によって絶縁体コア12に適切
に連結または取付けられる主要荷重キャリアまたは構造
部材15からなる。構造部材15は内部フェースシート
16を有し、これは構造部材15の別の構成要素14と
一体であるまたは連結される。
DETAILED DESCRIPTION OF THE INVENTION AND PREFERRED EMBODIMENTS Referring to FIG. 1 of the drawings, there is illustrated a monolithic construction and thermal protection system according to the invention, the arrangement of which includes an outer face sheet or outer shell forming a hard, resistant outer surface. , a rigid insulator core 1 to which an outer facesheet 10 is integrally connected.
2, and a primary load carrier or structural member 15 suitably connected or attached to the insulator core 12, for example by bonding. Structural member 15 has an interior facesheet 16 that is integral with or coupled to another component 14 of structural member 15 .

外部フェースシートまたは外部シェル10は基本的に高
温セラミックからなるセラミックマトリクスである。使
用される好ましいセラミックは炭化硅素である。
The outer facesheet or outer shell 10 is a ceramic matrix consisting essentially of high temperature ceramic. The preferred ceramic used is silicon carbide.

このようなセラミックマトリクスの例は、ネクステル(
Nextel)繊維強化炭化硅素の形にある。ネクステ
ル繊維はアルミナ/シリカ/ボリア(bo r i a
)繊維である。化学的気相成長は望むのならファイバ中
に付加的炭化硅素を析出するために使用することができ
る。
An example of such a ceramic matrix is Nextel (
Nextel) in the form of fiber-reinforced silicon carbide. Nextel fiber is alumina/silica/boria
) It is a fiber. Chemical vapor deposition can be used to deposit additional silicon carbide into the fiber if desired.

外側フェースシートまたはシェル10はネクステルのよ
うな、熱処理繊維に析出されたコーティングの形である
こともできる。こうして、炭化硅素の比較的滑らかな外
側コーティングが炭化硅素の気相成長によってこのよう
な繊維に析出することができ、これはフェースシートの
一体的な部分となる。
The outer facesheet or shell 10 can also be in the form of a coating deposited on heat treated fibers, such as Nextel. Thus, a relatively smooth outer coating of silicon carbide can be deposited on such fibers by vapor deposition of silicon carbide, which becomes an integral part of the facesheet.

外側フェースシート10の厚さは、本質的にセラミック
マトリクスで形成されると、0.01’のオーダである
ことができ、外側フェースシート10を形成するために
使われる気相成長された炭化硅素コーティングの厚さは
約0.001’のオーダであることができる。外側フェ
ースシート10の厚さは一般に約0.01’から約0.
06’の範囲にわたることができる。外側フェースシー
ト10を、空気力学的、熱的そして構造的荷重、ならび
に取扱いの容易さと安全性と一致して、できるだけ薄く
するのが好ましい。
The thickness of the outer facesheet 10 can be on the order of 0.01' when formed essentially of a ceramic matrix and the vapor-deposited silicon carbide used to form the outer facesheet 10. The thickness of the coating can be on the order of about 0.001'. The outer facesheet 10 generally has a thickness of about 0.01' to about 0.01'.
06'. It is preferred that the outer facesheet 10 be as thin as possible consistent with aerodynamic, thermal and structural loads, as well as ease and safety of handling.

剛性の絶縁体コア12は発泡されたセラミックで形成さ
れる。使用できる特定のセラミック材料は炭化硅素また
は窒化硅素である。
Rigid insulator core 12 is formed from foamed ceramic. Particular ceramic materials that can be used are silicon carbide or silicon nitride.

絶縁体コア12は外側フェースシート10の上に直接作
られる。一般に、たとえば発泡された炭化硅素の形であ
る絶縁体コア12は、フェースシートの炭化硅素の化学
的気相成長によってフェースシート10に析出される。
An insulator core 12 is built directly onto the outer facesheet 10. Generally, insulator core 12, for example in the form of foamed silicon carbide, is deposited on facesheet 10 by chemical vapor deposition of silicon carbide on the facesheet.

こうして、絶縁体コア12は外側フェースシート10に
一体的に取付けられる。
Insulator core 12 is thus integrally attached to outer facesheet 10.

発泡コア12は多孔質である。それゆえに、はとんどの
応用に対してできるだけ軽いコアを有することが望まし
い。セラミックコア12の密度は立方フィートあたり約
0. 5から10ボンド、好ましくは立方フィートあた
り約0. 5から1゜5ボンドの範囲にわたることがで
きる。前述のように化学的気相成長によって析出される
と、セラミック絶縁体コア12は泡状の外形を有する。
Foam core 12 is porous. Therefore, it is desirable to have a core that is as light as possible for most applications. Ceramic core 12 has a density of approximately 0.0 mm per cubic foot. 5 to 10 bonds, preferably about 0.000000000000 bonds per cubic foot. It can range from 5 to 1°5 bonds. When deposited by chemical vapor deposition as described above, the ceramic insulator core 12 has a bubble-like profile.

コア12の厚さは望ましい防熱材の量、航空宇宙船が高
温にあると予n1される時間の長さ、運搬具の外部と内
部の間の望ましい温度差の性質の関数である。したがっ
て、選択されたセラミック発泡材料、発泡密度、および
その厚さは、その特務飛行の終わりまでに運搬具の外側
または内側の間の温度の差を決定する判定基準である。
The thickness of the core 12 is a function of the amount of insulation desired, the length of time the aerospace vehicle is expected to be at an elevated temperature, and the nature of the desired temperature differential between the exterior and interior of the vehicle. Therefore, the selected ceramic foam material, foam density, and its thickness are the criteria that determine the temperature difference between the outside or inside of the vehicle by the end of its mission flight.

一般に、絶縁体コア12の厚さは約0.5′から約6′
の範囲にわたることができる。
Generally, the thickness of the insulator core 12 is about 0.5' to about 6'
can span a range of

一般に15で示される主要構造材料は複合材、金属およ
び繊維強化を含む金属マトリクスを含む材料からなるこ
とができる。機体構成要素のような主要構造に対する材
料選択は、地理的に変化する外部温度および内部温度の
許容差に依存する。
The primary structural material, generally indicated at 15, can be comprised of materials including composites, metals, and metal matrices including fiber reinforcement. Material selection for major structures, such as airframe components, depends on geographically varying external and internal temperature tolerances.

たとえば機体の主要構造材料として使用することができ
る複合材は、黒鉛エポキシおよび黒鉛ポリイミドを含む
ことができる。黒鉛繊維の代わりに、このような複合材
の強化繊維は高い弾性係数のために、たとえば硼素エポ
キシおよび硼素ポリイミド複合材のような硼素繊維を含
むことができる。
For example, composite materials that can be used as the primary structural material of the airframe can include graphite epoxy and graphite polyimide. Instead of graphite fibers, the reinforcing fibers of such composites can include boron fibers, such as boron epoxy and boron polyimide composites, due to their high elastic modulus.

主要構造材料として使用される金属はアルミニウムおよ
びアルミニウム合金、たとえばアルミニウムリチウム、
ならびにチタンおよびチタン合金、たとえばチタンアル
ミナイド(aluminide)を含む。
The metals used as main structural materials are aluminum and aluminum alloys, such as aluminum lithium,
and titanium and titanium alloys, such as titanium aluminide.

主要構造材料として使用することができる金属マトリク
ス材料はベリリウム、アルミニウム、およびアルミニウ
ム合金、たとえばアルミニウムリチウムと、チタンおよ
びその合金たとえばチタンアルミナイドと、鋼と、モリ
ブデン合金と、インコネルのようなニッケル合金とを含
み、このような金属および金属合金は黒鉛、炭化硅素、
または硼素繊維もしくはウィスカを含む。
Metal matrix materials that can be used as primary structural materials include beryllium, aluminum, and aluminum alloys, such as aluminum lithium, titanium and its alloys, such as titanium aluminide, steel, molybdenum alloys, and nickel alloys such as Inconel. Such metals and metal alloys include graphite, silicon carbide,
or contain boron fibers or whiskers.

一般に、アルミニウムおよび黒鉛エポキン主要構造材料
は、航空宇宙船の機甲のようなより低い内部温度がある
領域、またはアビオニクスのような装置を保護するため
に使われる。たとえば航空宇宙船の内部の装置がより高
い温度によ(耐える、たとえば600’ Fのオーダの
温度によく耐える電気的または液圧的装置では、構造的
材料は黒鉛ポリイミドからなることができる。高温によ
く耐えることができる主要構造材料は鋼、インコネルの
ようなニッケル合金、モリブデン合金、および4−9ン
を含む。これらの高温材料はメタルマトリクス複合材の
形で使用され、これは黒鉛または炭化硅素繊維そしてい
くつかの場合では硼素uA維のような強化繊維を含む金
属シートであることができる。使用される繊維の種類は
航空宇宙船の構造材料の特定の応用および運搬具で許さ
れる最大内部温度に依存する。こうして、たとえばアル
ミニウムリチウム合金および黒鉛エポキシ主要構造材料
は約300’ Fのオーダの温度に耐え得る。チタンア
ルミナイド合金は1200°ないし1500°Fの温度
抵抗能力をHする。
Generally, aluminum and graphite Epokin primary structural materials are used in areas with lower internal temperatures, such as the armor of aerospace vehicles, or to protect equipment such as avionics. For example, in electrical or hydraulic equipment where equipment inside an aerospace vehicle can withstand higher temperatures, e.g., temperatures on the order of 600'F, the structural material may consist of graphite polyimide. The primary structural materials that can withstand well It can be a metal sheet containing reinforcing fibers such as silicon fibers and in some cases boron uA fibers.The type of fibers used depends on the particular application of the aerospacecraft structural material and the maximum allowable for the vehicle. It depends on the internal temperature. Thus, for example, aluminum lithium alloys and graphite epoxy primary structural materials can withstand temperatures on the order of about 300° F. Titanium aluminide alloys have a temperature resistance capability of 1200° to 1500° F.

主要構造が引張荷重を受けるのならば、複合材または金
属マトリクス材料のように繊維強化を有することは有利
である。
If the main structure is subjected to tensile loads, it is advantageous to have fiber reinforcement, such as in composite or metal matrix materials.

セラミックマトリクス外側フェースシート10および発
泡セラミックからなる剛性絶縁体コア12を実現化する
熱保護システムは主要構造材料の組成に特に依存する適
切な手段、たとえば接合、ろう付けまたは化学的気相成
長によってフェースシート16経由で主要構造15に連
結または一体的に結合される。したがって、構造材料と
して黒鉛エポキシ複合材料またはアルミニウムまたはそ
の合金を使うと、エポキシまたはポリイミドが、たとえ
ば炭化硅素の発泡セラミックの絶縁体コア12を組構造
材料15のフェースシート16に接合するために使われ
る。主要tMffi材料としてチタンアルミナイド、ま
たは鋼またはインコネルマトリクス材料を使用すると、
このような材料はより高い接合温度を得るために、発泡
された炭化硅素のようなセラミック絶縁体コア12に適
当にろう付けされるが、これはこのような高温材料の有
機的接合が実行可能ではないからである。
The thermal protection system realizing the ceramic matrix outer face sheet 10 and the rigid insulator core 12 of foamed ceramic can be applied to the face by suitable means depending specifically on the composition of the main structural materials, such as bonding, brazing or chemical vapor deposition. It is connected or integrally coupled to the main structure 15 via the sheet 16 . Thus, using a graphite-epoxy composite or aluminum or its alloys as the structural material, the epoxy or polyimide is used to bond the insulator core 12 of, for example, silicon carbide foam ceramic to the face sheet 16 of the composite structural material 15. . Using titanium aluminide, or steel or Inconel matrix materials as the primary tMffi material,
Such materials are suitably brazed to a ceramic insulator core 12, such as foamed silicon carbide, to obtain higher bonding temperatures, since organic bonding of such high temperature materials is feasible. This is because it is not.

フェースシートすなわち10および16はセラミックコ
ア16の両側に使用されるのが注目される。こうして、
たとえば一体炭化硅素フエースシート10および炭化硅
素発泡コア12から形成される熱保護システムまたはユ
ニットは、15で示される基本構造機体に接合され、こ
れがたとえば運搬具の外側表皮を形成する。こうして、
このような運搬具16の外側表皮は部材10.12およ
び16からなる挾持の内部フェースシートとなる。
It is noted that facesheets 10 and 16 are used on either side of ceramic core 16. thus,
A thermal protection system or unit formed, for example, from an integral silicon carbide face sheet 10 and a silicon carbide foam core 12 is joined to a basic structural fuselage, indicated at 15, which forms, for example, the outer skin of the vehicle. thus,
The outer skin of such carrier 16 becomes the inner facesheet of the clamp consisting of members 10.12 and 16.

構造構成要素材料14は、特定の主要構造構成要素材料
14の組成に依存して、前述のようにたとえば接合、ろ
う付け、または機械的)7スナによって内側フェースシ
ート16経由で部材10.12および16から形成され
る熱保護システムに装着されることができる。
The structural component material 14 is attached to the members 10.12 and 10.12 via the inner facesheet 16 by, for example, bonding, brazing, or mechanically as described above, depending on the composition of the particular primary structural component material 14. 16 can be attached to a thermal protection system formed from 16.

こうして、絶縁体コア12に取付けられる内側フェース
シート16を与えるのは、上記の接合またはろう付は動
作である。これは外側フェースシート10を上に伴う剛
性発泡コア12が、薄いたとえば金属のフェースシート
またはパネル16を座屈またはしわにならないように支
持することを可能にする。このような構造支持はフェー
スシート16の厚さを減じる。この構造的組合わせはこ
の発明の一体構造および熱保護システムを与える。
Thus, it is the bonding or brazing operation described above that provides the inner facesheet 16 attached to the insulator core 12. This allows the rigid foam core 12 with the outer facesheet 10 thereon to support a thin, eg, metal, facesheet or panel 16 without buckling or wrinkling. Such structural support reduces the thickness of face sheet 16. This structural combination provides the monolithic structure and thermal protection system of this invention.

図面の第2図はこの発明に従った一体構造および熱保護
システム(Is/TPS)を含む航空宇宙船の前胴体構
造の一部分を示し、これは炭化硅素央合材外側表皮また
はフェースシート20を含み、それが炭化硅素発泡絶縁
体コア22に接合され、さらにチタンまたはチタンアル
ミナイドの内側フェースシート25経由で構造部材また
はブレード24に接合される。
Figure 2 of the drawings shows a portion of an aerospacecraft forward fuselage structure including an integral structure and thermal protection system (Is/TPS) according to the present invention, which includes a silicon carbide center composite outer skin or face sheet 20. 2, which is bonded to a silicon carbide foam insulation core 22 and to a structural member or blade 24 via a titanium or titanium aluminide inner facesheet 25.

第3図は第2図で示されているものの代替的弧状形部胴
体構造を示すが、主要構造は本質的に正弦の形を有する
チタンアルミナイドトラスコア部材28であり、これは
チタンアルミナイドフェースシート30に拡散接合され
、それが高温ろう付は材料によって炭化硅素発泡コア2
2に接合される。こうして、主要トラスコア構造部材2
8はフェースシート30経由で発泡コア22および外側
フェースシート20に一体的に接続され、一体構造およ
び熱保護システムを形成する。
FIG. 3 shows an alternative arc-shaped fuselage structure to that shown in FIG. 2, but the primary structure is a titanium aluminide truss core member 28 having an essentially sinusoidal shape, which is comprised of a titanium aluminide face sheet. 30 is diffusion bonded and it is high temperature brazed by the material silicon carbide foam core 2
2. In this way, the main truss core structural member 2
8 is integrally connected to the foam core 22 and outer facesheet 20 via facesheet 30 to form a unitary structure and thermal protection system.

この発明の概念は翼および垂直尾翼を含む航空宇宙船の
他の構造機体構成要素に適用することもできる。したが
りて、たとえば黒鉛エポキシまたは黒鉛ポリイミドの翼
および尾翼構造部材は、エポキシまたはポリイミドによ
って種々の黒鉛エポキシ構造部材に一体的に接合される
発泡炭化硅素コアを伴なう炭化硅素外側フェースシート
を含むこの発明の熱保護システムによって温度的に安定
化されることができる。
The concepts of the invention may also be applied to other structural airframe components of an aerospace vehicle, including wings and vertical tails. Thus, for example, graphite epoxy or graphite polyimide wing and tail structural members include a silicon carbide outer facesheet with a foamed silicon carbide core that is integrally bonded to various graphite epoxy structural members by the epoxy or polyimide. It can be thermally stabilized by the thermal protection system of this invention.

第4図ではたとえば、一般に黒鉛ポリイミドけた34お
よびリブ36を含む内部構造を有する翼32の断面が示
され、これは外側炭化硅素フェースシート38および発
泡炭化硅素コア42を含む挾持で形成される熱保護シス
テム40によってその外部表面が被覆され、コア42は
黒鉛ポリイミド内側フェースシート43によってけたお
よびリブに適当に接合されて一体構造および熱保護シス
テムを形成する。
In FIG. 4, for example, there is shown a cross-section of a wing 32 having an internal structure that generally includes graphite polyimide girders 34 and ribs 36, which includes a thermal barrier formed by an outer silicon carbide facesheet 38 and a sandwich that includes a foamed silicon carbide core 42. A protection system 40 covers its exterior surface, and the core 42 is suitably joined to the beams and ribs by a graphite polyimide inner facesheet 43 to form a unitary structure and thermal protection system.

第5図では、第6A図および第6B図で示される1組の
外側挾持パネル49の形で熱保護システムを有する黒鉛
ポリイミドけた46およびリブ48で形成される垂直尾
翼構造44が示される。各パネル49は炭化硅素の外側
フェースシート50および内側フェースシート52なら
びに発泡炭化硅素コア54からなる。この例では内Ω1
1フェースシート52はこの発明に従って、ポリイミド
によって尾翼44の内部構造のけたおよびリブに適切に
一体的に接合されている。
In FIG. 5, a vertical stabilizer structure 44 is shown formed of graphite polyimide girders 46 and ribs 48 with a thermal protection system in the form of a set of outer sandwich panels 49 shown in FIGS. 6A and 6B. Each panel 49 is comprised of silicon carbide outer and inner facesheets 50 and 52 and a foamed silicon carbide core 54. In this example, the inner Ω1
1 face sheet 52 is suitably integrally bonded to the struts and ribs of the internal structure of tailplane 44 by polyimide in accordance with the present invention.

この発明に対して種々の変更を行なうことができる。し
たがって、たとえば外側フェースシート10は炭化硅素
以外のセラミックマトリクス飼料、たとえば窒化硅素で
形成されることができる。
Various modifications can be made to this invention. Thus, for example, outer facesheet 10 may be formed of a ceramic matrix material other than silicon carbide, such as silicon nitride.

前述から、この発明はトランズアトモスフエリク(tr
ansata+osphcrie)運搬具のような高速
航空宇宙船の各主要機体構成要素に対して、新規で簡単
な耐性軽量熱保護システムを提供するのがわかり、これ
はこのようなコンポーネントの不可欠な部分を含む。
From the foregoing, it can be seen that the present invention is based on transatmos
It has been found to provide a novel, simple, durable lightweight thermal protection system for each major airframe component of a high-speed aerospace vehicle, such as an ansata+osphcrie) vehicle, which includes an integral part of such components.

当業者にとって種々のさらなるこの発明の変更が起こり
得るので、この発明は添付の特許請求の範囲を除いては
、制限されるものであると解釈してはならない。
Various further modifications of this invention will occur to those skilled in the art, and the invention is not to be construed as limited except as in the appended claims.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に従った一体構造および熱保護システ
ムの断面図を示す。 第2図はこの発明に従った熱保護システムの破断して示
される斜視断面図であり、航空宇宙胴体構造の構成要素
と一体的に形成されている。 第3図は第2図と類似する破断して示される斜視断面図
であり、胴体の異なる構造構成要素に一体的に接続され
るこの発明の熱保護システムである。 第4図はこの発明の熱保護システムを実現化する航空宇
宙船の翼の断面図である。 第5図はこの発明の熱保護システムを組込んだ、航空宇
宙船の垂直尾翼構造の立面斜視図である。 第6A図は第5図の尾翼構造の外側温度防熱材パネルの
1つの立面斜視図である。 第6B図は第6A図の熱保護パネルの拡大部分図であり
、第6A図の円形矢印6a−6aに沿ってとられている
。 図において、10は外側フェースシート、12は絶縁体
コア、14は他の構成要素、15は構造部材、16は内
側フェースシート、20は外側フェースシート、22は
絶縁体コア、24は構造部材またはブレード、25は内
側フェースシート、28はトラスコア部材、30はフェ
ースシート、32は翼、34はげた、36はリブ、38
は外側フェースシート、40は熱保護システム、42は
コア、43は内側フェースシート、44は垂直尾翼構造
、46はげた、48はリブ、49は外側挾持パネル、5
0は外側フェースシート、52は内側フェースシート、
54はコアである。
FIG. 1 shows a cross-sectional view of a monolithic structure and thermal protection system according to the invention. FIG. 2 is a cut away perspective sectional view of a thermal protection system according to the present invention, integrally formed with a component of an aerospace fuselage structure. FIG. 3 is a cut away perspective cross-sectional view similar to FIG. 2, showing the thermal protection system of the present invention integrally connected to different structural components of the fuselage; FIG. 4 is a cross-sectional view of an aerospacecraft wing embodying the thermal protection system of the present invention. FIG. 5 is an elevational perspective view of an aerospacecraft vertical tail structure incorporating the thermal protection system of the present invention. 6A is an elevational perspective view of one of the outer thermal insulation panels of the tail structure of FIG. 5; FIG. FIG. 6B is an enlarged partial view of the thermal protection panel of FIG. 6A taken along circular arrow 6a-6a of FIG. 6A. In the figure, 10 is an outer face sheet, 12 is an insulator core, 14 is another component, 15 is a structural member, 16 is an inner face sheet, 20 is an outer face sheet, 22 is an insulator core, 24 is a structural member or Blade, 25 inner face sheet, 28 truss core member, 30 face sheet, 32 wing, 34 bald, 36 rib, 38
is the outer face sheet, 40 is the thermal protection system, 42 is the core, 43 is the inner face sheet, 44 is the vertical tail structure, 46 is bald, 48 is the rib, 49 is the outer clamping panel, 5
0 is the outer face sheet, 52 is the inner face sheet,
54 is a core.

Claims (1)

【特許請求の範囲】 (1)高速航空機のための熱保護システムであって、 セラミックマトリクスで形成される外側シートと、 多孔質発泡セラミックを本質的に含む剛性絶縁体コアと
を含み、前記外側シートは前記コアに一体的に接続され
、さらに 前記航空機の内部支持構造を含み、前記コアは前記内部
支持構造に適当に連結される、熱保護システム。 (2)前記外側シートが炭化硅素を含む、請求項1に記
載の熱保護システム。 (3)前記外側シートの厚さが約0.01″から0.0
6″の範囲にわたる、請求項1に記載の熱保護システム
。 (4)前記内部支持構造が前記内部構造の部分を形成す
る内側シートによって前記コアに連結され、前記内側シ
ートが前記コアに接合される、請求項1に記載の熱保護
システム。(5)前記絶縁体コアが、炭化硅素および窒
化硅素からなるグループから選ばれた部材を含む、請求
項1に記載の保護システム。 (6)前記コアの密度が立方フィートあたり約0.5か
ら約10ポンドの範囲にわたる、請求項1に記載の熱保
護システム。 (7)前記コアの厚さが約0.5″から約6″の範囲に
わたる、請求項1に記載の熱保護システム。 (8)前記内部支持構造が、複合材料、金属および/ま
たは繊維強化を含む金属マトリクスからなるグループか
ら選ばれた部材を含む、請求項1に記載の熱保護システ
ム。 (9)前記複合材料が黒鉛または硼素繊維で強化された
、エポキシおよびポリイミドからなるグループから選ば
れ、前記金属はアルミニウムおよびその合金ならびにチ
タンおよびその合金からなるグループから選ばれ、前記
金属マトリクスはベリリウム、アルミニウムおよびチタ
ン、およびその合金、鋼、モリブデン合金、およびニッ
ケル合金からなるグループから選ばれ、前記金属マトリ
クスは黒鉛、炭化硅素または硼素繊維を含む、請求項8
に記載の熱保護システム。 (10)前記コアが接合、ろう付けまたは化学的成長に
よって前記内部支持構造に一体的に結合される、請求項
1に記載の熱保護システム。 (11)前記内部支持構造は航空機の胴体、翼または尾
翼構造の一部であり、前記コアは前記内部支持構造の外
側表皮を形成する内側フェースシートによって前記内部
支持構造に装着される、請求項10に記載の熱保護シス
テム。
Claims: (1) A thermal protection system for a high-speed aircraft, comprising: an outer sheet formed of a ceramic matrix; and a rigid insulator core consisting essentially of a porous foamed ceramic; A thermal protection system, wherein the seat is integrally connected to the core and further includes an internal support structure of the aircraft, the core being suitably coupled to the internal support structure. 2. The thermal protection system of claim 1, wherein the outer sheet comprises silicon carbide. (3) The thickness of the outer sheet is about 0.01" to 0.0
The thermal protection system of claim 1, wherein the internal support structure is connected to the core by an internal sheet forming part of the internal structure, and the internal sheet is joined to the core. The thermal protection system of claim 1, wherein: (5) the insulator core comprises a member selected from the group consisting of silicon carbide and silicon nitride. The thermal protection system of claim 1, wherein the core density ranges from about 0.5 to about 10 pounds per cubic foot. (7) The core thickness ranges from about 0.5" to about 6". The thermal protection system of claim 1. (8) The internal support structure comprises a member selected from the group consisting of composite materials, metals and/or metal matrices including fiber reinforcement. Thermal protection system. (9) the composite material is selected from the group consisting of epoxy and polyimide reinforced with graphite or boron fibers, the metal is selected from the group consisting of aluminum and its alloys and titanium and its alloys; 9. The metal matrix is selected from the group consisting of beryllium, aluminum and titanium and their alloys, steel, molybdenum alloys, and nickel alloys, and the metal matrix comprises graphite, silicon carbide or boron fibers.
Thermal protection system described in. 10. The thermal protection system of claim 1, wherein the core is integrally coupled to the internal support structure by bonding, brazing, or chemical growth. (11) The internal support structure is part of a fuselage, wing, or tail structure of an aircraft, and the core is attached to the internal support structure by an inner facesheet forming an outer skin of the internal support structure. 10. Thermal protection system according to 10.
JP1247842A 1988-09-26 1989-09-22 Thermal protection system Expired - Lifetime JP2538351B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US248,687 1988-09-26
US07/248,687 US5154373A (en) 1988-09-26 1988-09-26 Integral structure and thermal protection system

Publications (2)

Publication Number Publication Date
JPH02102894A true JPH02102894A (en) 1990-04-16
JP2538351B2 JP2538351B2 (en) 1996-09-25

Family

ID=22940233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247842A Expired - Lifetime JP2538351B2 (en) 1988-09-26 1989-09-22 Thermal protection system

Country Status (3)

Country Link
US (1) US5154373A (en)
JP (1) JP2538351B2 (en)
DE (1) DE3931976C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019011039A (en) * 2017-04-24 2019-01-24 ロッキード マーティン コーポレイションLockheed Martin Corporation Structural panels for exposed surfaces
RU2705474C1 (en) * 2015-11-16 2019-11-07 Эйрбас Дифенс энд Спейс ГмбХ Aircraft containing heat-shielding component

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236151A (en) * 1991-12-23 1993-08-17 General Electric Company Thermal barrier structure
US5626951A (en) * 1995-04-03 1997-05-06 Rockwell International Corporation Thermal insulation system and method of forming thereof
US5752156A (en) * 1996-03-04 1998-05-12 General Atomics Stable fiber interfaces for beryllium matrix composites
US5958583A (en) * 1996-12-20 1999-09-28 The Boeing Company Alumina-based protective coating for ceramic materials
US6007026A (en) * 1997-06-30 1999-12-28 The Boeing Company Quick installation-removal thermal insulation blanket for space craft
US5928752A (en) * 1997-06-30 1999-07-27 The Boeing Company Quick installation-removal thermal insulation blanket for space craft
US6929866B1 (en) 1998-11-16 2005-08-16 Ultramet Composite foam structures
US6299106B1 (en) * 1999-03-09 2001-10-09 The Boeing Company Thermal insulation utilizing a low profile snap fastener
US7662468B2 (en) * 2000-10-06 2010-02-16 Brock Usa, Llc Composite materials made from pretreated, adhesive coated beads
US6455804B1 (en) * 2000-12-08 2002-09-24 Touchstone Research Laboratory, Ltd. Continuous metal matrix composite consolidation
US6505794B2 (en) 2001-01-24 2003-01-14 The Boeing Company Large thermal protection system panel
US7275720B2 (en) * 2003-06-09 2007-10-02 The Boeing Company Actively cooled ceramic thermal protection system
US7153464B2 (en) * 2003-12-01 2006-12-26 General Electric Company Method of making porous ceramic matrix composites
DE102004001080A1 (en) * 2004-01-05 2005-08-04 Airbus Deutschland Gmbh Arrangement for the interior lining of a passenger cabin of an aircraft
DE102004001078B8 (en) * 2004-01-05 2013-06-13 Airbus Operations Gmbh fuselage
EP1701881B1 (en) * 2004-01-05 2009-03-04 Airbus Deutschland GmbH Aircraft fuselage
US7278608B2 (en) * 2005-06-27 2007-10-09 Johns Manville Reinforced insulation product and system suitable for use in an aircraft
US7374132B2 (en) * 2005-08-23 2008-05-20 Johns Manville Insulation product and system suitable for use in an aircraft
US7367527B2 (en) * 2005-08-23 2008-05-06 Johns Manville Reinforced insulation product and system suitable for use in an aircraft
US7628352B1 (en) * 2005-11-01 2009-12-08 Richard Low MEMS control surface for projectile steering
US7682578B2 (en) 2005-11-07 2010-03-23 Geo2 Technologies, Inc. Device for catalytically reducing exhaust
US7682577B2 (en) 2005-11-07 2010-03-23 Geo2 Technologies, Inc. Catalytic exhaust device for simplified installation or replacement
US7722828B2 (en) 2005-12-30 2010-05-25 Geo2 Technologies, Inc. Catalytic fibrous exhaust system and method for catalyzing an exhaust gas
US7823529B2 (en) 2006-05-23 2010-11-02 The Boeing Company Ceramic foam-filled sandwich panels and method
US8458976B2 (en) * 2009-10-16 2013-06-11 The Boeing Company Thermal protection blanket assembly
US9663404B2 (en) * 2012-01-03 2017-05-30 General Electric Company Method of forming a ceramic matrix composite and a ceramic matrix component
US9034465B2 (en) * 2012-06-08 2015-05-19 United Technologies Corporation Thermally insulative attachment
US9881699B2 (en) 2013-09-16 2018-01-30 The Regents Of The University Of California Cellular structures with interconnected microchannels
CN105083528B (en) * 2015-09-07 2017-10-27 哈尔滨工业大学 A kind of temperature barrier
WO2018158766A1 (en) * 2017-03-01 2018-09-07 Eviation Tech Ltd Airborne structure element with embedded metal beam
CN109941423B (en) * 2019-03-25 2022-05-31 西北工业大学 Modular multifunctional heat-proof structure for hypersonic aircraft
DE102021118395A1 (en) 2021-07-15 2023-01-19 Audi Aktiengesellschaft Battery arrangement with fire protection device and motor vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325588A (en) * 1986-07-18 1988-02-03 三菱重工業株式会社 Heat-resistant load structure
JPS6326753U (en) * 1986-08-05 1988-02-22

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189477A (en) * 1960-04-13 1965-06-15 Carborundum Co Oxidation-resistant ceramics and methods of manufacturing the same
US3177811A (en) * 1960-10-17 1965-04-13 Ling Temco Vought Inc Composite heat-resistant construction
US3236476A (en) * 1961-01-10 1966-02-22 Boeing Co Heat insulation for hypersonic vehicles
US3395035A (en) * 1963-10-01 1968-07-30 Martin Marietta Corp Resin impregnated ceramic heat shield and method of making
US4173187A (en) * 1967-09-22 1979-11-06 The United States Of America As Represented By The Secretary Of The Army Multipurpose protection system
US3793861A (en) * 1972-03-03 1974-02-26 Mc Donnell Douglas Corp Transpiration cooling structure
US3920339A (en) * 1973-11-28 1975-11-18 Nasa Strain arrestor plate for fused silica tile
US3955034A (en) * 1974-06-24 1976-05-04 Nasa Three-component ceramic coating for silica insulation
US3930085A (en) * 1975-02-13 1975-12-30 Us Army Preparation of thermal barriers
US4112179A (en) * 1975-12-10 1978-09-05 Maccalous Joseph W Method of coating with ablative heat shield materials
US4344591A (en) * 1979-09-05 1982-08-17 The United States Of America Asrepresented By The Administrator Of The National Aeronautics And Space Administration Multiwall thermal protection system
US4338368A (en) * 1980-12-17 1982-07-06 Lovelace Alan M Administrator Attachment system for silica tiles
US4578527A (en) * 1983-11-16 1986-03-25 Optical Coating Laboratory, Inc. Articles having improved reflectance suppression

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325588A (en) * 1986-07-18 1988-02-03 三菱重工業株式会社 Heat-resistant load structure
JPS6326753U (en) * 1986-08-05 1988-02-22

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2705474C1 (en) * 2015-11-16 2019-11-07 Эйрбас Дифенс энд Спейс ГмбХ Aircraft containing heat-shielding component
US10793249B2 (en) 2015-11-16 2020-10-06 Airbus Defence and Space GmbH Aircraft having a thermal insulation component
JP2019011039A (en) * 2017-04-24 2019-01-24 ロッキード マーティン コーポレイションLockheed Martin Corporation Structural panels for exposed surfaces

Also Published As

Publication number Publication date
DE3931976A1 (en) 1990-03-29
DE3931976C2 (en) 2001-08-16
US5154373A (en) 1992-10-13
JP2538351B2 (en) 1996-09-25

Similar Documents

Publication Publication Date Title
JP2538351B2 (en) Thermal protection system
US8097106B2 (en) Method for fabricating composite structures having reinforced edge bonded joints
ES2699409T3 (en) Composite structure of ceramic matrix that has a grooved core and method of preparing it
US6655633B1 (en) Tubular members integrated to form a structure
EP0783960B1 (en) Titanium-polymer hybrid laminates
US4713275A (en) Ceramic/ceramic shell tile thermal protection system and method thereof
US8869673B2 (en) Structural panel with ballistic protection
US4877689A (en) High temperature insulation barrier composite
US7485354B2 (en) Thermal protection system for a vehicle
ES2430208T3 (en) Composite structure that has a ceramic frame core and method of manufacturing it
US4456208A (en) Shell tile thermal protection system
GB2173467A (en) Spacecraft structure
CA2473346A1 (en) Lightweight structure particularly for aircraft
US6592981B1 (en) Oxidation resistant insulating sandwich tiles
EP3085616B1 (en) Embedded tear strips in metal structures
EP3360803B1 (en) Rigidized hybrid insulating non-oxide thermal protection system and method of producing a non-oxide ceramic composite for making the same
US6367740B1 (en) Air foil having a hybrid leading edge construction
CN106240092B (en) Face-off panel thermal protection system and the method for manufacturing the system
US5771680A (en) Stiffened composite structures and method of making thereof
US5968671A (en) Brazed composites
US5407727A (en) Porous load bearing materials
US4434201A (en) Porous panel
WO2001009404A2 (en) Surface sheet, sandwich structure and articles using them
US4693435A (en) High speed aircraft control surface
US7498077B2 (en) Metal matrix composite structures

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 14