JPH0195182A - Thin-film electroluminescent phosphor - Google Patents

Thin-film electroluminescent phosphor

Info

Publication number
JPH0195182A
JPH0195182A JP62251584A JP25158487A JPH0195182A JP H0195182 A JPH0195182 A JP H0195182A JP 62251584 A JP62251584 A JP 62251584A JP 25158487 A JP25158487 A JP 25158487A JP H0195182 A JPH0195182 A JP H0195182A
Authority
JP
Japan
Prior art keywords
thin film
phosphor
emission
layer
film electroluminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62251584A
Other languages
Japanese (ja)
Inventor
Shinji Okamoto
信治 岡本
Eiichiro Nakazawa
中沢 叡一郎
Yuzuru Tsuchiya
土屋 譲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP62251584A priority Critical patent/JPH0195182A/en
Publication of JPH0195182A publication Critical patent/JPH0195182A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To obtain the title phosphor capable of emitting a white light corresponding to the standard light source A, by mixing SrS as its principal constituent with Ce and Sm as emission activators. CONSTITUTION:The title phosphor contains SrS as its principal constituent, and Ce and Sm as emission activators. Said emission activators are used each in such an amount that the ratio of the number of Ce or Sm atoms to that of Sr atoms is 0.001-0.05, and they are used in the form of, e.g., the metal, halide, sulfide or oxide of these elements. For example, the title phosphor is formed from a first layer of SrS containing Ce and a second layer of SrS containing Sm. Conventional phosphors containing ZnS as its principal constituent and Pr as activator have been known, but they tend to emit a greenish white light. The phosphor of this invention is capable of emitting a white light corresponding to the standard light source A. By varying the amount of the activators added and the thickness of a light emitting layer, emission of a white light depending upon various applications can also be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は薄膜電場発光蛍光体に関し、特に表示機器およ
び発光応用デバイスに使用される薄膜電場発光蛍光体に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thin film electroluminescent phosphor, and particularly to a thin film electroluminescent phosphor used in display equipment and light emitting application devices.

〔発明の概要〕[Summary of the invention]

本発明は薄膜電場発光蛍光体において、主成分としての
硫化ストロンチウムと、付活剤としてのセリウムおよび
サマリウムとからなるように構成することにより、白色
発光を得ることができるようにしたものである。
The present invention is a thin film electroluminescent phosphor that is configured to consist of strontium sulfide as a main component and cerium and samarium as activators, thereby making it possible to obtain white light emission.

〔従来の技術〕[Conventional technology]

従来、表示機器および発光応用デバイス等の薄膜電場発
光電子に使用される薄膜電場発光蛍光体には種々のもの
が使用されている。その蛍光体の中で、白色発光の蛍光
体として、硫化亜鉛(ZnS)を主成分とし、これに付
活剤としてプラセオジム(Pr)を添加したものが知ら
れている。
Conventionally, various thin film electroluminescent phosphors have been used for thin film electroluminescent electronic devices such as display equipment and light emitting application devices. Among these phosphors, one that has zinc sulfide (ZnS) as a main component and has praseodymium (Pr) added thereto as an activator is known as a white-emitting phosphor.

(発明が解決しようとする問題点) しかしながら、上に述へた蛍光体は緑白色であり、色度
図の上で黒体輻射による標準光源の位置とはかなり外れ
た位置にある。
(Problems to be Solved by the Invention) However, the above-mentioned phosphor is green-white and is located at a position on the chromaticity diagram that is far away from the position of the standard light source due to black body radiation.

そこで、本発明の目的は、上述のような問題点を解消し
、標準A光源に相当するような白色発光を得ることがで
きる薄膜電場発光蛍光体を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a thin film electroluminescent phosphor capable of solving the above-mentioned problems and producing white light emission equivalent to a standard A light source.

〔問題点を解決するための手段〕[Means for solving problems]

このような目的を達成するために、木発明は、主成分と
しての硫化ストロンチウムと、付活剤としてのセリウム
およびサマリウムとから構成されることを特徴とするも
のである。
In order to achieve such an object, the wood invention is characterized in that it is composed of strontium sulfide as a main component and cerium and samarium as activators.

木発明の薄膜電場発光蛍光体を、例えば、交流薄膜電場
発光素子に適用する場合には、次のような構造となる。
When the thin film electroluminescent phosphor of the invention is applied to, for example, an AC thin film electroluminescent device, the structure will be as follows.

まず、基板ガラス上に透明電極を形成し、その上に絶縁
層として高話電体の薄膜を0.1−0.3 μmの厚さ
にスパッタあるいは電子ビーム蒸着する。
First, a transparent electrode is formed on a glass substrate, and a thin film of a high-density conductor is formed thereon as an insulating layer to a thickness of 0.1 to 0.3 μm by sputtering or electron beam evaporation.

次に、発光層として本蛍光体薄膜を0.2−2 μmの
厚さに形成する。薄膜の形成は、電子ビーム蒸着、スパ
ッター、化学的気相成長、スプレー熱化成などの方法に
よって行う。発光色の混合を二層型で行う場合には、こ
の上にもう一方の付活剤を含んだ蛍光体薄膜を同様に形
成する。二重絶縁型と呼ばれるタイプの素子では、発光
層の上に第二絶縁層を形成するが、省略したタイプもあ
る。最後にアルミニウム電極を蒸着する。
Next, the present phosphor thin film is formed as a light emitting layer to a thickness of 0.2-2 μm. The thin film is formed by methods such as electron beam evaporation, sputtering, chemical vapor deposition, and spray thermal conversion. When mixing the emitted light colors in a two-layer type, a phosphor thin film containing the other activator is similarly formed on top of this. In a type of device called a double insulation type, a second insulation layer is formed on the light emitting layer, but there are also types in which the second insulation layer is omitted. Finally, an aluminum electrode is deposited.

本蛍光体の主成分である硫化ストロンチウム(SrS)
に、付活元素であるセリウム(Ce)とサマリウム(S
m)を添加するには、例えば、これらの元素の金属、あ
るいはハロゲン化物、硫化物、酸化物などの化合物を、
Srの1グラム原子について各々の付活元素が0.00
01〜0.05グラム原子の範囲内で添加し、全体を粉
砕混合した後、蒸着用ペレットやスパッターターゲット
に形成する。このとき発光特性を改善する目的でアルカ
リ金属などの化合物を添加することもある。また、混合
物をベレットやターゲットとして成形する前に、800
℃〜1200℃の不活性ガス(アルゴン、窒素)または
還元性ガス(硫化水素など)の気流中で焼成しておくこ
ともある。
Strontium sulfide (SrS), the main component of this phosphor
In addition, the activation elements cerium (Ce) and samarium (S
m), for example, metals of these elements or compounds such as halides, sulfides, oxides, etc.
Each activating element is 0.00 for 1 gram atom of Sr.
After adding within the range of 0.01 to 0.05 gram atom and pulverizing and mixing the whole, it is formed into a pellet for vapor deposition or a sputter target. At this time, a compound such as an alkali metal may be added for the purpose of improving the luminescent properties. Also, before molding the mixture into pellets or targets, 800
It may be fired in a stream of inert gas (argon, nitrogen) or reducing gas (hydrogen sulfide, etc.) at a temperature of 1200°C to 1200°C.

付活剤の添加量が上記の範囲以下で0.0001グラム
原子よりも少ない場合、発光層内の移動電子の数に比べ
て発光性原子の数が少ないので、衝突励起が起こり難く
、電子の運動エネルギーが発光に変わること無く無駄に
なるので輝度が低下する。
When the amount of the activator added is below the above range and less than 0.0001 gram atom, the number of luminescent atoms is small compared to the number of mobile electrons in the luminescent layer, so collisional excitation is difficult to occur, and electrons are Since kinetic energy is wasted without being converted into light emission, the brightness decreases.

また上述の範囲を越え0.05グラム原子以下添加した
場合には、電子のエネルギーが充分に高まらないうちに
衝突が起こるため発光性原子を励起し得ない、あるいは
、付活原子同志の結合が生じ発光性が失われるなどの理
由によって輝度が低下する。
In addition, if the amount exceeds the above range and adds less than 0.05 g atoms, collisions occur before the electron energy increases sufficiently, making it impossible to excite the luminescent atoms, or the bonding between activated atoms may occur. The brightness decreases due to reasons such as a loss of luminescence.

〔作用〕[Effect]

本発明によれば、硫化ストロンチウム(SrSlを主成
分として、これに発光性付活剤としてセリウム(Ce)
およびサマリウム(Sm)を含むことにより、両者の発
光色の混色により、標準A光源に相当する白色発光を得
ることができる。ざらに付活剤添加量や発光層の膜厚を
変化させることにより、様々の用途に応じた白色を得る
こともできる。
According to the present invention, strontium sulfide (SrSl is the main component) and cerium (Ce) is added as a luminescent activator.
By including samarium (Sm) and samarium (Sm), white light emission corresponding to the standard A light source can be obtained by mixing the emission colors of both. By roughly changing the amount of activator added and the thickness of the light-emitting layer, it is possible to obtain white colors suitable for various uses.

〔実施例〕〔Example〕

以下に、本発明を実施例によって説明する。 The present invention will be explained below by way of examples.

実力伍例1 第1図は、セリウム、サマリクム付活硫化ストロンチウ
ム(SrS:Ce、Sm)白色電場発光薄膜蛍光体を用
いた電場発光素子の発光の分光エネルギー分布(発光ス
ペクトル)である。点線は測定に用いた装置の分光感度
曲線である。発光色は第2図の色度座標上x =0.3
52 y =0.379 に位置した。図中Aは、標準
A光源の色度点を示す。
Excellent Example 1 Figure 1 shows the spectral energy distribution (emission spectrum) of light emission from an electroluminescent device using a cerium and samaricum activated strontium sulfide (SrS:Ce, Sm) white electroluminescent thin film phosphor. The dotted line is the spectral sensitivity curve of the device used for the measurement. The emission color is x = 0.3 on the chromaticity coordinates in Figure 2.
52 y =0.379. A in the figure indicates the chromaticity point of the standard A light source.

本薄膜蛍光体の原料には、次のものを用いた。The following materials were used for this thin film phosphor.

SrS    4  3r CeF3 6.6mg SmF3 6.9mg これらの原料をミキサーにより充分混合し、約2grづ
つを、油圧プレスを用いて蒸着用ベレットに成型する。
SrS 4 3r CeF3 6.6 mg SmF3 6.9 mg These raw materials are thoroughly mixed using a mixer, and about 2 grams each are formed into pellets for deposition using a hydraulic press.

透明電極を備えた耐熱ガラス基板上に五酸化タンタル(
va2os)の絶縁層を高周波スパッターにより予め製
膜しておき、さらにバッファ層として0.1μmの厚み
で硫化亜鉛(ZnS)の蒸着を行った後、上記のベレッ
トを用いて電子ビーム蒸着によフて薄膜蛍光体の発光層
を製作した。膜厚は0.5 μmとした。発光層の上に
再びバッファ層、絶縁層を形成し、最後にアルミニウム
電極を蒸着により製作した。このように製作した素子に
、70〜200V 、 50tlx 〜5k)Izの交
流または、正負交互の方形パルスを印加することにより
、第1図に示した発光スペクトル、あるいは第2図の色
度図に示した発光色をもつ電場発光が生じた。これらの
発光は、3価のCeイオンの5d殻から4f殻への遷移
による発光と3価のSmイオンの4f殻内の遷移による
発光の両方のものであり、その発光色は、第2図の色度
図上でCeの色度点21とSmの色度点22とを結ぶ線
上の一点で表され、その点の位置はCeとSmの添加濃
度に依存する。本実施例の濃度の場合、点23に位置す
る白色発光がえられた。
Tantalum pentoxide (
An insulating layer of va2os) was formed in advance by high-frequency sputtering, and then zinc sulfide (ZnS) was deposited to a thickness of 0.1 μm as a buffer layer. A light-emitting layer of thin-film phosphor was fabricated using this method. The film thickness was 0.5 μm. A buffer layer and an insulating layer were again formed on the light emitting layer, and finally an aluminum electrode was fabricated by vapor deposition. By applying alternating current (70 to 200V, 50tlx to 5k)Iz or alternating positive and negative square pulses to the device thus fabricated, the emission spectrum shown in Figure 1 or the chromaticity diagram in Figure 2 can be obtained. Electroluminescence occurred with the emission color shown. These luminescences are due to the transition of trivalent Ce ions from the 5d shell to the 4f shell, and luminescence due to the transition within the 4f shell of trivalent Sm ions, and the emission colors are shown in Figure 2. It is represented by a point on the line connecting the chromaticity point 21 of Ce and the chromaticity point 22 of Sm on the chromaticity diagram, and the position of that point depends on the added concentration of Ce and Sm. In the case of the concentration of this example, white light emission located at point 23 was obtained.

実施例2 第3図は、セリウム付活硫化ストロンチウム層と、サマ
リウム付活硫化ストロンチウム層との二重薄膜型(Sr
S:Ce/SrS:Sm)白色電場発光薄膜蛍光体を用
いた電場発光素子の発光の分光エネルギー分布(発光ス
ペクトル)である。発光色は第2図の色度座標上x =
 0.352  y = 0.379 に位置した。
Example 2 Figure 3 shows a double thin film type (Sr
This is a spectral energy distribution (emission spectrum) of light emission from an electroluminescent device using a white electroluminescent thin film phosphor (S:Ce/SrS:Sm). The emission color is on the chromaticity coordinates in Figure 2 x =
It was located at 0.352 y = 0.379.

本薄膜蛍光体の原料には、次の(1)、(2)の二つの
ものを用いた。
The following two materials (1) and (2) were used as raw materials for this thin film phosphor.

(1)Sr5  4   g CeF、  6.6mg (2) Sr3  4   g CeF3 6.9mg これらの原料をそれぞれミキサーにより充分混合し、約
2grづつを、油圧プレスを用いて蒸着用ベレットに成
型する。透明電極を備えた耐熱ガラス基板上に五酸化タ
ンタル(Ta205)の絶縁層を高周波スパッターによ
り予め製膜しておき、さらにバッファ層として0.1 
μmの厚みで硫化亜鉛(ZnS)の蒸着を行った。その
上に、上記の原料(1)によるベレットを用いて電子ビ
ーム蒸着により第−層を蒸着し、次いで原料(2)のベ
レットを用いて第二層を蒸着することにより、二重薄膜
蛍光体の発光層を製作した。
(1) Sr5 4 g CeF, 6.6 mg (2) Sr3 4 g CeF3 6.9 mg Each of these raw materials is thoroughly mixed using a mixer, and approximately 2 gr each is formed into a pellet for deposition using a hydraulic press. An insulating layer of tantalum pentoxide (Ta205) is formed in advance on a heat-resistant glass substrate equipped with a transparent electrode by high-frequency sputtering, and a buffer layer of 0.1
Zinc sulfide (ZnS) was deposited to a thickness of μm. On top of that, a first layer is deposited by electron beam evaporation using a pellet made of the above raw material (1), and then a second layer is deposited using a pellet made of raw material (2), thereby forming a double thin film phosphor. A light-emitting layer was fabricated.

膜厚はそれぞれ0.25μmとした。発光層の上に再び
バッファ層、絶縁層を形成し、最後にアルミニウム電極
を蒸着により製作した。このように製作した素子に、7
0〜200V、 50tlz 〜5kHzの交流または
、正負交互の方形パルスを印加することにより、第3図
に示した発光スペクトル、あるいは第2図の色度図に示
した発光色をもつ電場発光が生じた。これらの発光は、
第−層における3価のCeイオンの5d殻から4r殻へ
の遷移による発光と、第二層における3層のSmイオン
の4f穀内の遷移による発光の両方が合わされたもので
あり、その発光色は、第2図の色度図上でCcの色度点
21とSmの色度点22とを結ぶ線上の一点で表され、
その点の位置は第−層のC,eの添加量と膜厚、第二層
のSmの添加量と膜厚の何れにも依存する。本実施例の
濃度と膜厚の場合、色度点24に位置する白色発光かえ
られた。
The thickness of each film was 0.25 μm. A buffer layer and an insulating layer were again formed on the light emitting layer, and finally an aluminum electrode was fabricated by vapor deposition. For the element manufactured in this way, 7
By applying 0 to 200 V, 50 tlz to 5 kHz alternating current or alternating positive and negative square pulses, electroluminescence with the emission spectrum shown in Figure 3 or the emission color shown in the chromaticity diagram of Figure 2 is generated. Ta. These emissions are
The light emission due to the transition of trivalent Ce ions in the first layer from the 5d shell to the 4r shell and the light emission due to the transition within the 4f grain of the three layers of Sm ions in the second layer are combined, and the light emission A color is represented by a point on the line connecting the chromaticity point 21 of Cc and the chromaticity point 22 of Sm on the chromaticity diagram of FIG.
The position of that point depends on both the amount of C and e added and the film thickness of the first layer, and the amount of Sm added and the film thickness of the second layer. In the case of the concentration and film thickness of this example, white light emission located at the chromaticity point 24 was changed.

(発明の効果) 以上説明したよろに、本発明によれば、硫化ストロンチ
ウム(SrS)を主成分として、これに発光性な活剤と
してセリウム(Ce)およびサマリウム(Sn)を含む
ことにより、両者の発光色の混色により、標準A光源に
相当する白色発光を得ることができる。ざらに付活剤添
加量や発光層の膜厚を変化させることにより、様々の用
途に応じた白色を得ることもできる。
(Effects of the Invention) As described above, according to the present invention, strontium sulfide (SrS) is the main component, and cerium (Ce) and samarium (Sn) are included as luminescent activators, so that both By mixing the emitted light colors, white light emission corresponding to the standard A light source can be obtained. By roughly changing the amount of activator added and the thickness of the light-emitting layer, it is possible to obtain white colors suitable for various uses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第3図は、それぞれ本発明による実施例の
薄膜電場発光蛍光体を実施した交流薄膜電場発光電子の
分光エネルギー分布曲線の例を示す特性図、 第2図は本発明による薄膜電場発光蛍光体を実施した交
流薄膜電場発光素子の色度点を示す色度図である。 21、22.23.24  ・・・ 色度点。
1 and 3 are characteristic diagrams showing examples of spectral energy distribution curves of alternating current thin film electroluminescent electrons obtained by implementing the thin film electroluminescent phosphors of the embodiments of the present invention, respectively. FIG. 2 is a chromaticity diagram showing chromaticity points of an AC thin film electroluminescent device implemented with a light emitting phosphor. 21, 22.23.24... Chromaticity point.

Claims (1)

【特許請求の範囲】 1)主成分としての硫化ストロンチウムと、付活剤とし
てのセリウムおよびサマリウムとから構成されることを
特徴とする薄膜電場発光蛍光体。 2)前記付活剤の各々の量がストロンチウムに対して、
原子数比で0.0001ないし0.05であることを特
徴とする特許請求の範囲第1項記載の薄膜電場発光蛍光
体。 3)前記薄膜電場発光体が、硫化ストロンチウム中にセ
リウムを含む第1の層と、硫化ストロンチウム中にサマ
リウムを含む第2の層とから構成されることを特徴とす
る特許請求の範囲第1項または第2項に記載の薄膜電場
発光蛍光体。 4)前記薄膜電場発光蛍光体が、硫化ストロンチウム中
にセリウムおよびサマリウムとを含む層から構成されて
いることを特徴とする特許請求の範囲第1項または第2
項に記載の薄膜電場発光蛍光体。
[Scope of Claims] 1) A thin film electroluminescent phosphor comprising strontium sulfide as a main component and cerium and samarium as activators. 2) The amount of each of the activators relative to strontium is
The thin film electroluminescent phosphor according to claim 1, characterized in that the atomic ratio is 0.0001 to 0.05. 3) The thin film electroluminescent material is comprised of a first layer containing cerium in strontium sulfide and a second layer containing samarium in strontium sulfide. Or the thin film electroluminescent phosphor according to item 2. 4) The thin film electroluminescent phosphor is composed of a layer containing cerium and samarium in strontium sulfide.
The thin film electroluminescent phosphor described in Section 1.
JP62251584A 1987-10-07 1987-10-07 Thin-film electroluminescent phosphor Pending JPH0195182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62251584A JPH0195182A (en) 1987-10-07 1987-10-07 Thin-film electroluminescent phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62251584A JPH0195182A (en) 1987-10-07 1987-10-07 Thin-film electroluminescent phosphor

Publications (1)

Publication Number Publication Date
JPH0195182A true JPH0195182A (en) 1989-04-13

Family

ID=17224988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62251584A Pending JPH0195182A (en) 1987-10-07 1987-10-07 Thin-film electroluminescent phosphor

Country Status (1)

Country Link
JP (1) JPH0195182A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249829A (en) * 2011-07-20 2011-12-08 Mitsubishi Chemicals Corp White light-emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249829A (en) * 2011-07-20 2011-12-08 Mitsubishi Chemicals Corp White light-emitting element

Similar Documents

Publication Publication Date Title
US4263339A (en) Process for the production of electroluminescent powders for display panels
JPH08127771A (en) Electroluminescent element and production thereof
JP2795194B2 (en) Electroluminescence device and method of manufacturing the same
JPS6346117B2 (en)
CA1043848A (en) Gallate-based phosphors for low-velocity electron excited fluorescent display device
US5086252A (en) Thin film electroluminescence device
JPH07211460A (en) Manufacture of electro luminescence element
JPH0272592A (en) Film el element
JPH0195182A (en) Thin-film electroluminescent phosphor
JPH08102359A (en) Manufacture of electroluminescent element
JPH088064A (en) Electroluminescent element and multicolor-emission electroluminescent element
JP2828019B2 (en) ELECTROLUMINESCENT ELEMENT AND ITS MANUFACTURING METHOD
JP3590986B2 (en) Electroluminescence element
JPS63218194A (en) Thin film el device
JPH07263147A (en) Thin film light emitting element
JPH02178386A (en) Blue luminous fluorescent substance
JP3016323B2 (en) Electroluminescence element
JPH07282978A (en) Thin film electroluminescence(el) element
JP4125108B2 (en) Thin film electroluminescent device
JPH0831571A (en) Thin film electroluminescent element and multi-color thin film electroluminescent panel
JPH01241793A (en) Thin film el element
JP3865122B2 (en) Sulfur oxide phosphor for electroluminescence device and electroluminescence device
JPH0892551A (en) Fluorescent display tube
JPH01221486A (en) Thin-film electroluminescent phosphor
JPS61214395A (en) Manufacture of thin film electroluminescence element