JPH0194305A - Optical circuit device - Google Patents

Optical circuit device

Info

Publication number
JPH0194305A
JPH0194305A JP25149387A JP25149387A JPH0194305A JP H0194305 A JPH0194305 A JP H0194305A JP 25149387 A JP25149387 A JP 25149387A JP 25149387 A JP25149387 A JP 25149387A JP H0194305 A JPH0194305 A JP H0194305A
Authority
JP
Japan
Prior art keywords
optical
groove
optical fiber
substrate
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25149387A
Other languages
Japanese (ja)
Inventor
Takeshi Kato
猛 加藤
Kenichi Mizuishi
賢一 水石
Kazuo Sato
一雄 佐藤
Hirohisa Sano
博久 佐野
Katsuyuki Imoto
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25149387A priority Critical patent/JPH0194305A/en
Publication of JPH0194305A publication Critical patent/JPH0194305A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To realize efficient optical coupling by providing a hole, which piercing a substrate, between an optical waveguide and a groove. CONSTITUTION:A hole 6 piercing a substrate 1 is provided between an optical waveguide 2 and an optical fiber supporting groove 3 by a simple and high- precision fine working method. Si having crystal face azimuth (100) is used as the substrate 1 and the optical waveguide 2 is a quartz single mode optical waveguide. The material of the core of the optical waveguide 2 is SiO2+TiO2, and the material of the clad around the core is SiO2+P2O5+B2O3, and a quartz single mode optical fiber is used as an optical fiber 4. Since a V groove 3 is formed by crystal face (111), the angle of the V groove 3 is crystal-graphically determined; and the width of the V groove 3 is so designated that the optical waveguide 2 and the optical axis of the optical fiber 4 coincide with each other at the time of arranging the optical fiber 4 in the V groove 3, and the crystal face azimuth of the side face of a hole 5 is (110) and the width of its sectional shape is made equal to that of the V groove 3. Thus, efficient optical coupling is realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は特に光導波路と光素子との高効率な光結合に好
適な光回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention particularly relates to an optical circuit device suitable for highly efficient optical coupling between an optical waveguide and an optical element.

〔従来の技術〕[Conventional technology]

従来、例えば先導波路と光ファイバの光結合に関して以
下のような技術が知られている6(1)光導波路基板と
は別個にSi(シリコン)の異方性化学エツチング加工
により作成したV溝を用意し、この■溝で光ファイバを
支持する方法(特開昭60−95410号など)。
Conventionally, the following techniques have been known for optical coupling between a guide waveguide and an optical fiber. A method of preparing an optical fiber and supporting the optical fiber with this groove (Japanese Patent Application Laid-Open No. 60-95410, etc.).

(2)支持台としてSi基板を用い、これに異方性化学
エツチング加工により凹部とV溝を形成させ、凹部に先
導波路基板を、■溝に光ファイバを搭載する方法(特開
昭57−119314号など)。
(2) A method of using a Si substrate as a support, forming a recess and a V-groove by anisotropic chemical etching, and mounting a guiding waveguide substrate in the recess and an optical fiber in the groove. 119314 etc.).

(3)光導波路基板上に反応性ドライエツチング加工に
より断面コ字型溝を形成し、この溝に光ファイバを配設
する方法(特開昭56−146107号など)。
(3) A method in which a groove with a U-shaped cross section is formed by reactive dry etching on an optical waveguide substrate, and an optical fiber is disposed in this groove (Japanese Patent Laid-Open No. 146107/1984, etc.).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記(1)の従来技術は、光導波路と光ファイバを光結
合させるために煩雑な光軸調整を必要とする。またSi
の■溝を固定する接着材の経年変化により光軸がずれる
ので、光結合効率の安定性に関して問題があった。
The prior art (1) above requires complicated optical axis adjustment in order to optically couple the optical waveguide and the optical fiber. Also, Si
(2) As the optical axis shifts due to aging of the adhesive that fixes the groove, there was a problem with the stability of optical coupling efficiency.

(2)の従来技術も(1)と同様に、光導波路基板とV
溝とが一体ではないので、煩雑な光軸調整をしなければ
ならない。特に、凹部と光導波路基板とを固定する接着
材の厚みによって先導波路基板の位置が変わるので、接
着剤の厚みを制御するという困1Rな技術を要する。
Similarly to (1), the conventional technology (2) also uses an optical waveguide substrate and a V
Since the groove is not integrated with the groove, complicated optical axis adjustment is required. In particular, since the position of the guide waveguide substrate changes depending on the thickness of the adhesive that fixes the recess and the optical waveguide substrate, a difficult technique is required to control the thickness of the adhesive.

(3)の従来技術では、光導波路基板上に溝が形成され
ているので、特に光軸調整を行なう必要はなく溝に光フ
ァイバを配設するだけで光結合させることができる。但
し、溝の断面形状がコの字型であるので、溝の幅と光フ
ァイバの外径との間に誤差が生じ、この差が光結合効率
のばらつきとなって現れる。またドライエツチング加工
には高価な真空装置を必要とし、経済的に負担が大きい
In the prior art (3), since the groove is formed on the optical waveguide substrate, there is no need to particularly adjust the optical axis, and optical coupling can be achieved simply by disposing the optical fiber in the groove. However, since the cross-sectional shape of the groove is U-shaped, an error occurs between the width of the groove and the outer diameter of the optical fiber, and this difference appears as a variation in optical coupling efficiency. Furthermore, dry etching requires expensive vacuum equipment, which is a heavy economic burden.

加工速度は数nm/秒であるから100μm程度の溝を
加工するのに数10時間かかり、この間中ガス圧・ガス
流量・電極電圧などの加工条件を制御しなければならず
、量産性の面で問題がある。
Since the processing speed is several nanometers/second, it takes several tens of hours to process a groove of about 100 μm, and during this time, processing conditions such as gas pressure, gas flow rate, and electrode voltage must be controlled, making it difficult to mass-produce. There is a problem with this.

以上述べたように、従来技術にはそれぞれ問題があった
。これを解決するためには、■光導波路と光フアイバ支
持溝を同一基板上に形成させること、■安価な装置で高
精度の溝加工を行なうこと、が必須条件である。
As described above, each of the conventional techniques has its own problems. In order to solve this problem, it is essential to (1) form the optical waveguide and the optical fiber support groove on the same substrate, and (2) perform highly accurate groove processing using inexpensive equipment.

上記■、(2)の2つの条件をi2またすものには第3
図のような構成が考えられる。
If the above two conditions (■) and (2) are met by i2, the third
A configuration like the one shown in the figure is possible.

第4図では、Siから成る基板201上に光導波路20
2と光ファイバ204を支持するV溝203が形成され
ている。■溝の加工には簡便に高精度微細加工が行なえ
る異方性化学エツチングを利用する。基板201の結晶
面方位は(100)、■溝203は(111)面により
形造られる。このとき異方性化学エツチングではV溝2
03の終端にも結晶面(111)から成る而205(I
vIき角度0=54.7°)が形成されるので、この而
205が障害となって先導波路202と光ファイバ20
4を近づけることができない。市販の外径125μmの
光ファイバ204を用いた場合、先導波路202と光フ
ァイバ204との間隔Qは44μmも開くことになる。
In FIG. 4, an optical waveguide 20 is placed on a substrate 201 made of Si.
2 and a V-groove 203 that supports the optical fiber 204 is formed. ■Anisotropic chemical etching, which allows easy, high-precision micromachining, is used to process the grooves. The crystal plane orientation of the substrate 201 is (100), and the groove 203 is formed by the (111) plane. At this time, in anisotropic chemical etching, V groove 2
The terminal of 03 also consists of crystal plane (111), and 205 (I
Since an angle 0 = 54.7°) is formed, this 205 becomes an obstacle and the leading waveguide 202 and the optical fiber 20
I can't get 4 close. When a commercially available optical fiber 204 with an outer diameter of 125 μm is used, the distance Q between the leading waveguide 202 and the optical fiber 204 is as large as 44 μm.

これでは端面直接結合による光導波路202と光ファイ
バ204の結合効率は極端に小さくなり過ぎる。従って
第3図の構成では■、■の条件は満たしていても結合効
率の点で問題があった。
In this case, the coupling efficiency between the optical waveguide 202 and the optical fiber 204 due to end face direct coupling becomes extremely low. Therefore, even though the configuration shown in FIG. 3 satisfies the conditions (1) and (2), there is a problem in terms of coupling efficiency.

本発明の目的は、光導波路と光ファイバの端面直接結合
による高効率な光結合を可能にする光回路装置を提供す
ることにある。
An object of the present invention is to provide an optical circuit device that enables highly efficient optical coupling by direct coupling between an optical waveguide and an optical fiber at their end faces.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、先導波路と光フアイバ支持溝との間に、基
板を貫く穴を簡便且つ高精度な微細加工方法を用いて設
けろことにより、達成される。
The above object is achieved by providing a hole penetrating the substrate between the guide waveguide and the optical fiber support groove using a simple and highly accurate microfabrication method.

〔作用〕[Effect]

上記穴により、溝の終端に形成された斜面が取り除かれ
るので、光導波路と光ファイバを密接することができ、
端面直接結合によって高効率な光結合が実現される。
Because the above-mentioned hole removes the slope formed at the end of the groove, it is possible to bring the optical waveguide and optical fiber into close contact with each other.
Highly efficient optical coupling is achieved through direct end-face coupling.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図及び第2図は本発明の第1実施例であり、基本構
成を説明する図である。基板1には、光導波路2と光フ
ァイバ4を支持するV溝3と六6が形成されている。
FIGS. 1 and 2 show a first embodiment of the present invention, and are diagrams for explaining the basic configuration. V-grooves 3 and 66 for supporting the optical waveguide 2 and the optical fiber 4 are formed in the substrate 1.

基板1は結晶面方位(100)、厚さ約200μmのS
iを用いた。光導波路2は石英系単一モード先導波路で
ある。CV D (Chemical VaporDe
position)法あるいは火炎直接堆積法によって
石英ガラス膜を基板1上に堆積させ、これをフォトリソ
グラフィ及び反応性イオンエツチングによりパターンニ
ングして線路状の三次元光導波路を得た。光導波路2の
コアは、断面形状8μmX8μm、材質は5iOz+’
l’i0zである。コア周辺のクラッドの厚みは5μm
、材質は5iOz十P 20 B+ B zOaである
。光導波路2の伝搬損失は0.1dB/co+以下であ
った。光ファイバ4は外径125μm、コア5の直径9
μmの石英系jli −モード光ファイバを使用した。
Substrate 1 is S with a crystal plane orientation (100) and a thickness of about 200 μm.
i was used. The optical waveguide 2 is a silica-based single mode leading waveguide. CV D (Chemical Vapor De
A quartz glass film was deposited on the substrate 1 by a positioning method or a flame direct deposition method, and patterned by photolithography and reactive ion etching to obtain a line-shaped three-dimensional optical waveguide. The core of the optical waveguide 2 has a cross-sectional shape of 8 μm x 8 μm and a material of 5 iOz+'
It's l'i0z. The thickness of the cladding around the core is 5μm
, the material is 5iOz1P20B+BzOa. The propagation loss of the optical waveguide 2 was 0.1 dB/co+ or less. The optical fiber 4 has an outer diameter of 125 μm and a core 5 diameter of 9.
A μm quartz-based jli-mode optical fiber was used.

■溝3は結晶面(111)により形造られるので、結晶
学的にV溝3の角度は 70.5’と決まる。v i4
 aの幅は、光ファイバ4を■溝3に配設したときに先
導波路2と光ファイバ4の光軸が一致するように設計し
た。光導波路2及び光ファイバ4の寸法、V溝3の角度
から、■溝3の幅は簡単な代数計算によって140.4
  μmと求まる・ちなみにV溝3の深さは99.3 
μmである。
(2) Groove 3 is formed by the crystal plane (111), so the angle of V-groove 3 is crystallographically determined to be 70.5'. v i4
The width of a was designed so that when the optical fiber 4 was placed in the groove 3, the optical axes of the leading waveguide 2 and the optical fiber 4 were aligned. From the dimensions of the optical waveguide 2 and the optical fiber 4 and the angle of the V-groove 3, the width of the groove 3 is calculated to be 140.4 by simple algebraic calculation.
Find it as μm.By the way, the depth of V groove 3 is 99.3
It is μm.

穴5の側面の結晶面方位は(110)である。The crystal plane orientation of the side surface of the hole 5 is (110).

穴5の断面形状はV溝3の幅と同じ(140,4μmX
140.4  umとした。
The cross-sectional shape of the hole 5 is the same as the width of the V-groove 3 (140.4 μm x
It was set to 140.4 um.

■溝3と穴5の形成プロセスを第3図によって説明する
。図にはV溝3と穴5が形成される様子を模式的に示し
である。図の左側は断面図、右側は平面図である。光導
波路2の作成は本形成プロセスとは独立に行なえるので
、図中には先導波路2を描いていない。
(2) The process of forming the grooves 3 and holes 5 will be explained with reference to FIG. The figure schematically shows how the V-groove 3 and the hole 5 are formed. The left side of the figure is a sectional view, and the right side is a plan view. Since the optical waveguide 2 can be created independently of the main formation process, the leading waveguide 2 is not drawn in the figure.

第3図(a)に示すように、まず基板1にSiの熱酸化
あるいはCVD法によって5iOz膜11.12を形成
させる。基板1の上面の5iOz膜11と下面の5iO
z膜12のパターンニングは両面マスクアライナを用い
たフオ°トリソグラフイにより行なった。膜厚は2μm
である。
As shown in FIG. 3(a), first, 5iOz films 11 and 12 are formed on the substrate 1 by thermal oxidation of Si or CVD. 5iOz film 11 on the top surface of the substrate 1 and 5iOz film 11 on the bottom surface
Patterning of the Z film 12 was performed by photolithography using a double-sided mask aligner. Film thickness is 2μm
It is.

このSiOx膜11,12をエツチングマスクとして、
40℃のKOH40wt%水溶液中で異方性化学エツチ
ングを行なう(第3図(b))。結晶面(111)のエ
ツチングレートは(100)面の]/42であるから、
(100)而(面14゜16)が主にエツチングされ、
(111)面(而13.15.17)が残る。
Using these SiOx films 11 and 12 as an etching mask,
Anisotropic chemical etching is performed in a 40 wt % KOH aqueous solution at 40° C. (FIG. 3(b)). Since the etching rate of the crystal plane (111) is /42 of the (100) plane,
(100) (surfaces 14° and 16) are mainly etched,
(111) face (13.15.17) remains.

基板1の両面からのエツチングが進行してゆくと、穴1
8が貫通する(第3図(C))。さらにエツチングを行
なうと、(100)面のエツチングと同時に基板1に垂
直な(110)面(面19)のエツチングが始まる(第
3図(d))。(110)面のエツチングレートは(1
11)面の約180倍であり、非常に速い。
As etching progresses from both sides of the substrate 1, holes 1
8 penetrates (Fig. 3(C)). When further etching is performed, etching of the (110) plane (plane 19) perpendicular to the substrate 1 starts at the same time as the etching of the (100) plane (FIG. 3(d)). The etching rate of the (110) plane is (1
11) It is about 180 times faster than the surface and is extremely fast.

最終的に、第3図(8)に示すようにV溝3と穴5が形
成され、第1実施例に示した光回路装置が完成する。も
しエツチングを多少行ない過ぎた場合(第3図(f))
であっても、本発明の目的にとって何ら支障はない。
Finally, the V-groove 3 and the hole 5 are formed as shown in FIG. 3(8), and the optical circuit device shown in the first embodiment is completed. If the etching is done a little too much (Figure 3 (f))
However, there is no problem in achieving the purpose of the present invention.

本第1実施例によれば、■溝3に光ファイバ4を配設し
光導波路2と光ファイバ4の端面同士を密接させるだけ
で、無調整で光導波路2と光ファイバ4のコア同士が一
致し高効率な端面直接光結合を行える効果がある。光結
合効率は、理論的に予想された値とほぼ一致し91%と
いう高い値を示した。さらに先導波路2と光ファイバ4
を密接させたあと、密接部にガラス微粒子を塗布し炭酸
ガスレーザを照射して、先導波路2と光ファイバ4をガ
ラス融着接続させた場合には98%の結合効率が得られ
ている。結合効率の安定性を確めるため温度サイクル試
験(−45°〜+80℃、1サイクル30分、1000
回)を行なったが、観測できる程の劣化は見られず非常
に高い安定性を示した。
According to the first embodiment, simply by disposing the optical fiber 4 in the groove 3 and bringing the end surfaces of the optical waveguide 2 and the optical fiber 4 into close contact with each other, the cores of the optical waveguide 2 and the optical fiber 4 can be connected to each other without adjustment. This has the effect of making it possible to perform direct optical coupling at the end face with high efficiency. The optical coupling efficiency showed a high value of 91%, almost matching the theoretically predicted value. Furthermore, the leading waveguide 2 and the optical fiber 4
When the leading waveguide 2 and the optical fiber 4 are glass fused and spliced by applying glass fine particles to the close contact area and irradiating with a carbon dioxide laser, a coupling efficiency of 98% is obtained. To confirm the stability of the binding efficiency, a temperature cycle test (-45° to +80°C, 1 cycle 30 minutes, 1000
2 times), but no observable deterioration was observed and it showed very high stability.

また1本第1実施例では異方性化学エツチングを利用し
ているので、■溝3と穴5の加工を同時に行なえるから
生産性が向上する効果がある。V字型の斜め加工と垂直
な加工を一括で行なうことは一般のドライエツチング加
工では不可能である。
Furthermore, since the first embodiment utilizes anisotropic chemical etching, (1) the grooves 3 and the holes 5 can be processed at the same time, which has the effect of improving productivity. It is impossible to perform V-shaped diagonal processing and vertical processing at the same time using general dry etching processing.

異方性化学エツチングに用いる装置はKOH水溶液の恒
温槽があれば良く、安価であるから経済的にも負担がか
からない。
The equipment used for anisotropic chemical etching only needs to be a constant temperature bath containing a KOH aqueous solution, and since it is inexpensive, it does not impose an economic burden.

尚、本発明の要件は光導波路基板に穴を形成させたこと
にあるのであって、第1実施例に述べた光導波路、光フ
ァイバ、基板の種類や材料、溝や穴の形成プロセスなど
によって限定されるものではない。
Incidentally, the requirement of the present invention is that the holes are formed in the optical waveguide substrate, and the types and materials of the optical waveguide, optical fiber, and substrate described in the first embodiment, the process for forming grooves and holes, etc. It is not limited.

例えば、光導波路や基板の材料がLiNbO3゜ZnO
,’5isNaなどの誘電体やGaAs、 I n P
などの半導体であっても勿論構わない。光導波路の寸法
は設計変更できる。光ファイバが多モードファイバやプ
ラスチックファイバの場合でも本発明の効果は発揮され
る。溝の形状がU字型や台形の場合も有り得る。穴の大
きさや形状も都合によって変えて良い。溝と穴の形成プ
ロセスに関して、光導波路基板との関連から手順を省略
あるいは修正することもあり、他の異方性エツチングの
利用、例えばInPの臭素メタノール混合液や塩酸リン
酸混合液によるエツチングなども可能である。また光導
波路や光ファイバがアレイ化した場合であっても本発明
を実施し得ることは言うまでもない。
For example, if the material of the optical waveguide or substrate is LiNbO3゜ZnO
, '5isNa, etc., GaAs, InP
Of course, it does not matter if it is a semiconductor such as. The dimensions of the optical waveguide can be changed in design. The effects of the present invention can be exerted even when the optical fiber is a multimode fiber or a plastic fiber. The shape of the groove may be U-shaped or trapezoidal. The size and shape of the hole may also be changed according to convenience. Regarding the process of forming grooves and holes, steps may be omitted or modified in relation to the optical waveguide substrate, and other anisotropic etching methods may be used, such as etching with a bromine-methanol mixture of InP or a hydrochloric acid-phosphoric acid mixture. is also possible. Furthermore, it goes without saying that the present invention can be practiced even when optical waveguides and optical fibers are arranged in an array.

光導波路に対して端面直接結合を行なう光素子には、光
ファイバの他にレーザダイオード、フォトダイオード、
光導波路などが考えられるが、これらの光素子について
も本発明は適用可能である。
In addition to optical fibers, optical devices that perform end-face direct coupling to optical waveguides include laser diodes, photodiodes,
Optical waveguides and the like can be considered, but the present invention is also applicable to these optical elements.

本発明は、光分岐・合流、波長分波・合波などの導波形
受動光デバイスのみならず、例えばSi上にGaAsを
ヘテロエピタキシャル成長させた基板等を用いれば光ス
ィッチや先借号処理などの導波形機能光デバイスにも利
用できる。また基板上に電子回路を作成して0RIC(
Opto ElectronicIntegrated
 C1rcuits )化を図ることもできる。
The present invention is applicable not only to waveguide-type passive optical devices such as optical branching/combining, wavelength demultiplexing/combining, etc., but also to optical switches, pre-emption processing, etc. using a substrate made of heteroepitaxial growth of GaAs on Si. It can also be used for waveguide-type functional optical devices. In addition, an electronic circuit is created on the board and 0RIC (
Opto Electronic Integrated
C1rcuits).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光ファイバを支持溝に配設するだけで
無調整で安定に高効率な光結合を実現できるので、光結
合装置の量産性及び信頼性が向上する効果がある。
According to the present invention, stable and highly efficient optical coupling can be achieved without any adjustment simply by arranging the optical fiber in the support groove, which has the effect of improving the mass productivity and reliability of the optical coupling device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の先回−路装置を説明する斜
視図、第2図は第1図の側面図、第3図は第1図の光回
路装置の溝と穴の形成プロセスを示す説明図、第4図は
従来の光回路装置を示す側面図である。 1・・・基板、2・・・先導波路、3・・・溝、4・・
・光ファイ¥ 3 図
Fig. 1 is a perspective view illustrating a previous circuit device according to an embodiment of the present invention, Fig. 2 is a side view of Fig. 1, and Fig. 3 is a formation of grooves and holes in the optical circuit device of Fig. 1. An explanatory diagram showing the process, FIG. 4 is a side view showing a conventional optical circuit device. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Guide waveguide, 3...Groove, 4...
・Optical fiber¥3 Figure

Claims (1)

【特許請求の範囲】 1、光導波路と、光ファイバをガイドする溝を同一基板
上に形成させた光回路装置において、前記光導波路と前
記溝との間に前記基板を貫く穴を設けたことを特徴とす
る光回路装置。 2、上記基板がシリコンから成ることを特徴とする特許
請求の範囲第1項記載の光回路装置。 3、上記溝と穴を異方性エッチングにより加工したこと
を特徴とする特許請求の範囲第1項記載の光回路装置。
[Claims] 1. In an optical circuit device in which an optical waveguide and a groove for guiding an optical fiber are formed on the same substrate, a hole passing through the substrate is provided between the optical waveguide and the groove. An optical circuit device featuring: 2. The optical circuit device according to claim 1, wherein the substrate is made of silicon. 3. The optical circuit device according to claim 1, wherein the grooves and holes are processed by anisotropic etching.
JP25149387A 1987-10-07 1987-10-07 Optical circuit device Pending JPH0194305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25149387A JPH0194305A (en) 1987-10-07 1987-10-07 Optical circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25149387A JPH0194305A (en) 1987-10-07 1987-10-07 Optical circuit device

Publications (1)

Publication Number Publication Date
JPH0194305A true JPH0194305A (en) 1989-04-13

Family

ID=17223617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25149387A Pending JPH0194305A (en) 1987-10-07 1987-10-07 Optical circuit device

Country Status (1)

Country Link
JP (1) JPH0194305A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994012903A1 (en) * 1992-12-01 1994-06-09 Robert Bosch Gmbh Process for producing optical polymer components with integrated vertical coupling structures
FR2707401A1 (en) * 1993-07-09 1995-01-13 Menigaux Louis A method of manufacturing a structure incorporating a cleaved optical guide to an optical fiber support for optical fiber-guide coupling and structure obtained.
US5420953A (en) * 1994-02-17 1995-05-30 The Whitaker Corporation Optoelectronic integration of holograms using (110) oriented silicon on (100) oriented silicon waferboard
US5526454A (en) * 1992-04-10 1996-06-11 Robert Bosch Gmbh Method for producing optical polymer components having integrated fibre-chip coupling by means of casting technology
EP0722102A2 (en) * 1995-01-11 1996-07-17 Robert Bosch Gmbh Device for coupling an optical fibre to an optical waveguide and process of fabrication of the coupling area
US5548673A (en) * 1993-07-19 1996-08-20 Nec Corporation Optical coupling device
EP0762162A1 (en) * 1995-08-31 1997-03-12 AT&T Corp. Article comprising fiber-to-planar waveguide coupling and method of making the article
EP1258769A1 (en) * 2001-05-08 2002-11-20 Samsung Electronics Co., Ltd. Optical module and method for manufacturing the same
US7639904B2 (en) * 2005-11-18 2009-12-29 Hitachi Chemical Company, Ltd. Optical device
JP2013250436A (en) * 2012-05-31 2013-12-12 Fujitsu Ltd Optical semiconductor device
WO2024033988A1 (en) * 2022-08-08 2024-02-15 日本電信電話株式会社 Connection structure between optical fiber and optical waveguide, and method for manufacturing optical waveguide substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119314A (en) * 1981-01-16 1982-07-24 Omron Tateisi Electronics Co Connecting method between optical fiber and optical waveguide
JPS6155616A (en) * 1984-08-24 1986-03-20 Shimadzu Corp Manufacture of light shunt
JPS61182008A (en) * 1985-02-07 1986-08-14 Yokogawa Electric Corp Optical fiber coupler
JPS6358304A (en) * 1986-08-29 1988-03-14 Nippon Telegr & Teleph Corp <Ntt> Production of optical waveguide with guide groove
JPS63115113A (en) * 1986-10-31 1988-05-19 Brother Ind Ltd Connection structure between light guide and optical fiber
JPH01107219A (en) * 1987-10-21 1989-04-25 Brother Ind Ltd Optical fiber connecting structure of optical circuit substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119314A (en) * 1981-01-16 1982-07-24 Omron Tateisi Electronics Co Connecting method between optical fiber and optical waveguide
JPS6155616A (en) * 1984-08-24 1986-03-20 Shimadzu Corp Manufacture of light shunt
JPS61182008A (en) * 1985-02-07 1986-08-14 Yokogawa Electric Corp Optical fiber coupler
JPS6358304A (en) * 1986-08-29 1988-03-14 Nippon Telegr & Teleph Corp <Ntt> Production of optical waveguide with guide groove
JPS63115113A (en) * 1986-10-31 1988-05-19 Brother Ind Ltd Connection structure between light guide and optical fiber
JPH01107219A (en) * 1987-10-21 1989-04-25 Brother Ind Ltd Optical fiber connecting structure of optical circuit substrate

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526454A (en) * 1992-04-10 1996-06-11 Robert Bosch Gmbh Method for producing optical polymer components having integrated fibre-chip coupling by means of casting technology
WO1994012903A1 (en) * 1992-12-01 1994-06-09 Robert Bosch Gmbh Process for producing optical polymer components with integrated vertical coupling structures
US5481633A (en) * 1992-12-01 1996-01-02 Robert Bosch Gmbh Method and optical device produced of optical polymer components having integrated vertical coupling structures
FR2707401A1 (en) * 1993-07-09 1995-01-13 Menigaux Louis A method of manufacturing a structure incorporating a cleaved optical guide to an optical fiber support for optical fiber-guide coupling and structure obtained.
EP0637764A1 (en) * 1993-07-09 1995-02-08 France Telecom Fabrication of an optical coupling structure, which integrates a cleaved optical waveguide and a support for an optical fiber
US5518965A (en) * 1993-07-09 1996-05-21 France Telecom Process for producing a structure integrating a cleaved optical guide with an optical fibre support for a guide-fibre optical coupling
US5548673A (en) * 1993-07-19 1996-08-20 Nec Corporation Optical coupling device
US5420953A (en) * 1994-02-17 1995-05-30 The Whitaker Corporation Optoelectronic integration of holograms using (110) oriented silicon on (100) oriented silicon waferboard
EP0722102A2 (en) * 1995-01-11 1996-07-17 Robert Bosch Gmbh Device for coupling an optical fibre to an optical waveguide and process of fabrication of the coupling area
EP0722102A3 (en) * 1995-01-11 1996-08-07 Bosch Gmbh Robert
EP0762162A1 (en) * 1995-08-31 1997-03-12 AT&T Corp. Article comprising fiber-to-planar waveguide coupling and method of making the article
EP1258769A1 (en) * 2001-05-08 2002-11-20 Samsung Electronics Co., Ltd. Optical module and method for manufacturing the same
US7639904B2 (en) * 2005-11-18 2009-12-29 Hitachi Chemical Company, Ltd. Optical device
JP2013250436A (en) * 2012-05-31 2013-12-12 Fujitsu Ltd Optical semiconductor device
WO2024033988A1 (en) * 2022-08-08 2024-02-15 日本電信電話株式会社 Connection structure between optical fiber and optical waveguide, and method for manufacturing optical waveguide substrate

Similar Documents

Publication Publication Date Title
US4765702A (en) Glass integrated optical component
US5175781A (en) Attaching optical fibers to integrated optic chips
US6118917A (en) Optical fiber passive alignment apparatus using alignment platform
US11092748B2 (en) Method and apparatus for self-alignment connection of optical fiber to waveguide of photonic integrated circuit
US4867524A (en) Metallic bond for mounting of optical fibers to integrated optical chips
US4762387A (en) Array connector for optical fibers
EP0310535B1 (en) Mounting of optical fibers to integrated optical chips
JPH0829638A (en) Structure for connecting optical waveguide and optical fiber, mthod for connecting optical waveguide and optical fiber, optical waveguide substrate to be used for connecting optical waveguide and optical fiber, production of the substrate and optical fiber with fiber substrate to be used for connecting optical waveguide and optical fiber
JPH0194305A (en) Optical circuit device
US6535685B1 (en) Arcuate fiber routing using stepped grooves
EP0556230B1 (en) Waveguiding structure
US5535295A (en) Coupling structure for waveguide connection and process of forming the same
US6163639A (en) Passive process for fitting connectors to optical elements with an integrated optical circuit and template for embodiment of the process
US5640477A (en) Electro-optical component alignment technique
US5625726A (en) Optical waveguide substrate, an article comprising the same and a substrate coupled thereto for holding optical fibers
US5199966A (en) Optical coupler method
JP2771167B2 (en) Optical integrated circuit mounting method
JPH01261604A (en) Optical coupler
WO2003025651A1 (en) Passive alignment between wavegides and optical components
JPS61267010A (en) Optical waveguide circuit and its manufacture
JP2570307B2 (en) Optical fiber connector
JPS61260208A (en) Light guide with fiber guide
JP2613880B2 (en) Connection method between optical waveguide and optical fiber
JP3228614B2 (en) Connection structure between optical fiber and optical waveguide
JPH0212110A (en) Production of optical integrated circuit