JPH0194258A - Diagnostic apparatus - Google Patents

Diagnostic apparatus

Info

Publication number
JPH0194258A
JPH0194258A JP62253373A JP25337387A JPH0194258A JP H0194258 A JPH0194258 A JP H0194258A JP 62253373 A JP62253373 A JP 62253373A JP 25337387 A JP25337387 A JP 25337387A JP H0194258 A JPH0194258 A JP H0194258A
Authority
JP
Japan
Prior art keywords
piezoelectric element
calibration
wave
amplitude
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62253373A
Other languages
Japanese (ja)
Inventor
Shigeto Nishimoto
西本 重人
Yoshiaki Kameno
亀野 良紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP62253373A priority Critical patent/JPH0194258A/en
Publication of JPH0194258A publication Critical patent/JPH0194258A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make the long interruption of diagnosis unnecessary even at the time of calibration, by generating an acoustic emission (AE) wave form a calibrating piezoelectric element of an AE sensor at the time of calibration to detect the same by a detecting piezoelectric element. CONSTITUTION:A dummy AE wave having predetermined amplitude is generated from a calibrating piezoelectric element 13 at the time of calibration in such a state that an AE sensor is mounted in an equipment operating state and detected by a detecting piezoelectric element 12 to inspect the deterioration of the sensitivity of the detecting piezoelectric element 12. When the sensitivity of the detecting element 12 is deteriorated, the amplitude of the dummy AE wave detected by said element 12 becomes small. Therefore, the deterioration of sensitivity can be judged on the basis of the amplitude of the detected dummy AE wave. Since the detecting element 12 and the calibrating element 13 are used under the same condition, both of them are deteriorated almost similarly. When these elements are deteriorated, even when an electric signal having the same amplitude is applied to the calibrating element 13, the amplitude of the dummy AE wave generated therefrom becomes small by the degree of deterioration and, further, the amplitude of the output of the detecting element 12 detecting the dummy AE wave becomes small in the same degree. By this method, it becomes unnecessary to interrupt diagnosis for a long time even at the time of calibration.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、AEセンサを使用して設備などの診断を行
なう診断装置に関する。なお、この明細書において、A
Eという用語はアコースティックエミッション(Aco
ustic Emission)の略語として用いられ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a diagnostic device that diagnoses equipment using an AE sensor. In addition, in this specification, A
The term E stands for acoustic emission (Aco
It is used as an abbreviation for ``ustic emission''.

従来技術とその問題点 AEセンサは、物体から発生するAE波を音響−電気変
換素子である圧電素子によって検出するものであり、A
E波によって物体内の欠陥の有無がわかるため、設備診
断などに使用されている。
Prior art and its problems AE sensors detect AE waves generated from an object using a piezoelectric element, which is an acoustic-electric conversion element.
E-waves can be used to detect defects in objects, so they are used for equipment diagnosis.

ところで、AEセンサは使用により感度が劣化するため
、これを定期的に校正する必要があり、AEセンサを用
いた診断装置では、従来、AEセンサを設備から回収し
て校正している。
Incidentally, since the sensitivity of the AE sensor deteriorates with use, it is necessary to periodically calibrate it. Conventionally, in a diagnostic apparatus using an AE sensor, the AE sensor is collected from the equipment and calibrated.

このため、AEセンサの校正時には診断を長く中断しな
ければならず、たとえば発電機用軸受の診断などのよう
に診断を中断できないものについては問題がある。
For this reason, when calibrating the AE sensor, the diagnosis must be interrupted for a long time, which poses a problem in cases where diagnosis cannot be interrupted, such as diagnosis of generator bearings.

この発明は、上記の問題を解決し、校正時にも診断を長
く中断する必要のない診断装置を提供することにある。
The present invention solves the above problems and provides a diagnostic device that does not require long interruptions in diagnosis even during calibration.

問題点を解決するための手段 この発明による診断装置は、AE波検出用圧電素子の他
に校正時に模擬AE波を発振するための校正用圧電素子
が設けられたAEセンサと、校正時にAEセンサの校正
用圧電素子よりAE波を発振し検出用圧電素子でそのA
E波を検出して検出用圧電素子の感度の劣化を検定する
手段とを備えているものである。
Means for Solving the Problems A diagnostic device according to the present invention includes an AE sensor that is provided with a piezoelectric element for calibrating in addition to a piezoelectric element for detecting AE waves and a piezoelectric element for oscillating a simulated AE wave during calibration; The piezoelectric element for calibration oscillates an AE wave, and the piezoelectric element for detection detects the AE wave.
The apparatus is equipped with means for detecting E waves and verifying deterioration in sensitivity of the detection piezoelectric element.

作   用 校正時には、設備運転状態で、AEセンサを設備に取付
けたまま、校正用圧電素子より所定の振幅の模擬AE波
を発振し、検出用圧電素子でその模擬AE波を検出して
、検出用圧電素子の感度の劣化を検定する。検出用圧電
素子の感度が劣化していれば、これにより検出した模擬
AE波の振幅が小さくなる。したがって、検出用圧電素
子で検出した模擬AE波の振幅により感度の劣化を判断
することができる。検出用圧電素子と校正用圧電素子は
同じ条件で使用されるため、大体同じように劣化する。
During operational calibration, while the equipment is in operation, the piezoelectric element for calibration oscillates a simulated AE wave of a predetermined amplitude with the AE sensor attached to the equipment, and the piezoelectric element for detection detects the simulated AE wave. Verify the deterioration of the sensitivity of the piezoelectric element. If the sensitivity of the detection piezoelectric element is degraded, the amplitude of the detected simulated AE wave will become smaller. Therefore, deterioration in sensitivity can be determined based on the amplitude of the simulated AE wave detected by the detection piezoelectric element. Since the detection piezoelectric element and the calibration piezoelectric element are used under the same conditions, they deteriorate in roughly the same way.

これらが劣化すると、校正用圧電素子に同じ振幅の電気
信号を印加してもこれから発生する模擬AE波の振幅は
劣化の分だけ小さくなり、さらにこの模擬AE波を検出
した検出用圧電素子の出力の振幅も劣化の分だけ小さく
なる。このため、検出用圧電素子の劣化の度合をほぼ2
倍の感度でとらえることができる。
When these deteriorate, even if an electrical signal of the same amplitude is applied to the calibration piezoelectric element, the amplitude of the simulated AE wave that will be generated will become smaller by the amount of deterioration, and the output of the detection piezoelectric element that detected this simulated AE wave will be reduced by the amount of deterioration. The amplitude also decreases by the amount of deterioration. Therefore, the degree of deterioration of the detection piezoelectric element can be reduced to approximately 2
It can be captured with twice the sensitivity.

実施例 以下1、図面を参照して、この発明を設備診断に用いら
れる診断装置に適用したいくつかの実施例を説明する。
EMBODIMENTS In the following, some embodiments in which the present invention is applied to a diagnostic device used for equipment diagnosis will be described with reference to the drawings.

第1図は、第1実施例を示す。FIG. 1 shows a first embodiment.

設備診断装置はAEセンサ(10)を備えており、AE
センサ(10)のケース(11)内には、設備診断のた
めにAE波を検出するAE波検出用圧電素子(12)の
他に、校正時に模擬AE波を発振するための校正用圧電
素子(13)が収容されている。
The equipment diagnostic device is equipped with an AE sensor (10),
Inside the case (11) of the sensor (10), in addition to an AE wave detection piezoelectric element (12) that detects AE waves for equipment diagnosis, there is also a calibration piezoelectric element that oscillates a simulated AE wave during calibration. (13) is accommodated.

検出用圧電素子(12)は、切換スイッチ(14)を介
して診断部(15)および校正部(16)に接続されて
いる。校正用圧電素子(13)は、AE波発振用の発振
器(17)に接続されている。
The detection piezoelectric element (12) is connected to a diagnostic section (15) and a calibration section (16) via a changeover switch (14). The calibration piezoelectric element (13) is connected to an oscillator (17) for AE wave oscillation.

設備運転中、通常、切換スイッチ(14)は、第1図に
実線で示すように、診断部(15)側に切換えられてお
り、診断部(15)は検出用圧電素子(12)で検出さ
れたAE波により設備の診断を行なう。このとき、発振
器(17)は作動しておらず、校正用圧電素子(13)
から模擬AE波は発振されない。
During equipment operation, the selector switch (14) is normally switched to the diagnostic section (15) side, as shown by the solid line in Fig. 1, and the diagnostic section (15) detects the detection using the piezoelectric element (12). The equipment is diagnosed using the generated AE waves. At this time, the oscillator (17) is not operating, and the piezoelectric element for calibration (13)
Therefore, no simulated AE wave is generated.

検出用圧電素子(12)の校正を行なう場合、設備運転
状態で、AEセンサ(10)を設備に取付けたまま、切
換スイッチ(14)を第1図に鎖線で示すように校正部
(16)側に切換え、発振器(17)を作動させて校正
用圧電素子(13)から模擬AE波を発振する。なお、
発振器(17)からは、模擬AE波の振幅が設備から発
生するAE波の振幅より大きくなるような一定振幅の電
圧信号を校正用圧電素子(13)に出力する。そして、
校正部(16)は、検出用圧電素子(12)で検出した
模擬AE波の振幅の大きさが所定の基準値より小さけれ
ば、検出用圧電素子(12)の感度が劣化したと判断す
る。
When calibrating the detection piezoelectric element (12), while the equipment is in operation, with the AE sensor (10) attached to the equipment, move the changeover switch (14) to the calibration part (16) as shown by the chain line in Figure 1. side, and activates the oscillator (17) to oscillate a simulated AE wave from the piezoelectric element for calibration (13). In addition,
The oscillator (17) outputs a voltage signal with a constant amplitude such that the amplitude of the simulated AE wave is larger than the amplitude of the AE wave generated from the equipment to the piezoelectric element for calibration (13). and,
The calibration unit (16) determines that the sensitivity of the detection piezoelectric element (12) has deteriorated if the magnitude of the amplitude of the simulated AE wave detected by the detection piezoelectric element (12) is smaller than a predetermined reference value.

検出用圧電素子(12)の感度が劣化すれば、これによ
り検出した模擬AE波の振幅は小さくなる。したがって
、検出用圧電素子(12)で検出した模擬AE波の振幅
により感度の劣化を判断することができる。検出用圧電
素子(12)と校正用圧電素子(13)は同一のケース
(11)に収容されて同じ条件で使用されるため、検出
用圧電素子(12)が劣化していれば、校正用圧電素子
(13)も大体同じように劣化している。このため、発
振器(17)から校正用圧電素子(13)に同じ振幅の
電圧信号を印加してもこれから発生する模擬AE波の振
幅は劣化の分だけ小さくなり、さらにこの模擬AE波を
検出した検出用圧電素子(12)の出力の振幅も劣化の
分だけ小さくなる。したがって、2つの圧電素子(12
) (mの劣化の度合を合わせたほぼ2倍の感度で検出
用圧電素子(12)の劣化の度合をとらえることができ
、精度が良い。
If the sensitivity of the detection piezoelectric element (12) deteriorates, the amplitude of the detected simulated AE wave will become smaller. Therefore, deterioration in sensitivity can be determined based on the amplitude of the simulated AE wave detected by the detection piezoelectric element (12). The detection piezoelectric element (12) and the calibration piezoelectric element (13) are housed in the same case (11) and used under the same conditions, so if the detection piezoelectric element (12) has deteriorated, the calibration piezoelectric element (12) The piezoelectric element (13) has also deteriorated in roughly the same way. For this reason, even if a voltage signal of the same amplitude is applied from the oscillator (17) to the piezoelectric element for calibration (13), the amplitude of the simulated AE wave that will be generated will be smaller by the amount of deterioration, and furthermore, this simulated AE wave will be detected. The amplitude of the output of the detection piezoelectric element (12) also decreases by the amount of deterioration. Therefore, two piezoelectric elements (12
) (The degree of deterioration of the detection piezoelectric element (12) can be detected with a sensitivity that is approximately twice as high as the degree of deterioration of m, and the accuracy is good.

この診断装置の場合、設備運転状態で検出用圧電素子(
12)の校正ができる。しかも、校正は、AEセンサ(
10)を設備に取付けたまま短時間でできるので、校正
時にも設備診断を長く中断する必要がない。
In the case of this diagnostic device, the detection piezoelectric element (
12) can be calibrated. Moreover, the calibration is performed using the AE sensor (
10) can be done in a short time while it is attached to the equipment, so there is no need to interrupt equipment diagnosis for a long time during calibration.

第2図は第2実施例を示し、第1実施例と同じ部分には
同一の符号を付している。
FIG. 2 shows a second embodiment, in which the same parts as in the first embodiment are given the same reference numerals.

第2実施例の場合、第1実施例の診断部(15)と校正
部(16)のかわりに、設備診断と定期的な校正を自動
的に行なう校正機能付診断部(IB)が設けられ、これ
に検出用圧電素子(12)および発振器(17)が接続
されている。
In the case of the second embodiment, a diagnosis section with a calibration function (IB) that automatically performs equipment diagnosis and periodic calibration is provided in place of the diagnosis section (15) and calibration section (16) of the first embodiment. , to which a detection piezoelectric element (12) and an oscillator (17) are connected.

診断部(18)は、通常、検出用圧電素子(12)で検
出されたAE波により設備診断を行い、定期的に、発振
器(17)により校正用圧電素子(13)から模擬AE
波を発振させて、第1実施例の場合と同様に校正を行な
う。
The diagnosis section (18) normally performs equipment diagnosis using the AE waves detected by the detection piezoelectric element (12), and periodically generates simulated AE waves from the calibration piezoelectric element (13) using the oscillator (17).
A wave is oscillated and calibration is performed in the same manner as in the first embodiment.

第3図は第3実施例を示し、第1実施例と同じ部分には
同一の符号を付している。
FIG. 3 shows a third embodiment, in which the same parts as in the first embodiment are given the same reference numerals.

第3実施例の場合、第1実施例の診断部(15)と校正
部(1B)のかわりに、設備診断と校正に切換えられる
校正機能付診断部(19)が設けられ、これに検出用圧
電素子(12)が接続されている。
In the case of the third embodiment, a diagnosis section (19) with a calibration function that can be switched to equipment diagnosis and calibration is provided in place of the diagnosis section (15) and calibration section (1B) of the first embodiment. A piezoelectric element (12) is connected.

また、校正用圧電素子(13)が切換スイッチ(20)
を介して診断部(19)および発振器(17)に接続さ
れている。
In addition, the piezoelectric element for calibration (13) is connected to the changeover switch (20).
It is connected to the diagnostic section (19) and the oscillator (17) via.

通常は、切換スイッチ(20)が第3図に実線で示すよ
うに診断部(19)側に切換えられるとともに、診断部
(19)が診断側に切換えられており、診断部(19)
は2つの圧電素子(12)(13)の差動出力により設
備診断を行なう。
Normally, the changeover switch (20) is switched to the diagnostic section (19) side as shown by the solid line in Fig. 3, and the diagnostic section (19) is also switched to the diagnostic side.
performs equipment diagnosis using differential outputs of two piezoelectric elements (12) and (13).

校正時には、切換スイッチ(20)が第3図に鎖線で示
すように発振器(17)側に切換えられるとともに、診
断部(19)が校正側に切換えられ、診断部(19)は
検出用圧電素子(12)で検出された模擬AE波の振幅
により校正を行なう。
During calibration, the changeover switch (20) is switched to the oscillator (17) side as shown by the chain line in Fig. 3, and the diagnostic section (19) is switched to the calibration side, and the diagnostic section (19) connects the piezoelectric element for detection. Calibration is performed using the amplitude of the simulated AE wave detected in (12).

第3実施例の診断装置のAEセンサ(10)は、通常、
2つの圧電素子(12)(13)により差動型AEセン
サとして動作し、ノイズを除去することができる。
The AE sensor (10) of the diagnostic device of the third embodiment usually includes:
The two piezoelectric elements (12) and (13) operate as a differential AE sensor and can remove noise.

第4図は第4実施例を示し、第1実施例と同じ部分には
同一の符号を付している。
FIG. 4 shows a fourth embodiment, in which the same parts as in the first embodiment are given the same reference numerals.

第4実施例の場合、第1実施例の診断部(15)と校正
部(16)のかわりに、設備診断と定期的な校正を自動
的に行なう校正機能付診断部(21)が設けられ、これ
に検出用圧電素子(12)、校正用圧電素子(13)お
よび発振器(17)がそれぞれ接続されている。
In the case of the fourth embodiment, a diagnosis section with a calibration function (21) that automatically performs equipment diagnosis and periodic calibration is provided in place of the diagnosis section (15) and calibration section (16) of the first embodiment. , to which a detection piezoelectric element (12), a calibration piezoelectric element (13), and an oscillator (17) are respectively connected.

診断部(21)は、通常、2つの圧電素子(12)(1
3)の差動出力により設備診断を行ない、定期的に、発
振器(17)により校正用圧電素子(13)から模擬A
E波を発振させて、第1実施例の場合と同様に校正を行
なう。
The diagnostic section (21) usually includes two piezoelectric elements (12) (1
Equipment diagnosis is performed using the differential output of 3), and the oscillator (17) periodically generates a simulated A
E-wave is oscillated and calibration is performed in the same manner as in the first embodiment.

発明の効果 この発明の診断装置によれば、上述のように、設備運転
状態で、しかもこれを設備に取付けたまま、短時間で校
正ができ、校正時にも設備診断を長く中断する必要がな
い。また、検出用圧電素子の劣化の度合をほぼ2倍の高
感度でとらえることができ、通常は、検出用圧電素子の
他に校正用圧電素子も使用してAEセンサを差動型AE
センサとして動作させることもできる。
Effects of the Invention According to the diagnostic device of the present invention, as described above, it is possible to perform calibration in a short time while the equipment is in operation and while it is attached to the equipment, and there is no need to interrupt equipment diagnosis for a long time during calibration. . In addition, it is possible to detect the degree of deterioration of the detection piezoelectric element with almost twice the sensitivity, and normally a calibration piezoelectric element is used in addition to the detection piezoelectric element to convert the AE sensor into a differential type AE sensor.
It can also be operated as a sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1実施例を示す診断装置の構成図
、第2図はこの発明の第2実施例を示す第1図相当の図
面、第3図はこの発明の第3実施例を示す第1図相当の
図面、第4図はこの発明の第4実施例を示す第1図相当
の図面である。 (10)・・・AEセンサ、(12)・・・AE波検出
用圧電素子の(13)・・・校正用圧電素子、(15)
・・・診断部、(16)・・・校正部、(17)・・・
発振器、(1g) (19) (21)・・・校正機能
付診断部。 以  上 第4図
Fig. 1 is a block diagram of a diagnostic device showing a first embodiment of the present invention, Fig. 2 is a drawing corresponding to Fig. 1 showing a second embodiment of the invention, and Fig. 3 is a third embodiment of the invention. FIG. 4 is a drawing corresponding to FIG. 1 showing a fourth embodiment of the present invention. (10)...AE sensor, (12)...piezoelectric element for AE wave detection, (13)...piezoelectric element for calibration, (15)
...Diagnosis section, (16)...Calibration section, (17)...
Oscillator, (1g) (19) (21)...Diagnostic section with calibration function. Above Figure 4

Claims (1)

【特許請求の範囲】[Claims] AE波検出用圧電素子の他に校正時に模擬AE波を発振
するための校正用圧電素子が設けられたAEセンサと、
校正時にAEセンサの校正用圧電素子よりAE波を発振
し検出用圧電素子でそのAE波を検出して検出用圧電素
子の感度の劣化を検定する手段とを備えている診断装置
an AE sensor provided with a piezoelectric element for calibration for oscillating a simulated AE wave during calibration in addition to the piezoelectric element for detecting the AE wave;
A diagnostic device comprising means for oscillating an AE wave from a piezoelectric element for calibration of an AE sensor during calibration, detecting the AE wave with a piezoelectric element for detection, and verifying deterioration in sensitivity of the piezoelectric element for detection.
JP62253373A 1987-10-06 1987-10-06 Diagnostic apparatus Pending JPH0194258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62253373A JPH0194258A (en) 1987-10-06 1987-10-06 Diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62253373A JPH0194258A (en) 1987-10-06 1987-10-06 Diagnostic apparatus

Publications (1)

Publication Number Publication Date
JPH0194258A true JPH0194258A (en) 1989-04-12

Family

ID=17250454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62253373A Pending JPH0194258A (en) 1987-10-06 1987-10-06 Diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPH0194258A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511802A (en) * 2002-12-20 2006-04-06 メディ−フィジックス・インコーポレイテッド Calibration of polarization measuring station
WO2018081035A1 (en) * 2016-10-25 2018-05-03 Fisher Controls International Llc Acoustic emission sensors with integral acoustic generators
WO2018118204A1 (en) * 2016-12-21 2018-06-28 Fisher Controls International Llc Methods and apparatus to verify operation of acoustic emission sensors
US10161912B2 (en) 2016-01-11 2018-12-25 Fisher Controls International Llc Methods and apparatus to test acoustic emission sensors
US10345273B2 (en) 2016-01-11 2019-07-09 Fisher Controls International Llc Methods and apparatus to verify operation of acoustic emission sensors
CN110118829A (en) * 2019-06-27 2019-08-13 中国工程物理研究院化工材料研究所 A kind of test macro and method of the amplitude-frequency characteristic of acoustic emission sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511802A (en) * 2002-12-20 2006-04-06 メディ−フィジックス・インコーポレイテッド Calibration of polarization measuring station
US10161912B2 (en) 2016-01-11 2018-12-25 Fisher Controls International Llc Methods and apparatus to test acoustic emission sensors
US10345273B2 (en) 2016-01-11 2019-07-09 Fisher Controls International Llc Methods and apparatus to verify operation of acoustic emission sensors
WO2018081035A1 (en) * 2016-10-25 2018-05-03 Fisher Controls International Llc Acoustic emission sensors with integral acoustic generators
WO2018118204A1 (en) * 2016-12-21 2018-06-28 Fisher Controls International Llc Methods and apparatus to verify operation of acoustic emission sensors
CN110118829A (en) * 2019-06-27 2019-08-13 中国工程物理研究院化工材料研究所 A kind of test macro and method of the amplitude-frequency characteristic of acoustic emission sensor

Similar Documents

Publication Publication Date Title
US8833167B2 (en) Sensor device and method for operating a sensor device
JP2793044B2 (en) Method and apparatus for detecting and / or monitoring a predetermined filling level in a container
US7107843B2 (en) Angular velocity sensor
JP2010286368A (en) Physical quantity detector and method of controlling the physical quantity detector, abnormality diagnosis system, and method of diagnosing abnormality
JPS61215982A (en) Self-diagnostic ultrasonic operation detector
JPH0194258A (en) Diagnostic apparatus
JP5348408B2 (en) Physical quantity detection device, physical quantity detection device abnormality diagnosis system, and physical quantity detection device abnormality diagnosis method
JP2009513929A (en) Yaw rate sensor monitoring method
JP2000088584A (en) Angular velocity sensor
JP2010286371A (en) Physical quantity detector, abnormality diagnosis system of the same, and abnormality diagnosis method of the same
JP2004301512A (en) Angular velocity sensor apparatus
JP2005083752A (en) Breaking sound sensor
JPH05119055A (en) Vibration sensor
JP2008057985A (en) Static electricity measuring instrument with distance correction
JP2000209767A (en) Analog input section monitoring device for digital protective controller
KR100442647B1 (en) Ultrasonic sensor driving system equipped with natural frequency restoring means
JPH05203485A (en) Automatic detection method for resonance frequency and its device
JPH10123171A (en) Diagnosis method and self-diagnosis device of three-axis acceleration sensor
JPH08133155A (en) Bank angle detecting device for two-wheeler
SU1208506A1 (en) Arrangement for acoustic emission inspection of objects
JP2927114B2 (en) Acceleration sensor
KR960018534A (en) Method of diagnosing errors in ultrasonic devices and apparatus therefor
JP2000074674A (en) Method for inspecting vibrator characteristics of angular speed sensor
JP2000035324A (en) Ultrasonic sensor
JPH07128349A (en) Speed detector