JPH019248Y2 - - Google Patents

Info

Publication number
JPH019248Y2
JPH019248Y2 JP1982194601U JP19460182U JPH019248Y2 JP H019248 Y2 JPH019248 Y2 JP H019248Y2 JP 1982194601 U JP1982194601 U JP 1982194601U JP 19460182 U JP19460182 U JP 19460182U JP H019248 Y2 JPH019248 Y2 JP H019248Y2
Authority
JP
Japan
Prior art keywords
blade
shaft
welded
toe
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982194601U
Other languages
Japanese (ja)
Other versions
JPS5999642U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19460182U priority Critical patent/JPS5999642U/en
Publication of JPS5999642U publication Critical patent/JPS5999642U/en
Application granted granted Critical
Publication of JPH019248Y2 publication Critical patent/JPH019248Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は回転電機電機子の羽根付き溶接構造シ
ヤフトの構成の改良に関するものである。
[Detailed Description of the Invention] The present invention relates to an improvement in the configuration of a bladed welded structure shaft of an armature of a rotating electric machine.

回転電機電機子を構成する羽根付き溶接構造シ
ヤフトは、電機子の冷却通風効果、低慣性化、軽
量化を図るため、軸方向に通風孔を有する構成と
なつている。従来の構成を第1図(図の右側を電
動機の場合の出力側とする)及び第2図について
説明する。両図において、1はシヤフト、2は羽
根、3は鉄心で、シヤフト1の半径方向に複数枚
の羽根2をすみ肉溶接して取付け、その外周に鉄
心3を嵌着する。両図においては、説明の便宜
上、鉄心3を取除いた状態を示している。上記の
ような構成において、鉄心3の外周に作用するト
ルクによる接線力Tは羽根2を経てシヤフト1に
伝達される。
The bladed welded structure shaft that constitutes the armature of a rotating electric machine has a ventilation hole in the axial direction in order to achieve cooling ventilation effects, lower inertia, and weight reduction of the armature. A conventional configuration will be described with reference to FIG. 1 (the right side of the figure is the output side in the case of an electric motor) and FIG. 2. In both figures, 1 is a shaft, 2 is a blade, and 3 is an iron core. A plurality of blades 2 are attached to the shaft 1 by fillet welding in the radial direction, and the iron core 3 is fitted on the outer periphery of the shaft 1. In both figures, for convenience of explanation, the state in which the iron core 3 is removed is shown. In the above configuration, the tangential force T due to the torque acting on the outer periphery of the iron core 3 is transmitted to the shaft 1 via the blades 2.

ところで、上記のように接線力Tをシヤフト1
に伝達する構成において、強度上の弱点として、
繰返し応力に対する疲労が原因でき裂を生ずるの
は、主として溶接したビードの止端部である。こ
れの一例として第3図に、シヤフト1と羽根2と
を溶接したビードBの羽根側止端部Cからき裂D
を生じた場合を示している。
By the way, as mentioned above, the tangential force T is
As a weak point in strength in the structure that transmits
It is mainly the toe of the welded bead that cracks due to fatigue due to repeated stress. As an example of this, Fig. 3 shows a crack D from the blade side toe C of the bead B where the shaft 1 and the blade 2 are welded.
This shows the case where this occurs.

次に、このような疲労強度の面から問題となる
位置を検討する。鉄心3の外周に接線力Tが作用
することによつて、羽根2の受ける曲げ変形は、
第2図に破線で示すような曲げ変形を受ける。問
題は、この曲げ変形が軸方向に沿つて一様ではな
く羽根端において最大となるところにある。この
様子を第4図及び第5図について簡単に説明す
る。両図において、羽根の数は2枚で、羽根2の
外周を固定とし、シヤフト1がトルクT1を受け
るときの羽根の曲げ変形を模擬的に示したもので
ある。シヤフト1はトルクT1を受けることによ
つて、ある角度ねじられ、これによつて羽根は破
線で示すような曲げ変形を生じる。この際シヤフ
トがねじり変形することから、羽根2の軸方向寸
法が大きくなるにしたがつて、トルクは反トルク
側の羽根端4までは伝達されにくくなる。第6図
に示すように、鉄心3の外周に接線力Tを受ける
羽根付き溶接構造シヤフトの羽根側止端部5にお
ける曲げ応力を有限要素法によつて解析した結果
の一例として、第7図に示す曲線が得られた。す
なわち、第7図において、横軸は羽根側止端部5
の羽根端よりの軸方向位置lを、縦軸は平均値を
1とした場合の曲げ応力比率を示す。この結果に
よれば、曲げ応力の軸方向分布は一様ではなく、
羽根端に向かつて集中する傾向が見受けられ、そ
の最大値は平均値に対して約3倍の値であつた。
この構造的応力集中は、羽根側止端部における疲
労強度に対してかなり有害であることが分かる。
Next, we will examine the locations that pose problems from the perspective of fatigue strength. The bending deformation that the blade 2 undergoes due to the tangential force T acting on the outer periphery of the iron core 3 is as follows:
It undergoes bending deformation as shown by the broken line in FIG. The problem is that this bending deformation is not uniform along the axial direction, but is greatest at the blade ends. This situation will be briefly explained with reference to FIGS. 4 and 5. In both figures, the number of blades is two, the outer periphery of blade 2 is fixed, and the bending deformation of the blade when shaft 1 receives torque T 1 is simulated. The shaft 1 is twisted through a certain angle by being subjected to a torque T 1 , which causes the blade to undergo a bending deformation as shown by the dashed line. At this time, since the shaft is torsionally deformed, as the axial dimension of the blade 2 increases, it becomes difficult for torque to be transmitted to the blade end 4 on the anti-torque side. As shown in FIG. 6, as an example of the results of an analysis using the finite element method of the bending stress at the blade-side toe 5 of a welded shaft with blades that receives a tangential force T on the outer periphery of the iron core 3, FIG. The curve shown in was obtained. That is, in FIG. 7, the horizontal axis represents the blade side toe 5.
The vertical axis shows the bending stress ratio when the average value is set to 1, and the axial position l from the blade end is taken as the vertical axis. According to this result, the axial distribution of bending stress is not uniform;
A tendency to concentrate toward the blade tip was observed, and the maximum value was about three times the average value.
It can be seen that this structural stress concentration is quite detrimental to the fatigue strength at the vane side toe.

上記のように疲労強度の面から問題となる位置
は、羽根端にあることが分かつたので、この点に
ついて上記の従来例について検討する。第1図及
び第2図において、6は羽根2の出力側端部、7
は羽根端6とシヤフト1とを溶接した円周方向ビ
ード、8はビード7の軸側止端部、9は羽根2と
シヤフト1とを溶接した長手方向ビード、10は
ビード9の羽根側止端部、11aは羽根2とシヤ
フト1とを溶接する際に、溶接されない部分が残
つた場合の不溶着部、そして11bはその不溶着
部先端とすれば、上記のように疲労強度の面から
問題となる位置は、主として羽根端6の円周方向
ビード7の軸側止端部8、長手方向ビード9の羽
根側止端部10、及び不溶着部先端11bである
と考えられる。
As mentioned above, it has been found that the location that poses a problem in terms of fatigue strength is at the blade end, so the above-mentioned conventional example will be discussed in this regard. In FIGS. 1 and 2, 6 is the output side end of the blade 2, 7
8 is the circumferential bead where the blade end 6 and the shaft 1 are welded, 8 is the shaft side toe of the bead 7, 9 is the longitudinal bead where the blade 2 and the shaft 1 are welded, and 10 is the blade side stop of the bead 9. Assuming that the end portion 11a is the unwelded part that remains when the blade 2 and the shaft 1 are welded, and 11b is the tip of the unwelded part, from the viewpoint of fatigue strength as described above. It is thought that the problematic positions are mainly the shaft-side toe 8 of the circumferential bead 7 of the blade end 6, the blade-side toe 10 of the longitudinal bead 9, and the unwelded portion tip 11b.

本考案は、羽根端における構造的応力集中を緩
和した構成を採用することによつて、長手方向ビ
ード9の羽根側止端部10に関する疲労強度の改
善を主目的とする。なお、羽根2とシヤフト1と
の不溶着部11aが残つた場合は、不溶着部先端
11bの疲労強度の改善をも目的とするものであ
る。
The main purpose of the present invention is to improve the fatigue strength of the blade toe 10 of the longitudinal bead 9 by adopting a configuration that alleviates the structural stress concentration at the blade end. In addition, when the unwelded part 11a between the blade 2 and the shaft 1 remains, the purpose is also to improve the fatigue strength of the unwelded part tip 11b.

以下、本考案を図示する一実施例について説明
する。
An embodiment illustrating the present invention will be described below.

第8図及び第9図において、1〜3,6,9,
10,11は第1図及び第2図に示す部材と同一
又は同等の部材を示している。
In Figures 8 and 9, 1 to 3, 6, 9,
Reference numerals 10 and 11 indicate members that are the same as or equivalent to those shown in FIGS. 1 and 2.

本考案は、従来の構成において、羽根2の曲げ
応力が大きくなる羽根端6近傍で、シヤフト1を
円錐形状にし、これに対応して羽根2の高さhも
羽根端6に向かつて小さくなるようにした構成で
ある。
In the present invention, in the conventional configuration, the shaft 1 is made into a conical shape near the blade end 6 where the bending stress of the blade 2 increases, and correspondingly, the height h of the blade 2 also becomes smaller toward the blade end 6. This is the configuration.

本実施例によるトルク伝達は、従来例と同様に
行われる。ただし、本実施例においては、羽根端
6近傍における羽根2の曲げ応力は、羽根2の高
さhが小さいことから従来構成のものより低減さ
れる。
Torque transmission according to this embodiment is performed in the same manner as in the conventional example. However, in this embodiment, the bending stress of the blade 2 near the blade end 6 is reduced compared to that of the conventional configuration because the height h of the blade 2 is small.

以上述べたように、本考案に係る回転電機電機
子の羽根付き溶接構造シヤフトは、羽根端6近傍
における羽根2の曲げ応力が従来構成のものより
小さくなることから、羽根側止端部10及び不溶
着部先端11bにおける疲労強度が改善されると
いう極めて優れた効果がある。
As described above, in the bladed welded structure shaft of the rotary electric machine armature according to the present invention, the bending stress of the blade 2 in the vicinity of the blade end 6 is smaller than that of the conventional structure, so that the blade side toe 10 and This has an extremely excellent effect of improving the fatigue strength at the tip 11b of the unwelded portion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の羽根付き溶接構造シ
ヤフトの構成を鉄心を取除いて示すもので、第1
図は正面図、第2図は第1図のA−A′断面側面
図である。第3図は羽根側止端部にき裂を生じた
状態を示す断面側面図、第4図及び第5図はシヤ
フトがトルクを受けることにより羽根の受ける曲
げ変形を模擬的に示すもので、第4図は斜視図、
第5図は側面図である。第6図は鉄心の外周に接
線力Tを受ける羽根付き溶接構造シヤフトの羽根
側止端部における曲げ応力を有限要素法によつて
解析するための斜視図、第7図は有限要素法によ
つて得られた曲げ応力比率曲線図、第8図及び第
9図は本考案の一実施例を示すもので、第8図は
正面図、第9図は第8図のA−A′断面の右半部
を示す側面図である。 1……シヤフト、2……羽根、6……羽根端、
h……羽根の高さ。
Figures 1 and 2 show the configuration of a conventional bladed welded shaft with the iron core removed.
The figure is a front view, and FIG. 2 is a cross-sectional side view taken along line A-A' in FIG. Figure 3 is a cross-sectional side view showing a state in which a crack has occurred at the toe of the blade, and Figures 4 and 5 are simulations of the bending deformation that the blade undergoes when the shaft receives torque. Figure 4 is a perspective view;
FIG. 5 is a side view. Figure 6 is a perspective view for analyzing the bending stress at the blade-side toe of a welded shaft with blades that receives a tangential force T on the outer periphery of the iron core, and Figure 7 is a perspective view for analyzing the bending stress at the blade-side toe of a shaft that receives a tangential force T on the outer periphery of the iron core. The bending stress ratio curve diagrams, FIGS. 8 and 9, shown in FIG. 8 show an embodiment of the present invention. FIG. 8 is a front view, and FIG. FIG. 3 is a side view showing the right half. 1...shaft, 2...blade, 6...blade end,
h...Height of the blade.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 羽根端6近傍において、シヤフト1を円錐形状
にし、これに対応して羽根2の高さhを羽根端6
に向かつて徐々に小さくなるようにしたことを特
徴とする回転電機電機子の羽根付き溶接構造シヤ
フト。
In the vicinity of the blade end 6, the shaft 1 is made into a conical shape, and the height h of the blade 2 is correspondingly set to the blade end 6.
A bladed welded structure shaft for an armature of a rotating electric machine, characterized in that the shaft gradually becomes smaller as it approaches.
JP19460182U 1982-12-22 1982-12-22 Welded structure shaft with vanes for rotating electric machine armature Granted JPS5999642U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19460182U JPS5999642U (en) 1982-12-22 1982-12-22 Welded structure shaft with vanes for rotating electric machine armature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19460182U JPS5999642U (en) 1982-12-22 1982-12-22 Welded structure shaft with vanes for rotating electric machine armature

Publications (2)

Publication Number Publication Date
JPS5999642U JPS5999642U (en) 1984-07-05
JPH019248Y2 true JPH019248Y2 (en) 1989-03-14

Family

ID=30418228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19460182U Granted JPS5999642U (en) 1982-12-22 1982-12-22 Welded structure shaft with vanes for rotating electric machine armature

Country Status (1)

Country Link
JP (1) JPS5999642U (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331209B2 (en) * 1973-10-05 1978-09-01
JPS5332307B2 (en) * 1972-10-27 1978-09-07
JPS562764B2 (en) * 1975-01-18 1981-01-21

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331209U (en) * 1976-08-24 1978-03-17
JPS5332307U (en) * 1976-08-27 1978-03-20
JPS562764U (en) * 1979-06-20 1981-01-12

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332307B2 (en) * 1972-10-27 1978-09-07
JPS5331209B2 (en) * 1973-10-05 1978-09-01
JPS562764B2 (en) * 1975-01-18 1981-01-21

Also Published As

Publication number Publication date
JPS5999642U (en) 1984-07-05

Similar Documents

Publication Publication Date Title
JP3414785B2 (en) Aircraft rotor blades with swept tip
JP2005325839A (en) Hollow vane-shaped part joined by friction stirring and method for it
JPH0545093Y2 (en)
JPH019248Y2 (en)
JPH019249Y2 (en)
JPH0112519Y2 (en)
US2293801A (en) Hollow metal propeller blade
JPS595899A (en) Mutual connection of central plate and blade of centrifugal blower wheel
JP3236981B2 (en) Motor cooling fan
JP3468642B2 (en) Drive plate structure made of sheet metal
JPS6232201A (en) Structure of cascade of rotary blades in axial flow rotary machine
JPH07334071A (en) Centrifugal force generator and method for determining arm shape of the device
US2986375A (en) Bladed wheels for compressors, turbines and the like
JPH0141842Y2 (en)
CN215597427U (en) Air duct machine and positioning tool thereof
JPH046482Y2 (en)
JPH0622083Y2 (en) Stub damper
JPH04314693A (en) Rotary wing
JPS6232532Y2 (en)
JPH0578901U (en) Turbine blades
JPS5840815Y2 (en) rotary lawn mower blade
KR0113390Y1 (en) Structure for fixing weight balance for drive shaft
JPH0220914Y2 (en)
JPS60111001A (en) Integral stub blade for turbine
JPS6044520B2 (en) multi-winged fan