JPH0155411B2 - - Google Patents

Info

Publication number
JPH0155411B2
JPH0155411B2 JP56077295A JP7729581A JPH0155411B2 JP H0155411 B2 JPH0155411 B2 JP H0155411B2 JP 56077295 A JP56077295 A JP 56077295A JP 7729581 A JP7729581 A JP 7729581A JP H0155411 B2 JPH0155411 B2 JP H0155411B2
Authority
JP
Japan
Prior art keywords
face
linear
curved surface
lens
sector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56077295A
Other languages
Japanese (ja)
Other versions
JPS57191547A (en
Inventor
Keiki Yamaguchi
Shinichi Sano
Takao Tosen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP56077295A priority Critical patent/JPS57191547A/en
Priority to GB8200699A priority patent/GB2091520A/en
Priority to DE19823200762 priority patent/DE3200762A1/en
Publication of JPS57191547A publication Critical patent/JPS57191547A/en
Publication of JPH0155411B2 publication Critical patent/JPH0155411B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays

Description

【発明の詳細な説明】 本発明は超音波診断装置で使用する超音波探触
子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic probe used in an ultrasonic diagnostic apparatus.

従来より、超音波診断装置で被検体の断層像を
得る場合に行なわれる探触子の走査方式は、主と
してリニア走査方式とセクタ走査方式に大別でき
る。セクタ走査方式は胸部撮像などに好適ではあ
るが、リニア走査方式と対比して次のような短所
がある。
2. Description of the Related Art Conventionally, probe scanning methods used when obtaining a tomographic image of a subject with an ultrasonic diagnostic apparatus can be broadly classified into a linear scanning method and a sector scanning method. Although the sector scanning method is suitable for chest imaging, it has the following disadvantages compared to the linear scanning method.

(1) 電子式セクタ走査方式の場合 (イ) 電子回路が膨大・複雑であるため装置全体
としての価格が高い。
(1) In the case of electronic sector scanning method (a) The electronic circuit is huge and complicated, so the cost of the entire device is high.

(ロ) 大きい振れ角までセクタ走査しようとした
場合、大きい角度の音波に対しては感度不足
となるため良質の画像を得にくい。
(b) When attempting to scan sectors up to a large deflection angle, it is difficult to obtain a good quality image because the sensitivity is insufficient for sound waves at large angles.

(2) 機械式セクタ走査方式の場合 (イ) 超音波振動子をモータ等で動かすため、探
触子が全体として大きい形状となる。
(2) In the case of mechanical sector scanning method (a) Since the ultrasonic transducer is moved by a motor etc., the overall shape of the probe becomes large.

(ロ) 任意の順番で走査できない。 (b) Cannot be scanned in any order.

(ハ) 走査速度が遅い。 (c) Scanning speed is slow.

本発明は、このような点に鑑み、振動子に対し
てはリニア電子走査を行ないながら被検体に対し
てはセクタ走査となるような簡単な構造の超音波
探触子を提供することを目的とする。
In view of these points, it is an object of the present invention to provide an ultrasonic probe with a simple structure that performs linear electronic scanning on the transducer and sector scanning on the subject. shall be.

以下図面を用いて本発明を実施例につき詳しく
説明する。第1図は本発明に係る超音波探触子の
一実施例を示す説明的要部構成図(平面図)で、
第2図はその側面図を示すものである。第1図及
び第2図において、10はリニア電子走査用プロ
ープ、20はリニア・セクタ変換レンズ、30は
伝播媒質をそれぞれ示す。リニア電子走査用プロ
ープ10は、パツキング材12とこのパツキング
材に平面状に配列して接着され複数個の振動子で
なる振動子群11より構成されており、隣接する
複数個の振動子を1グループとして順次にずらせ
ながら超音波の送信及び受信を行ない得るもので
ある。リニア・セクタ変換レンズ20は、振動子
群11に接着される端面21が平面状に形成さ
れ、この端面21に対向する他端面22が振動子
配列方向の中央部に近づくほどより厚肉となるよ
うな二次元的曲面に形成されてなる凸状の音響学
的レンズである。なお、振動子群11とこのレン
ズ20との間に音響インピーダンス整合を図る目
的で整合層を介在させてもよい。伝播媒質30
は、下端に開口端31を有し、上端はレンズ20
の凸状曲面22とぴつたり一致するような凹状の
曲面を有する、逆台形状に形成された音波伝播媒
質で、伝播損失の少ないゴム、ゴム状材料又は
水、ゲル等より構成され、変換をレンズ20より
開口端31に導くとともに逆に開口端31より入
つた超音波をレンズ20に導入するものである。
なお、伝播媒質30は生体との結合を良くするた
めに生体の音響インピーダンスに近いものが望ま
しい。また、水、ゲル等で構成する場合は、それ
自体では上記形状を維持できないから流動体を透
過させない材料例えばアクリル樹脂板等で上記の
ような外形形状の中空容器を用意し、この容器に
水、ゲル等の流動体を封入した構成とする。ま
た、開口端31は被検体と結合する部分であるこ
とを考慮して薄膜とするのが望ましく、更にこの
薄膜の厚さは薄膜による擬線の発生を防止するた
めに当該超音波の波長より十分薄い厚さがよい。
また、この開口端31には超音波ビームを絞るた
めの音響レンズを外付してもよい。更にまた、伝
播媒質30の側面32a,32bは直線状に限ら
ず外側に湾曲した形状としてもよい。このような
伝播媒質30をレンズ20に接着する。レンズ2
0は、通常開口端31の中央に焦点を有するよう
にその曲面22を形成してあるが、焦点位置は必
ずしも開口端面に位置しなくともよく開口端位置
より上方又は下方にずれた点にあつてもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings. FIG. 1 is an explanatory main part configuration diagram (plan view) showing one embodiment of the ultrasonic probe according to the present invention.
FIG. 2 shows a side view thereof. In FIGS. 1 and 2, 10 represents a linear electronic scanning probe, 20 represents a linear sector conversion lens, and 30 represents a propagation medium. The linear electronic scanning probe 10 is composed of a packing material 12 and a transducer group 11 consisting of a plurality of transducers arranged in a plane and bonded to the packing material. Ultrasonic waves can be transmitted and received while being shifted sequentially as a group. In the linear sector conversion lens 20, an end surface 21 that is bonded to the transducer group 11 is formed into a planar shape, and the other end surface 22 opposite to this end surface 21 becomes thicker as it approaches the center in the transducer arrangement direction. It is a convex acoustic lens formed into a two-dimensional curved surface. Note that a matching layer may be interposed between the vibrator group 11 and this lens 20 for the purpose of achieving acoustic impedance matching. Propagation medium 30
has an open end 31 at the lower end and a lens 20 at the upper end.
A sound wave propagation medium formed in an inverted trapezoid shape with a concave curved surface that exactly matches the convex curved surface 22 of Ultrasonic waves are guided from the lens 20 to the aperture end 31 and conversely, the ultrasonic waves entering from the aperture end 31 are introduced into the lens 20.
Note that the propagation medium 30 preferably has an acoustic impedance close to that of the living body in order to improve the coupling with the living body. In addition, when it is made of water, gel, etc., it cannot maintain the above shape by itself, so prepare a hollow container with the above external shape made of a material that does not allow fluids to pass through, such as an acrylic resin plate, and fill this container with water. , a fluid such as gel is enclosed. In addition, considering that the opening end 31 is the part that connects with the subject, it is desirable to make it a thin film, and furthermore, the thickness of this thin film is smaller than the wavelength of the ultrasound in order to prevent the generation of pseudo-rays due to the thin film. The thickness should be sufficiently thin.
Further, an acoustic lens may be externally attached to the opening end 31 to narrow down the ultrasonic beam. Furthermore, the side surfaces 32a and 32b of the propagation medium 30 are not limited to straight shapes, but may be curved outward. Such a propagation medium 30 is bonded to the lens 20. lens 2
0, the curved surface 22 is formed so as to have a focal point at the center of the opening end 31, but the focal point does not necessarily have to be located at the opening end surface, but may be at a point shifted above or below the opening end position. It's okay.

次に、このようなレンズの曲面22の形状につ
いて詳述する。今、レンズ20中の音速をv1、伝
播媒質30中の音速をv2(v1<v2)とする。第3
図に示すように、レンズ20を通過した音波が焦
点Pfに収束するには、例えばA点よりx軸上を
進行する音波及びB点より往路33を進行する音
波とが同じ経過時間で焦点Pfに到達しなければな
らない。すなわち、同図において、x軸上の距離
l1を伝播するに要する時間と、往路33上のl2
l3を伝播するに要する時間とは同じでなければな
らない。このような関係を満すためのレンズ20
の曲面22の形状は次式で与えられる双曲線とな
る。
Next, the shape of the curved surface 22 of such a lens will be described in detail. Now, let the speed of sound in the lens 20 be v 1 and the speed of sound in the propagation medium 30 be v 2 (v 1 <v 2 ). Third
As shown in the figure, in order for the sound wave that has passed through the lens 20 to converge on the focal point Pf, for example, the sound wave traveling on the x-axis from point A and the sound wave traveling on the outward path 33 from point B must reach the focal point Pf in the same elapsed time. must reach f . In other words, in the same figure, the distance on the x-axis
The time required to propagate l 1 and l 2 on the outgoing path 33,
The time required to propagate l3 must be the same. Lens 20 to satisfy such a relationship
The shape of the curved surface 22 is a hyperbola given by the following equation.

ここにfは焦点距離である。 Here, f is the focal length.

なお、もしレンズ20の開口が小さければ、こ
の双曲線は次式で表わされる曲率半径Rの円弧曲
線で近似してもよい。
Note that if the aperture of the lens 20 is small, this hyperbola may be approximated by a circular arc curve with a radius of curvature R expressed by the following equation.

R=f(v2/v1−1) なお、レンズ20及び伝播媒質30の厚みは第
2図に示すようにほぼ一定になつている。
R=f(v 2 /v 1 −1) The thicknesses of the lens 20 and the propagation medium 30 are substantially constant as shown in FIG. 2.

このような構成の超音波探触子で走査した場合
の状態を第4図に示す。すなわち、グループGi
の振動子を同時励振することにより発生する超音
波ビームBaは、リニア・セクタ変換レンズ20
内を直進した後伝播媒質30中をその開口端面3
1の中央部の焦点Pfに向つて収束しつつ進む。更
に、開口端面31から出た超音波は助骨41を避
け被検体40の内部へ直進する。一方走査が進み
グループGjの振動子を同時励振したときには、
上述と同様な態様でビームBbが被検体内に発射
される。これらのビームBa,Bbは常に焦点Pf
通過し、図からも明らかなように振動子群11を
リニア電子走査したとき、被検体40に対しては
セクタ走査が行なわれることが分かる。
FIG. 4 shows the state of scanning with the ultrasonic probe having such a configuration. i.e. group Gi
The ultrasonic beam Ba generated by simultaneously exciting the transducers of the linear sector conversion lens 20
After traveling straight through the propagation medium 30, its open end surface 3
1, converging toward the focal point P f at the center of the image. Furthermore, the ultrasonic waves emitted from the open end surface 31 avoid the rib cage 41 and travel straight into the interior of the subject 40 . On the other hand, when scanning progresses and the oscillators of group Gj are simultaneously excited,
Beam B b is emitted into the subject in a manner similar to that described above. These beams Ba and B b always pass through the focal point P f , and as is clear from the figure, when the transducer group 11 is linearly scanned by electrons, the object 40 is subjected to sector scanning.

第5図は振動子をデイレー駆動した場合のビー
ムの状態を示す図である。第4図では振動子を同
時駆動したが、第5図の場合には振動子より発射
される音波ビームがレンズ20内では広がるよう
に当該グループの振動子を個々に適宜の時間遅れ
をもつて駆動する。これによりレンズ20の焦点
位置とビームの収束点とは一致しなくなるが、被
検体内でのビーム幅が第4図の場合より細くな
り、結果として解像力の良い断層像が得られると
いう効果がある。
FIG. 5 is a diagram showing the state of the beam when the vibrator is driven in a delayed manner. In FIG. 4, the transducers are driven simultaneously, but in the case of FIG. drive As a result, the focal position of the lens 20 does not coincide with the convergence point of the beam, but the beam width within the subject becomes narrower than in the case of Fig. 4, and as a result, a tomographic image with good resolution can be obtained. .

なお、一般にプローブ10の音響インピーダン
スは被検体の音響インピーダンスよりも大きい。
そこで、プロープのパワーをできる限り損失少な
く被検体に導くために、それぞれの音響インピー
ダンスを次のように選定するのが望ましい。
Note that the acoustic impedance of the probe 10 is generally larger than the acoustic impedance of the subject.
Therefore, in order to guide the power of the probe to the subject with as little loss as possible, it is desirable to select the respective acoustic impedances as follows.

IpILIMIB ここに、Ipはプロープ10の音響インピーダン
ス、ILはレンズ20の音響インピーダンス、IM
伝播媒質30の音響インピーダンス、IBは被検体
40の音響インピーダンスである。
IpI L I M I B where Ip is the acoustic impedance of the probe 10, IL is the acoustic impedance of the lens 20, I M is the acoustic impedance of the propagation medium 30, and I B is the acoustic impedance of the subject 40.

なお、反射波は第4図及び第5図で示すビーム
路を逆戻りするように進み振動子11で受波する
ことができる。
Note that the reflected wave travels backward along the beam path shown in FIGS. 4 and 5, and can be received by the vibrator 11.

以上説明したように本発明によれば、簡単な構
成により、振動子に対してはリニア電子走査であ
るに対し被検体に対しては良質なセクタ走査とな
りしかも走査速度の低下を生ずることもないよう
なリニア・セクタ変換のできる超音波探触子の実
現することができる。
As explained above, according to the present invention, with a simple configuration, the transducer is subjected to linear electronic scanning, but the object to be examined is subjected to high-quality sector scanning, and there is no reduction in scanning speed. An ultrasonic probe capable of linear sector conversion can be realized.

更に本発明の超音波探触子を用いれば、超音波
ビームを振らせるための複雑、高価な電子回路を
要することなく、簡単で安価なリニア電子走査回
路によつても胸部撮像等に好適なセクタ走査を実
現できる効果がある。また、振動子に着目すれ
ば、超音波ビームはほぼ正面から出入りするで、
振動子にとつては常に最大感度の方向でセクタ走
査ができ、従来のセクタ走査にはみられない独特
の効果を奏する。
Furthermore, if the ultrasound probe of the present invention is used, there is no need for a complicated and expensive electronic circuit for swinging the ultrasound beam, and a simple and inexpensive linear electronic scanning circuit is used, which is suitable for chest imaging, etc. This has the effect of realizing sector scanning. Also, if we focus on the transducer, the ultrasonic beam enters and exits almost from the front.
The vibrator can always perform sector scanning in the direction of maximum sensitivity, producing a unique effect not found in conventional sector scanning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る超音波探触子の一実施例
を示す説明的要部構成図、第2図は第1図の探触
子の側面図、第3図はリニア・セクタ変換レンズ
を説明するための図、第4図及び第5図はリニ
ア・セクタ変換の様子を説明する説明図である。 10……リニア電子走査用プローブ、11……
振動子群、20……リニア・セクタ変換レンズ、
30……伝播媒質、31……開口端。
Fig. 1 is an explanatory main part configuration diagram showing an embodiment of an ultrasonic probe according to the present invention, Fig. 2 is a side view of the probe shown in Fig. 1, and Fig. 3 is a linear sector conversion lens. FIGS. 4 and 5 are explanatory diagrams illustrating the state of linear sector conversion. 10...Linear electronic scanning probe, 11...
Oscillator group, 20... linear sector conversion lens,
30... Propagation medium, 31... Open end.

Claims (1)

【特許請求の範囲】 1 複数個の振動子を一直線上に配列してなる振
動子群に、一方の端面が平面状に形成されこの面
に対向する他方の端面が中央部に近付くほど厚肉
となるような曲面に形成されたリニア・セクタ変
換レンズをその平面状端面が前記振動子群に対面
するように接合し、 平面または曲面状に形成された開口端面を有し
この開口端面と対向する他方の面が前記リニア・
セクタ変換レンズの曲面と一致するような曲面に
形成され前記リニア・セクタ変換レンズにおける
音速よりも速い音速を示す伝播媒質をその曲面が
前記リニア・セクタ変換レンズの曲面に対面する
ように接合し、 前記振動子群をリニア走査することにより開口
端面よりセクタ走査状の超音波ビームを発射する
ことができるようにしたことを特徴とする超音波
探触子。
[Scope of Claims] 1 A vibrator group consisting of a plurality of vibrators arranged in a straight line has one end face formed into a flat shape, and the other end face opposite to this face which is thicker as it gets closer to the center. A linear sector conversion lens formed into a curved surface is bonded so that its planar end face faces the vibrator group, and has an aperture end face formed in a flat or curved shape and faces this aperture end face. The other side of the linear
A propagation medium formed into a curved surface that matches the curved surface of the sector conversion lens and exhibiting a sound speed faster than the sound speed in the linear sector conversion lens is bonded so that the curved surface faces the curved surface of the linear sector conversion lens, An ultrasonic probe characterized in that a sector-scanning ultrasonic beam can be emitted from an aperture end face by linearly scanning the group of transducers.
JP56077295A 1981-01-13 1981-05-21 Ultrasonic probe Granted JPS57191547A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56077295A JPS57191547A (en) 1981-05-21 1981-05-21 Ultrasonic probe
GB8200699A GB2091520A (en) 1981-01-13 1982-01-11 Ultrasonic Probe
DE19823200762 DE3200762A1 (en) 1981-01-13 1982-01-13 ULTRASONIC PROBE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56077295A JPS57191547A (en) 1981-05-21 1981-05-21 Ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS57191547A JPS57191547A (en) 1982-11-25
JPH0155411B2 true JPH0155411B2 (en) 1989-11-24

Family

ID=13629889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56077295A Granted JPS57191547A (en) 1981-01-13 1981-05-21 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS57191547A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848213U (en) * 1981-09-29 1983-04-01 株式会社島津製作所 ultrasonic probe
DE3147482C1 (en) * 1981-12-01 1983-06-01 Krautkrämer GmbH, 5000 Köln Ultrasonic probe with a variety of ultrasonic transducers
JP3390607B2 (en) * 1996-08-05 2003-03-24 古野電気株式会社 Ultrasound diagnostic equipment
KR20000030169A (en) * 2000-01-27 2000-06-05 김배훈 Sector lens

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145180A (en) * 1978-03-09 1979-11-13 Gen Electric Ultrasonic image pickup device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145180A (en) * 1978-03-09 1979-11-13 Gen Electric Ultrasonic image pickup device

Also Published As

Publication number Publication date
JPS57191547A (en) 1982-11-25

Similar Documents

Publication Publication Date Title
US4084582A (en) Ultrasonic imaging system
US4207901A (en) Ultrasound reflector
US4325381A (en) Ultrasonic scanning head with reduced geometrical distortion
US5400788A (en) Apparatus that generates acoustic signals at discrete multiple frequencies and that couples acoustic signals into a cladded-core acoustic waveguide
US4333474A (en) Ultrasonic imaging system
US4507582A (en) Matching region for damped piezoelectric ultrasonic apparatus
US4339952A (en) Cylindrical transducer ultrasonic scanner
US4246791A (en) Ultrasonic imaging apparatus
US4248090A (en) Apparatus for ultrasonically imaging a body
JPS63177700A (en) Ultrasonic probe
JPH0155411B2 (en)
GB2099997A (en) Apparatus for ultrasonic imaging
JPS6145455B2 (en)
JP2720732B2 (en) Mechanical scanning ultrasonic probe
JP3429696B2 (en) Ultrasonic probe
CA1121500A (en) Ultrasonic scanner
JPH0440099A (en) Ultrasonic probe
JPH0810256A (en) Ultrasonic diagnostic system
JPS6145456B2 (en)
GB2091520A (en) Ultrasonic Probe
JPH0698129B2 (en) Ultrasonic probe
JPH1176242A (en) Ultrasonic probe in body cavity
JPS6245690Y2 (en)
JPH06245931A (en) Ultrasonic probe
JPS5831200Y2 (en) ultrasonic focusing lens