JPH0151926B2 - - Google Patents

Info

Publication number
JPH0151926B2
JPH0151926B2 JP20916782A JP20916782A JPH0151926B2 JP H0151926 B2 JPH0151926 B2 JP H0151926B2 JP 20916782 A JP20916782 A JP 20916782A JP 20916782 A JP20916782 A JP 20916782A JP H0151926 B2 JPH0151926 B2 JP H0151926B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
diffraction grating
conversion element
gratings
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20916782A
Other languages
Japanese (ja)
Other versions
JPS5999220A (en
Inventor
Yutaka Ichihara
Kazuyuki Takizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP20916782A priority Critical patent/JPS5999220A/en
Publication of JPS5999220A publication Critical patent/JPS5999220A/en
Publication of JPH0151926B2 publication Critical patent/JPH0151926B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Description

【発明の詳細な説明】 本発明は相対的な移動量を測定する光電式のエ
ンコーダ、特に回折格子を用いたエンコーダに関
する。第1図は透過型の回折格子と反射型の回折
格子とを組合わせたエンコーダの基本的な光学系
であつて、光源1からの射出光はコリメータレン
ズ2によりほぼ平行光になり、半透鏡5を透過し
た後、透過型の回折格子3に入射する。回折格子
3により異なつた次数に回折された回折光は、反
射型の回折格子4により更に回折される。回折格
子4により回折された回折光は、再び透過型の回
折格子3により回折され、反透鏡5により反射さ
れ、集光レンズ6によつて光電変換素子7上に集
光される。第2図に示した如く、透過型の回折格
子3による回折光のうち、任意に選択した2つの
回折光の次数をm10、m11とし、反射型の回折格
子4で上記次数m10,m11の回折光が回折された
後、透過型の回折格子3によりさらに回折された
光のうち、同方向に回折されて測定に利用される
回折光の次数をm20,m21とすれば、次数m20の回
折光と次数m21の回折光とが光電変換素子7上で
干渉する。回折格子4に対して回折格子3が移動
することにより光電変換素子7にて得られる信号
I(x)は、 I(x)=A+Bsin〔2πx/d{(m11+m
21)−(m10+m20)}+〕 となる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photoelectric encoder for measuring relative movement, particularly to an encoder using a diffraction grating. Figure 1 shows the basic optical system of an encoder that combines a transmission type diffraction grating and a reflection type diffraction grating.The light emitted from the light source 1 is turned into almost parallel light by the collimator lens 2, and the semi-transparent mirror After passing through the diffraction grating 5, it enters the transmission type diffraction grating 3. The diffracted light diffracted into different orders by the diffraction grating 3 is further diffracted by the reflective diffraction grating 4. The diffracted light diffracted by the diffraction grating 4 is again diffracted by the transmission type diffraction grating 3, reflected by the anti-transparent mirror 5, and focused onto the photoelectric conversion element 7 by the condensing lens 6. As shown in FIG. 2, the orders of two arbitrarily selected diffracted lights among the diffracted lights by the transmission type diffraction grating 3 are m 10 and m 11 , and the orders of the above-mentioned diffraction lights m 10 , After the diffracted light of m 11 is diffracted, among the lights that are further diffracted by the transmission type diffraction grating 3, the orders of the diffracted lights that are diffracted in the same direction and used for measurement are m 20 and m 21 . , the diffracted light of order m20 and the diffracted light of order m21 interfere on the photoelectric conversion element 7. The signal I(x) obtained by the photoelectric conversion element 7 by the movement of the diffraction grating 3 with respect to the diffraction grating 4 is I(x)=A+Bsin[2πx/d{(m 11 +m
21 ) − (m 10 + m 20 )}+].

但し、上式において、A,Bは定数、dは格子
定数、xは透過型の回折格子3の移動量、は位
相項である。
However, in the above equation, A and B are constants, d is a grating constant, x is the amount of movement of the transmission type diffraction grating 3, and is a phase term.

第2図は、m11=m21=1,m10=m20=0の場
合を示したもので、この場合には上式は I(x)=A+Bsin(2π・2x/d+) となる。
Figure 2 shows the case where m 11 = m 21 = 1, m 10 = m 20 = 0, in which case the above equation becomes I(x) = A + Bsin (2π・2x/d+). .

ここで、d=2μmとすれば I(x)=A+Bsin(2π・x+) である。すなわち、この式によれば、透過型の回
折格子3が1μm移動するごとに周期的に変化す
る正弦波状信号が光電変換素子7より得られるこ
とがわかる。
Here, if d=2 μm, I(x)=A+Bsin(2π·x+). That is, according to this equation, it can be seen that a sinusoidal signal that changes periodically every time the transmission type diffraction grating 3 moves by 1 μm is obtained from the photoelectric conversion element 7.

一般的には、透過型の回折格子3の移動量を方
向も含めて高精度で測定するために、反射型の回
折格子4を2個又は4個互いに得られる信号の位
相項がπ/2ずれるように配置すると共に、分割 した各々の回折格子4に対応せしめて光電変換素
子を配設している。その結果、各々の回折格子に
対応して配設された光電変換素子から得られる信
号は、 I1=A+Bsin(2π・2x/d+) I2=A+Bcos(2π・2x/d+) I3=A−Bsin(2π・2x/d+) I4=A−Bcos(2π・2x/d+) となり、これらの信号を適当な回路を通すことに
よつて信号I1−I3,I2−I4を求めれば I1−I3=2Bsin(2π・2x/d+) I2−I4=2Bcos(2π・2x/d+) となる。
Generally, in order to measure the amount of movement of the transmission type diffraction grating 3 with high precision, including the direction, the phase term of the signal obtained from two or four reflection type diffraction gratings 4 is π/2. The photoelectric conversion elements are arranged so as to be shifted from each other, and are arranged to correspond to each of the divided diffraction gratings 4. As a result, the signals obtained from the photoelectric conversion elements arranged corresponding to each diffraction grating are: I 1 =A+Bsin (2π・2x/d+) I 2 =A+Bcos (2π・2x/d+) I 3 =A −Bsin(2π・2x/d+) I 4 =A−Bcos(2π・2x/d+) By passing these signals through an appropriate circuit, the signals I 1 −I 3 , I 2 −I 4 can be obtained. The calculation results in I 1 −I 3 =2Bsin (2π・2x/d+) I 2 −I 4 =2Bcos (2π・2x/d+).

すなわち、信号I1−I3、I2−I4を求めれば、定
数Aを除去することができると共に、位相がπ/2 異なつた信号が得られるので、この2つの信号I1
−I3、I2−I4を適当な回路に通すことにより回折
格子3の移動量が高精度に測定できることにな
る。これら信号処理の過程は、回折格子以外の光
電式エンコーダと共通である。以上は、多くの回
折光のうち移動量の測定に必要な次数の回折光の
みを取り出した説明であるが、実際には所望の次
数以外の次数の回折光が光電変換素子に入射する
ので、光電変換素子の出力信号は値{(m11
m21)−(m10+m20)}の異なつたI(x)が重畳す
る結果、きれいな正弦波形とはならない。すなわ
ち、第3図において、第3図aは所望の次数の回
折光のみによつて得られる光電変換素子の出力信
号、第3図bは所望の次数の回折光より得られる
I(x)に値{(m11+m21)−(m10+m20)}の小
さいI(x)を重畳した場合の光電変換素子の出
力信号、第3図cは所望の次数の回折光より得ら
れるI(x)に値{(m11+m21)−(m10+m20)}
の大きいI(x)を重畳した場合の光電変換素子
の出力信号である。信号の分割によつてより細か
な移動量を測定しようとする場合、第3図b,c
の如く正弦波形から掛け離れた信号は特に誤差の
原因になると共に、補正のために分割回路が複雑
になるという欠点がある。
That is, if the signals I 1 - I 3 and I 2 - I 4 are obtained, the constant A can be removed and signals with a phase difference of π/2 can be obtained, so these two signals I 1
By passing −I 3 and I 2 −I 4 through an appropriate circuit, the amount of movement of the diffraction grating 3 can be measured with high precision. These signal processing processes are common to photoelectric encoders other than diffraction gratings. The above is an explanation that extracts only the diffracted light of the order necessary for measuring the amount of movement out of many diffracted lights, but in reality, diffracted light of orders other than the desired order enters the photoelectric conversion element, so The output signal of the photoelectric conversion element is the value {(m 11 +
m 21 )−(m 10 +m 20 )} different I(x) are superimposed, and as a result, a clean sine waveform is not obtained. That is, in Fig. 3, Fig. 3a shows the output signal of the photoelectric conversion element obtained only by the diffracted light of a desired order, and Fig. 3b shows the output signal of I(x) obtained by the diffracted light of the desired order. The output signal of the photoelectric conversion element when a small I(x) of value {(m 11 +m 21 )−(m 10 +m 20 )} is superimposed, and FIG. 3c shows the I( x) has a value {(m 11 + m 21 ) − (m 10 + m 20 )}
This is the output signal of the photoelectric conversion element when a large I(x) is superimposed. When trying to measure more detailed movement distance by dividing the signal, Fig. 3 b and c
A signal that deviates from a sine waveform, such as the one shown in FIG.

本発明は、回折格子を用いた光電式のエンコー
ダにおいて、正弦波状の信号を得ることを目的と
する。
An object of the present invention is to obtain a sinusoidal signal in a photoelectric encoder using a diffraction grating.

以下、図面に示した実施例に基づいて本発明を
説明する。
The present invention will be described below based on embodiments shown in the drawings.

まず簡単のために、前述の式 I(x)=A+Bsin〔2πx/d{(m11+m
21)−(m10+m20)}+〕 において{(m11+m21)−(m10+m20)}=lとし、
例えばm11=m21=1,m10=m20=0を選択する
ことによつてl=2と成した場合を考える。
First, for simplicity, the above formula I(x)=A+Bsin[2πx/d{(m 11 +m
21 )−(m 10 +m 20 )}+], let {(m 11 +m 21 )−(m 10 +m 20 )}=l,
For example, consider the case where l=2 by selecting m 11 =m 21 =1 and m 10 =m 20 =0.

l=2とすれば上式のI(x)は、 I(x)=A+Bsin〔2x/d・2π+〕 となる。従つて、信号I(x)は透過型の回折格
子3の移動量xがd/2毎に同じ値をとることにな る。一方、l=1とすれば、I(x)は I(x)=A+Bsin〔x/d・2π+〕 となるから、I(x)は移動量xがd/2毎に符号の 反転した値をとることになる。
If l=2, I(x) in the above equation becomes I(x)=A+Bsin [2x/d·2π+]. Therefore, the signal I(x) takes the same value every d/2 of the movement amount x of the transmission type diffraction grating 3. On the other hand, if l=1, I(x) becomes I(x)=A+Bsin [x/d・2π+], so I(x) is the value where the sign of the movement amount x is reversed every d/2. will be taken.

従つて、あらかじめd/2ずれた反射型の回折格 子4の対を一組として分割格子を構成すれば光電
変換素子7上では、l=2の信号は2つの回折格
子4からの回折光が加算された信号となるが、l
=1の信号は2つの回折格子4からの回折光が打
ち消し合つて、ほとんど無くなつてしまう。
Therefore, if a split grating is constructed by making up a pair of reflection-type diffraction gratings 4 shifted by d/2 in advance, on the photoelectric conversion element 7, a signal of l=2 is generated by the diffracted light from the two diffraction gratings 4. The signal is added, but l
The signal of =1 almost disappears because the diffracted lights from the two diffraction gratings 4 cancel each other out.

このような分割格子と成した反射型の回折格子
4の例を第4図に示し、第5図にこの回折格子を
使つた本発明の一実施例の光学系を示す。
FIG. 4 shows an example of a reflective diffraction grating 4 formed with such a split grating, and FIG. 5 shows an optical system according to an embodiment of the present invention using this diffraction grating.

第4図に示したように、回折格子4は8つの格
子A,B,C,D,E,F,G,Hに分割され、
格子Aを基準にして格子Bは4/8d、格子Cは1/8 d、格子Dは5/8d、格子Eは2/8d、格子Fは 6/8d、格子Gは3/8d、格子Hは7/8d、位相
が ずれている。すなわち、格子AとB、格子Cと
D、格子EとF、格子GとHが組を成し、各組が
各々分割格子を構成する。
As shown in FIG. 4, the diffraction grating 4 is divided into eight gratings A, B, C, D, E, F, G, and H.
With respect to grid A, grid B is 4/8 d, grid C is 1/8 d, grid D is 5/8 d, grid E is 2/8 d, grid F is 6/8 d, grid G is 3/8 d, grid H is out of phase by 7/8d. That is, gratings A and B, gratings C and D, gratings E and F, and gratings G and H form a set, and each set constitutes a divided grating.

このような反射型の回折格子4が第5図に示し
た如く、透過型の回折格子3に対向せしめて配設
されている。光電変換器70は、回折格子4の各
格子の組に対応して光電変換素子が計4つ設けら
れて構成されている7a,7b,7c,7d。す
なわち、格子AとBからの回折光は光電変換素子
7aに、格子CとDからの回折光は光電変換素子
7bに、格子EとFからの回折光は光電変換素子
7cに、そして格子GとHからの回折光は光電変
換素子7dに入射する。集光レンズ6と光電変換
器70との間にある集光レンズ6の後側焦点位置
には空間フイルタとしてのピンホール板8が配設
されており、光軸及びその付近の光のみ透過し、
それ以外の不必要な光が光電変換器70に入射す
ることを防いでいる。
As shown in FIG. 5, such a reflection type diffraction grating 4 is arranged opposite to the transmission type diffraction grating 3. The photoelectric converter 70 includes a total of four photoelectric conversion elements 7a, 7b, 7c, and 7d corresponding to each grating set of the diffraction grating 4. That is, the diffracted light from gratings A and B is transmitted to the photoelectric conversion element 7a, the diffracted light from gratings C and D is transmitted to the photoelectric conversion element 7b, the diffracted light from gratings E and F is transmitted to the photoelectric conversion element 7c, and the diffracted light from gratings G is transmitted to the photoelectric conversion element 7c. The diffracted light from and H enters the photoelectric conversion element 7d. A pinhole plate 8 as a spatial filter is disposed at the rear focal point of the condenser lens 6 between the condenser lens 6 and the photoelectric converter 70, and only light on the optical axis and its vicinity is transmitted. ,
This prevents other unnecessary light from entering the photoelectric converter 70.

このような光学系によれば、所望の回折光に対
して大きな角度を有する回折光は、ピンホール板
8にてほとんど遮断される。光電変換素子7a,
7b,7c,7dに達した回折光から生ずるl=
1の信号は前述の如く除去されると共に、l=1
以外の奇数の信号の場合も同様に除去される。l
が偶数の場合、l=−2はl=2と同一の信号で
あるからそれによる悪影響は無く、従つて、影響
の最も大きいのはl=4の場合となる。l=4の
信号はl=2の信号に対して2倍の高い周波数で
あるから、透過型の回折格子3と反射型の回折格
子4とを互いの格子の方向がわずかにねじれる如
く成すことによつて、ほとんど除去することもで
きる。その結果、それより高い周波数であるl=
6等も除去できる。勿論、電気的なフイルタによ
り除去することもできる。しかしながら、周波数
が2倍程度では上述のねじれの構成によつて完全
に除去するのは難しいので完全に除去するために
は反射型の回折格子4をさらに分割すれば良い。
すなわち、第6図に示した如く、第4図の格子A
を1/8dずれた2つの格子A1,A2に分割すると共 に、格子Bも互いに1/8dずれた2つの格子B1, B2に分割することによつて、格子A1,A2による
信号及び格子B1,B2による信号は、l=4の信
号に対しては位相がπずれるので打ち消し合う如
く成すことができる。l=2の信号に対しては格
子A1,A2による信号及び格子B1,B2による信号
は位相がπ/2ずれるのでコントラストが低下し、 位相もずれるが、l=4の影響のないきれいな正
弦波であるから、測定には何ら支障なく利用する
ことができる。勿論、格子A,B以外の格子C,
D,E,F,G,Hについても同上である。
According to such an optical system, most of the diffracted light having a large angle with respect to the desired diffracted light is blocked by the pinhole plate 8. Photoelectric conversion element 7a,
l= generated from the diffracted light reaching 7b, 7c, 7d
1 signal is removed as described above, and l=1
Other odd-numbered signals are also removed in the same way. l
When is an even number, since l=-2 is the same signal as l=2, there is no adverse effect, and therefore, the case where l=4 has the greatest effect. Since the signal with l=4 has a frequency twice as high as the signal with l=2, the transmission type diffraction grating 3 and the reflection type diffraction grating 4 should be formed so that the directions of the gratings are slightly twisted. Most of them can be removed by As a result, the higher frequency l=
Magnitude 6 can also be removed. Of course, it can also be removed using an electric filter. However, when the frequency is about twice as high, it is difficult to completely eliminate the distortion due to the above-mentioned twist structure, so in order to completely eliminate the distortion, it is sufficient to further divide the reflection type diffraction grating 4.
That is, as shown in FIG. 6, the lattice A in FIG.
By dividing the grid into two gratings A 1 and A 2 that are shifted by 1/8d, and also dividing the grating B into two gratings B 1 and B 2 that are shifted by 1/8d from each other, the grids A 1 and A 2 The signals caused by the lattice B 1 and B 2 have a phase shift of π with respect to the signal with l=4, so they can be made to cancel each other out. For the signal with l=2, the signals from gratings A 1 and A 2 and the signals from gratings B 1 and B 2 have a phase shift of π/2, so the contrast decreases and the phase also shifts, but the effect of l = 4 Since it is a clean sine wave, it can be used for measurements without any problems. Of course, lattices C other than lattices A and B,
The same applies to D, E, F, G, and H.

このようにして、各々の光電変換素子7a,7
b,7c,7dから得られる信号をほぼ正弦波状
と成すことができる。従つて、各々の光電変換素
子7a,7b,7c,7dの信号を適当に組み合
わせて正確な分割読取りを行なうことも可能であ
る。
In this way, each photoelectric conversion element 7a, 7
The signals obtained from b, 7c, and 7d can be formed into a substantially sinusoidal waveform. Therefore, it is also possible to perform accurate divided reading by appropriately combining the signals of the respective photoelectric conversion elements 7a, 7b, 7c, and 7d.

なお、以上に説明したl=2の信号を得る場合
は、通常最も採用し易い構成であるが、話を一般
化してl=nの信号を得るためにl=mの信号を
消す場合を考えてみると、この場合には、2分割
した反射型の回折格子の一方を他方に対してp/n (1+2k)dずらして配設すれば良いことがわか
る。但し、この式でpはn=2mpを満足する整
数、kは任意の整数である。このように2分割し
た回折格子のずれ量を定めると、d/n=2πである から、各々の回折格子からの回折光はl=nに対
してはp(1+2k)×2πずれることになり、互い
に同相であるから強めあつて正弦波信号が生ずる
が、l=mの光に対しては、d/m=2πであるか ら、各々の回折格子からの回折光は(1+2k)×
πずれることになり互いに逆相であるから、打消
し合つて信号が生じないことになる。前述の実施
例はn=2,m=1,p=1,k=0の場合であ
る。
Note that when obtaining the l=2 signal as explained above, this is usually the easiest configuration to adopt, but to generalize the discussion, consider the case where the l=m signal is erased in order to obtain the l=n signal. As a result, it can be seen that in this case, one of the two divided reflective diffraction gratings should be shifted from the other by p/n (1+2k)d. However, in this formula, p is an integer that satisfies n=2mp, and k is an arbitrary integer. If we determine the amount of deviation of the diffraction grating divided into two in this way, d/n = 2π, so the diffracted light from each diffraction grating will be shifted by p (1 + 2k) × 2π for l = n. , are in phase with each other, so they strengthen each other and produce a sine wave signal, but for light with l=m, d/m=2π, so the diffracted light from each diffraction grating is (1+2k)×
Since they are shifted by π and have opposite phases, they cancel each other out and no signal is generated. The above embodiment is for n=2, m=1, p=1, k=0.

また、以上の説明では、透過型の回折格子3を
移動格子としたが、透過型の回折格子3は固定で
それ以外の部材(第5図で言えば部材1,2,
4,5,6,7,8)を移動する如く成しても良
いことは勿論である。
In addition, in the above explanation, the transmission type diffraction grating 3 is a moving grating, but the transmission type diffraction grating 3 is fixed and the other members (members 1, 2, etc. in FIG. 5) are fixed.
4, 5, 6, 7, 8) may be moved.

さらに、透過型の回折格子3を第4図の如く分
割格子として構成し、反射型の回折格子(この格
子は第4図のようには分割されていない第1図の
格子4のようなもので良い)4のみを移動させる
ようにしても良い。
Furthermore, the transmission type diffraction grating 3 is configured as a divided grating as shown in FIG. 4, and the reflection type diffraction grating (this grating is similar to the grating 4 in FIG. ) Only 4 may be moved.

以上述べた如く本発明によれば、2つの回折格
子を対向せしめた光電式のエンコーダにおいて、
集光レンズの後側焦点位置に光軸及びその付近の
光のみ透過する空間フイルタを配設すると共に、
前記回折格子の一方(インデツクス格子)を、光
電変換素子の出力信号から誤差成分を除去すべ
く、所定量ずらした分割格子として構成したの
で、正弦波状の信号を得ることができる。従つ
て、得られる信号を内挿することによつてより細
かな移動量を読み取る如く例えば分割回路を用い
た場合にも正確な読み取りが可能となる。
As described above, according to the present invention, in a photoelectric encoder with two opposing diffraction gratings,
A spatial filter that transmits only the light on and around the optical axis is provided at the rear focal point of the condensing lens, and
Since one of the diffraction gratings (index grating) is configured as a split grating shifted by a predetermined amount in order to remove error components from the output signal of the photoelectric conversion element, a sinusoidal signal can be obtained. Therefore, by interpolating the obtained signal, accurate reading becomes possible even when a dividing circuit is used, such as reading a finer amount of movement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は回折格子を用いた光電式のエンコーダ
の基本的な光学系を示す図、第2図は透過型の回
折格子と反射型の回折格子による回折光の光路
図、第3図は移動格子の移動による光電変換素子
の出力波形図、第4図は本発明の実施例の反射型
の回折格子の配置図、第5図は本発明の実施例の
光電式のエンコーダの光学系、第6図は反射型の
回折格子の他の例の配置図を示す図である。 主要部分の符号の説明、1……光源、2……コ
リメータレンズ、3……透過型の回折格子、4…
…反射型の回折格子、6……集光レンズ、7a,
7b,7c,7d……光電変換素子、8……空間
フイルタ。
Figure 1 is a diagram showing the basic optical system of a photoelectric encoder using a diffraction grating, Figure 2 is an optical path diagram of diffracted light by a transmission type diffraction grating and a reflection type diffraction grating, and Figure 3 is a moving diagram. FIG. 4 is a diagram of the output waveform of the photoelectric conversion element due to the movement of the grating. FIG. 4 is a layout diagram of the reflection type diffraction grating according to the embodiment of the present invention. FIG. FIG. 6 is a diagram showing a layout diagram of another example of a reflection type diffraction grating. Explanation of symbols of main parts, 1... Light source, 2... Collimator lens, 3... Transmission type diffraction grating, 4...
...Reflection type diffraction grating, 6... Condensing lens, 7a,
7b, 7c, 7d...photoelectric conversion element, 8... spatial filter.

Claims (1)

【特許請求の範囲】 1 測定光としての平行光束中に、相対的に移動
する一対の回折格子を対向して配設し、前記一対
の回折格子の関与した光を集光レンズ系によつて
光電変換素子上に集光せしめ、前記一対の回折格
子のいずれか一方を前記光電変換素子に対して位
置変化のないように一体と成し、前記一方の回折
格子に対する他方の回折格子の移動量を読み取る
光電式のエンコーダにおいて、 前記集光レンズ系の後側焦点面位置に光軸及び
その付近の光のみ透過する空間フイルタを配設す
ると共に、前記一方の回折格子を、前記光電変換
素子の出力信号から誤差成分を除去すべく、所定
量位相のずれた格子から成る分割格子として構成
したことを特徴とするエンコーダ。
[Scope of Claims] 1. A pair of relatively moving diffraction gratings are arranged facing each other in a parallel light flux as measurement light, and the light involved by the pair of diffraction gratings is collected by a condensing lens system. condensing light onto a photoelectric conversion element, one of the pair of diffraction gratings is integrally formed with respect to the photoelectric conversion element so that there is no positional change, and the amount of movement of the other diffraction grating with respect to the one diffraction grating; In a photoelectric encoder for reading a photoelectric conversion element, a spatial filter that transmits only light on and around the optical axis is disposed at a rear focal plane position of the condenser lens system, and one of the diffraction gratings is connected to the photoelectric conversion element. An encoder characterized in that the encoder is configured as a divided grating consisting of gratings whose phase is shifted by a predetermined amount in order to remove error components from an output signal.
JP20916782A 1982-11-29 1982-11-29 Photoelectric encoder Granted JPS5999220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20916782A JPS5999220A (en) 1982-11-29 1982-11-29 Photoelectric encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20916782A JPS5999220A (en) 1982-11-29 1982-11-29 Photoelectric encoder

Publications (2)

Publication Number Publication Date
JPS5999220A JPS5999220A (en) 1984-06-07
JPH0151926B2 true JPH0151926B2 (en) 1989-11-07

Family

ID=16568435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20916782A Granted JPS5999220A (en) 1982-11-29 1982-11-29 Photoelectric encoder

Country Status (1)

Country Link
JP (1) JPS5999220A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115011A (en) * 1986-10-31 1988-05-19 Canon Inc Displacement measuring instrument
JPH0669476B2 (en) * 1986-11-07 1994-09-07 新次郎 辻 Film coating method for hard gelatin capsules
JP4843342B2 (en) * 2006-03-16 2011-12-21 株式会社ミツトヨ Photoelectric incremental encoder
JP5112797B2 (en) * 2007-09-14 2013-01-09 株式会社ミツトヨ Photoelectric incremental encoder
JP5069364B2 (en) * 2011-06-17 2012-11-07 株式会社ミツトヨ Photoelectric incremental encoder

Also Published As

Publication number Publication date
JPS5999220A (en) 1984-06-07

Similar Documents

Publication Publication Date Title
JP2695623B2 (en) Optical encoder
US7348546B2 (en) Position measuring system with a scanning unit having a reference pulse signal detection unit
JP5159663B2 (en) Origin detecting device, displacement measuring device and electronic device
JPH0131127B2 (en)
JP6032924B2 (en) Encoder
JPH03148015A (en) Position measuring apparatus
JPS62121314A (en) Photoelectric position measuring device
JPH06229781A (en) Displacement measuring equipment
JP6386337B2 (en) Optical encoder
US4025197A (en) Novel technique for spot position measurement
US20070028476A1 (en) Optical position measuring instrument
JP2764373B2 (en) Multi-coordinate measuring device
JP2888482B2 (en) Device for filtering harmonic signal components
JP3245610B2 (en) Device for filtering odd-order harmonic signal components
JPH0151926B2 (en)
JPH02206720A (en) Angle measuring instrument
JPH02206745A (en) Highly stable interferometer for measuring refractive index
JP5154072B2 (en) Photoelectric encoder
JPH046884B2 (en)
US6094307A (en) Optical grating and encoder
JPS59163517A (en) Optical scale reader
JPH06174424A (en) Length measuring and angle measuring device
JPS5999219A (en) Encoder using diffraction grating
JPS6213603B2 (en)
JP3199549B2 (en) Encoder device