JPH0138568B2 - - Google Patents

Info

Publication number
JPH0138568B2
JPH0138568B2 JP8879781A JP8879781A JPH0138568B2 JP H0138568 B2 JPH0138568 B2 JP H0138568B2 JP 8879781 A JP8879781 A JP 8879781A JP 8879781 A JP8879781 A JP 8879781A JP H0138568 B2 JPH0138568 B2 JP H0138568B2
Authority
JP
Japan
Prior art keywords
tube
inner tube
pipe
outer tube
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8879781A
Other languages
Japanese (ja)
Other versions
JPS57206517A (en
Inventor
Tatsuo Kawasaki
Isao Takada
Hiroshi Ootsubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8879781A priority Critical patent/JPS57206517A/en
Priority to GB08215344A priority patent/GB2100641B/en
Priority to US06/383,733 priority patent/US4533806A/en
Priority to CA000404441A priority patent/CA1198267A/en
Priority to DE3221887A priority patent/DE3221887C2/en
Priority to FR828210138A priority patent/FR2507508B1/en
Publication of JPS57206517A publication Critical patent/JPS57206517A/en
Publication of JPH0138568B2 publication Critical patent/JPH0138568B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/002Soldering by means of induction heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、二重管の製造方法に関するものであ
り、特に本発明は、安価な外管の内側に、例えば
耐食性あるいは耐熱性を有する内管を内貼してな
る二重管の製造方法に関するものである。 〔従来の技術〕 一般に管体は、その用途により種々の特性が要
求される。従つて、従来はこれら特性に応じた素
材をもつて製造するのが普通であつた。 ところが、近年、産業の発達、特に化学工業お
よびその周辺あるいは関連技術の発達により管体
に要求される特性は多様かつ苛酷になり、1種類
の管材料をもつて、要求される特性をすべて満足
させるのは困難であり、たとえ可能であるとして
も、そのためには非常に高価な材料を使用せざる
を得ないのが現状である。 一方、上記高価な材料を使用することによる管
体製造コストの上昇を抑制するため、それぞれ異
なつた特性を有する複数の材料を複合させた多層
管の製造方法が種々提案されており、これらの方
法は以下の如くに大別することができる。 (i) 口径のわずかに異なる2種類の管を機械的に
はめ合わせるに際し、熱膨張と収縮を利用して
接合させるか、あるいはPbやZnの如き固体潤
滑剤を利用してはめ合わせる方法。 (ii) 口径の小さい管を口径の大きな管内に挿入し
て二重管となした後、爆着、熱間圧延、冷間圧
延のいずれか少なくとも1つの手段によつて接
合させる方法。 (iii) 管の外側に帯鋼を巻き付けて端部を溶接する
方法。 (iv) 管の内面およびまたは外面に異種材料からな
る溶接棒をもつて肉盛溶接するか、もしくは前
記異種材料を肉盛した管を熱間あるいは冷間圧
延して径を小さくし、長尺管とする方法。 (v) 数枚の帯鋼を、重ね合わせて成形するか、あ
るいはうず巻状にして溶接する方法。 〔発明が解決しようとする課題〕 しかし、上記各従来方法は、何れも以下に示す
如き欠点があり、多層管としては必ずしも満足す
べき特性を有していない。すなわち、 (i) の方法によれば、高温下の使用、あるいは高
温下、低温下の繰返し使用により、接合部のゆ
るみが生じ、またPb、Zn等の潤滑によるはめ
込みにあつては肉厚の簿い管の組合わせは困難
である。また、大径管の場合の実施も困難であ
るので、この方法によれば製造される管の寸法
上の制約がある。 (ii) の方法によれば、大径管の製造は可能である
が、小径管の製造は困難であり、したがつて、
寸法上の制約はまぬがれない。 (iii) の方法によれば、溶接部においては内、外管
の接合は良いが、その他の部分は接合しておら
ず、したがつて高温下の加熱、あるいは高温
下、低温下の繰返し加熱によつて接合部のゆる
みを生じたり、溶接部に割れが発生する恐れが
ある。また溶接を受けるため溶接時に割れを生
じない材料を選択する必要がある等、組合わせ
材料の選択面で制約がある。 (iv) の方法によれば、大径管にしか肉盛すること
ができないため、寸法上の制約があり、また肉
盛溶接によつて溶着部あるいは母材に割れなど
が発生することもある。また、肉盛部の加工性
も悪いため、肉盛材と母材管の材料組合わせに
制限がある。 (v) の方法によれば、小径管の製造は困難であ
り、また溶接部以外の接合は高温下の使用によ
りゆるみを生じる。また、大径管の場合にあつ
ても肉厚の極端に異なるものや、材質の極端に
異なるものでは溶接が困難であり、組合わせる
素材や寸法上の制約をまぬがれない。 本発明は、従来の二重管製造方法の有する前記
諸欠点を除去、改善した新規な二重管の製造方法
を提供することを目的とするものである。 〔課題を解決するための手段〕 本発明者らは、従来の多層管の製造方法を種々
検討した結果、管内面に異種金属あるいは合金よ
りなる管を接合する場合に、内管を内部から加圧
し、帯域加熱を管全長に沿つて移動させる手段を
用いることにより、外管と内管の間隙に充填した
ロウにより外管と内管の境界全面を完全にロウ接
合させることができることを知見して本発明を完
成したのである。 すなわち本発明は、 外管の内側に内管を挿入して外管と内管とを重
ね合わせて、外管の内側に挿入した内管の外側と
外管の内側との間隙部に、ロウ材またはロウ材と
フラツクスとを充填した後、前記間隙部を不活性
ガスまたは還元性ガスの雰囲気とし、ついで前記
内管内を気体により下記式(1): 2σiti/Di<P/100<2σoto/Do …(1) 但し; σi:内管材料のロウ接合作業温度における降
伏応力もしくは耐力(Kg/mm2) ti:内管の肉厚(mm) Di:内管の外径(mm) σo:外管材料のロウ接合作業温度における降
伏応力もしくは耐力(Kg/mm2) to:外管の肉厚(mm) Do:外管の内径(mm) P;ガス圧力(Kg/mm2) により定められる圧力Pに加圧し、その後、前記
内、外管の重ね合わせ部を、前記重ね合わせ部の
全長にわたり加熱コイルを移動させつつ、300〜
1150℃の温度範囲内に帯域加熱することにより、
前記重ね合わせ部をロウ接合することを特徴とす
る二重管の製造方法に関するものである。 本発明は、通常のロウ接合が可能なあらゆる材
料よりなる管について、この方法を適用すること
ができる。また、接合される面の何れか一方また
は両方にロウ接合を助長させることのできる金属
鍍金もしくは溶射、例えばNi、Cr、CuおよびFe
のなかから選ばれるいずれか少なくとも1種また
は2種、さらにはロウよりなる鍍金を施すことは
有利である。 しかも、内管内を気体例えば大気、不活性ガス
を用いて加圧し、帯域加熱する際内管の両端から
管の長手方向に向かい合つて圧縮力を加えるとさ
らに容易に接合をさせることができる。 本発明は、二重管の使用環境に応じて選択され
る管材の組合わせに適し、かつ二重管の使用温度
に適したロウ材を選択することが有利である。な
お、ロウ材としては下記表に例示するようなもの
を内、外管の材質、使用温度に応じて適宜選択し
て使用することができる。 なお、ロウ付の際には主としてロウの流れと酸
化を防ぐためフラツクスを用いることが有利であ
り、塩化亜鉛、樹脂、硼砂、硼酸、食塩、塩化リ
チウムの如き塩化物や弗素化合物などがロウ材並
びに接合される材料の種類に応じて選択される。 本発明は、帯域加熱の際の加熱温度は、上記の
如くにして選択されるロウ材の作業温度範囲内の
温度であり、内管内に加える圧力P(Kg/mm2)は
内管を弾性または塑性変形により膨張させ、外管
に密着させるために、以下に示す式(1)によつて定
めることが必要である。 2σiti/Di<P/100<2σoto/Do …(1) ここで、各記号の意味は、 σi:内管材料のロウ接合作業温度での降伏応
力もしくは耐力(Kg/mm2) ti:内管の肉厚(mm) Di:内管の外径(mm) σo:外管材料のロウ接合作業温度での降伏応
力もしくは耐力(Kg/mm2) to:外管の肉厚(mm) Do:外管の内径(mm) P;ガス圧力(Kg/mm2) 以上の如くして製造された二重管をさらに常法
によつて拡管もしくは縮管して寸法調整すること
もできる。 〔作 用〕 次に、本発明方法を図面について説明する。 まず、外管1の内側に内管2を挿入し、外管1
と内管2の隙間部にロウ材粉末3を必要によりフ
ラツクスと共に装填し、前記隙間部に不活性ある
いは還元性ガスを雰囲気調整ボンベ14より雰囲
気調整チヤンバー5内に導入する。次に、シール
キヤツプ4で密封された前記内管2内に、還元性
ガスもしくは不活性ガスを内管加圧用ガスボンベ
12から圧入して内管2内を加圧する。次いで、
高周波コイル6に高周波電源10より通電して、
この加熱コイル6を加熱コイル移動装置11によ
り移動させつつ、内管2と外管1とを300〜1150
℃の温度範囲内で帯域加熱する。これによつて、
加熱コイル移動中のそれぞれの位置における加熱
部において内管2を加熱と加圧により膨張せしめ
て外管1にロウ接合させる。この操作、すなわち
加熱部を管全長にわたつて移動させることにより
内、外の二重管間隙全体をロウ接合し、本発明の
二重管を製造するのである。 内、外管の重ね合わせ部の帯域加熱温度は、
300℃未満のときにはロウが溶解せず、一方、
1150℃より高い温度のときにはロウと内、外管と
の反応が激しくて材質の劣化を招くため300〜
1150℃の範囲内とする。 なお、前記加圧と加熱内管に圧縮加工装置7と
荷重測定器8と圧縮加工用ピストン9によつて内
管2の両端部に長手方向に沿つて向かい合つた圧
縮力を加えることはロウ接合を助長させることが
できるので有利である。 なお、本発明において、加熱コイルを移動させ
つつ帯域加熱することの利点は次のとおりであ
る。 すなわち、 この帯域加熱では、接合を行うに際し、気泡
や過剰のロウ材、フラツクス等を順次排出する
ことが可能である。これに対し、全体加熱では
界面に欠陥の発生する率が高く、製品の信頼性
に欠ける。 この帯域加熱では、拡管変形が加熱部のみで
起こるため、全体にわたり均等に拡管し得る。
これに対し、全体加熱の場合、拡管時、最も高
温部あるいは簿肉部など、強度的に弱いところ
に変形が集中する。このことは、製品内管の厚
み変動を起こしやすいことになる。極端な場
合、内管の破裂を起こす。 この帯域加熱では、長大な炉設備が不用であ
る。すなわち、この帯域加熱では、内管の拡管
とロウ接合のために加熱するのだから長時間の
加熱は不用であり、エネルギー的にも有利と言
える。 この帯域加熱では、管各部の熱履歴が均一と
なる。これに対し、炉設備の場合は長い管を均
一加熱するには長時間を要する。 この帯域加熱では、内管を加熱するための管
端の封じ込めが簡単である。これに対し、炉方
式では困難である。 〔実施例〕 次に本発明を実施例について説明する。 実施例 1 外管にSUS304TP外径17.3mm、肉厚1.2mmを、
内管にインコネル溶接管外径14.0mm、肉厚0.3mm
を用いた。ロウは耐熱ロウのBNi−4粉末(Ni
−Si−B系)を用い、フラツクスは使用していな
い。 粉末ロウを有機溶剤でペースト状にした後、イ
ンコネルパイプの外面に塗布し、SUS304TP内
に挿入した。内管の両端はSUS304製シールキヤ
ツプをロウ接合する。このようにして組み立てた
二重管をチヤンバー内に入れ、Ar−5%H2雰囲
気とした。内管内は真空排気後、Arガスで10
Kg/cm2まで第1表に示すような条件の加圧を行つ
た。2回巻の高周波コイルで1150℃まで帯域加熱
を行い、この加熱帯を200mm/minで移動させた。
以上の方法で作成した二重管は、縦方向の断面が
完全にロウ接合されていることが確認された。 実施例 2 外管にSUS304TP外径17.3mm、肉厚1.2mmを、
内管にキユプロニツケル電縫管外径14.0mm、肉厚
0.5mmを用いた。ロウは銀ロウのBAg−8粉末を
用い、市販のフラツクスと混合してキユプロニツ
ケル管の外面に塗布した。実施例1と同様の方法
で2重管とした後、内管両端をシールしチヤンバ
ー内にセツトした。ただし、チヤンバー内は真空
(10-3・Torr)とし、内管内はArガスで50Kg/cm2
まで第1表に示す条件の加圧を行つた。加熱帯の
温度は850℃であり、移動速度は200mm/minであ
つた。以上の方法で作成した二重管は縦方向の断
面検査の結果、完全にロウ接合されていることが
確認された。 実施例 3 外管にSUS304TP外径17.3mm、肉厚1.2mmを、
内管に銅管外径14.0mm、肉厚0.5mmを用いた。ロ
ウはハンダ50Sn粉末を用い、市販のステンレス
用フラツクスと混合して銅管の外面に塗布した。
実施例1と同様の方法で二重管とした後、内管両
端をシールし、チヤンバー内にセツトした。ただ
し、チヤンバー内は窒素で置換した。また、内管
内は窒素で50Kg/cm2まで第1表に示す条件の加圧
を行つた。加熱帯の温度は約300℃である。加熱
帯の移動速度は200mm/minであつた。また、内
管の両端より管の長手方向に100Kgの圧縮力を加
えた。以上の方法で作成した二重管は縦方向の断
面検査の結果、完全にロウ接合されていることが
確認された。 実施例 4 外管にSUS304TP外径17.3mm、肉厚1.2mmを、
内管にインコネル溶接管外径14.0mm、肉厚0.3mm
を用いた。これらの管の接合面、すなわち外管内
面、内管外面にCuめつきを施した後、銀ロウ
BAg−8粉末をフラツクスとともに内管外面に
塗布した。実施例1と同様の方法で二重管を組み
立て、両端にシールキヤツプを接合した後、チヤ
ンバー内をArに置換し、内管内はArで50Kg/cm2
まで第1表に示す条件の加圧を行つた。加熱帯の
温度は850℃であり、加熱の移動速度は200mm/
minである。以上の方法で作成した二重管は縦方
向の断面検査の結果、完全にロウ接合されている
ことが確認された。 参考例 実施例1と同様の組合せにおいて、内管内圧力
を30Kg/cm2とする以外は、実施例1と全く同様の
条件で作成した上記第(1)式を満たさない二重管
は、管外径が18.0〜18.5mmに拡大していた。ただ
し、縦方向の断面検査の結果、内外管面は一応ロ
ウ接合されていた。
[Industrial Field of Application] The present invention relates to a method for manufacturing a double-walled pipe, and in particular, the present invention relates to a method for manufacturing a double-walled pipe, and in particular, the present invention relates to a method for manufacturing a double-walled pipe, and in particular, the present invention relates to a method for manufacturing a double-walled pipe, in which an inner pipe having corrosion resistance or heat resistance is attached to the inside of an inexpensive outer pipe. The present invention relates to a method for manufacturing a double pipe. [Prior Art] Generally, a tube body is required to have various characteristics depending on its use. Therefore, in the past, it has been common to manufacture products using materials that match these characteristics. However, in recent years, due to the development of industry, especially the chemical industry and its peripheral and related technologies, the characteristics required of pipe bodies have become diverse and severe, and it is difficult to satisfy all the required characteristics with one type of pipe material. It is difficult to do so, and even if it were possible, it would require the use of very expensive materials. On the other hand, in order to suppress the increase in tube manufacturing costs due to the use of the above-mentioned expensive materials, various methods for manufacturing multilayer tubes in which multiple materials having different characteristics are combined have been proposed, and these methods can be broadly classified as follows. (i) A method of mechanically fitting two types of pipes with slightly different diameters by using thermal expansion and contraction, or by using a solid lubricant such as Pb or Zn. (ii) A method of inserting a small-diameter pipe into a large-diameter pipe to form a double pipe, and then joining them by at least one of explosion bonding, hot rolling, and cold rolling. (iii) A method of wrapping a steel strip around the outside of the pipe and welding the ends. (iv) Overlay welding the inner and/or outer surfaces of the pipe with a welding rod made of different materials, or hot or cold rolling the pipe overlaid with the different materials to reduce the diameter and make it into a long length. How to make it into a tube. (v) A method of welding several strips of steel by forming them one on top of the other or forming them into a spiral. [Problems to be Solved by the Invention] However, each of the above-mentioned conventional methods has the following drawbacks, and does not necessarily have satisfactory characteristics as a multilayer pipe. In other words, according to method (i), use at high temperatures or repeated use at high and low temperatures will cause the joints to loosen, and when fitting with lubrication of Pb, Zn, etc., the wall thickness may become loose. Combining stacked pipes is difficult. In addition, this method is difficult to implement in the case of large-diameter pipes, so there are restrictions on the dimensions of the pipes manufactured using this method. According to method (ii), it is possible to manufacture large diameter pipes, but it is difficult to manufacture small diameter pipes.
Dimensional constraints cannot be avoided. According to method (iii), the inner and outer tubes are well joined at the welded part, but other parts are not joined, so heating at high temperatures or repeated heating at high and low temperatures is required. This may cause the joint to loosen or cause cracks to occur in the weld. In addition, since it is welded, it is necessary to select materials that do not cause cracks during welding, and there are restrictions on the selection of combined materials. According to method (iv), since overlay can only be applied to large-diameter pipes, there are dimensional restrictions, and overlay welding may cause cracks in the weld or the base metal. . Furthermore, since the workability of the built-up part is poor, there are restrictions on the combination of materials for the built-up material and the base material tube. According to method (v), it is difficult to manufacture small diameter pipes, and joints other than welded parts loosen when used at high temperatures. Furthermore, even in the case of large-diameter pipes, it is difficult to weld pipes with extremely different wall thicknesses or materials that are made of extremely different materials, and there are restrictions on the materials to be combined and the dimensions. SUMMARY OF THE INVENTION An object of the present invention is to provide a new method for manufacturing a double-layered pipe that eliminates and improves the above-mentioned drawbacks of the conventional method for manufacturing a double-layered pipe. [Means for Solving the Problem] As a result of various studies on conventional multilayer pipe manufacturing methods, the present inventors found that when joining a pipe made of different metals or alloys to the inner surface of the pipe, the inner pipe is processed from the inside. It was discovered that by applying pressure and moving zone heating along the entire length of the tube, it is possible to completely solder the entire boundary between the outer tube and the inner tube using the wax filled in the gap between the outer tube and the inner tube. Thus, the present invention was completed. That is, in the present invention, the inner tube is inserted inside the outer tube, the outer tube and the inner tube are overlapped, and the wax is applied to the gap between the outside of the inner tube inserted inside the outer tube and the inside of the outer tube. After filling the material or brazing material and flux, the gap is made into an atmosphere of inert gas or reducing gas, and then the inside of the inner tube is filled with gas according to the following formula (1): 2σiti/Di<P/100<2σoto/ Do …(1) However; σi: Yield stress or proof stress of the inner tube material at the soldering temperature (Kg/mm 2 ) ti: Wall thickness of the inner tube (mm) Di: Outer diameter of the inner tube (mm) σo: Yield stress or proof stress of outer tube material at soldering temperature (Kg/mm 2 ) To: Wall thickness of outer tube (mm) Do: Inner diameter of outer tube (mm) P: Determined by gas pressure (Kg/mm 2 ) Then, the overlapping portion of the inner and outer tubes is heated to a pressure of 300 to
By band heating within the temperature range of 1150℃,
The present invention relates to a method for manufacturing a double pipe, characterized in that the overlapping portions are brazed together. The method of the present invention can be applied to tubes made of any material that can be joined with ordinary solder. Metal plating or thermal spraying, such as Ni, Cr, Cu, and Fe, can also be applied to one or both of the surfaces to be joined, which can promote soldering.
It is advantageous to apply plating consisting of at least one or two selected from the following, and furthermore wax. Moreover, if the inside of the inner tube is pressurized using a gas, such as air or an inert gas, and compressive force is applied from both ends of the inner tube facing each other in the longitudinal direction of the tube during zone heating, joining can be made more easily. In the present invention, it is advantageous to select a brazing material suitable for the combination of tube materials selected depending on the usage environment of the double pipe and suitable for the usage temperature of the double pipe. As the brazing material, those exemplified in the table below can be appropriately selected and used depending on the materials of the inner and outer tubes and the operating temperature. Note that during brazing, it is advantageous to use flux mainly to prevent flow and oxidation of the wax, and chlorides such as zinc chloride, resin, borax, boric acid, salt, lithium chloride, and fluorine compounds are used as brazing materials. and the type of materials to be joined. In the present invention, the heating temperature during zone heating is within the working temperature range of the brazing material selected as described above, and the pressure P (Kg/mm 2 ) applied to the inner tube makes the inner tube elastic. Alternatively, in order to expand it by plastic deformation and bring it into close contact with the outer tube, it is necessary to define it by the following formula (1). 2σiti/Di<P/100<2σoto/Do...(1) Here, the meaning of each symbol is as follows: σi: Yield stress or yield strength of the inner tube material at the soldering temperature (Kg/mm 2 ) ti: Inner tube (mm) Di: Outer diameter of the inner tube (mm) σo: Yield stress or yield strength of the outer tube material at the soldering temperature (Kg/mm 2 ) to: Wall thickness of the outer tube (mm) Do: Inner diameter of outer tube (mm) P: Gas pressure (Kg/mm 2 ) The double tube manufactured as described above can be further expanded or contracted by a conventional method to adjust its dimensions. [Function] Next, the method of the present invention will be explained with reference to the drawings. First, insert the inner tube 2 inside the outer tube 1, and
The brazing powder 3 is loaded into the gap between the inner tube 2 and the inner tube 2 along with flux if necessary, and an inert or reducing gas is introduced into the atmosphere adjustment chamber 5 from the atmosphere adjustment cylinder 14 into the gap. Next, a reducing gas or an inert gas is pressurized into the inner tube 2 sealed with the seal cap 4 from the inner tube pressurizing gas cylinder 12 to pressurize the inner tube 2. Then,
The high frequency coil 6 is energized from the high frequency power supply 10,
While moving this heating coil 6 by the heating coil moving device 11, the inner tube 2 and the outer tube 1 are moved by 300 to 1150 degrees.
Zone heating within the temperature range of °C. By this,
The inner tube 2 is expanded by heating and pressurization at the heating section at each position during the movement of the heating coil, and is soldered to the outer tube 1. By this operation, that is, by moving the heating part over the entire length of the tube, the entire gap between the inner and outer double tubes is brazed and the double tube of the present invention is manufactured. The zone heating temperature at the overlapping part of the inner and outer tubes is
When the temperature is lower than 300℃, the wax does not melt;
When the temperature is higher than 1150℃, the reaction between the wax and the inner and outer tubes is intense, leading to deterioration of the material.
Must be within the range of 1150℃. It should be noted that applying opposing compressive forces along the longitudinal direction to both ends of the inner tube 2 by the compression processing device 7, load measuring device 8, and compression processing piston 9 to the pressurizing and heating inner tube is not a method. This is advantageous because it can promote bonding. In addition, in the present invention, the advantages of performing zone heating while moving the heating coil are as follows. That is, with this zone heating, it is possible to sequentially discharge air bubbles, excess brazing material, flux, etc. when performing bonding. On the other hand, when heating the entire product, the rate of defects occurring at the interface is high, resulting in a lack of product reliability. In this zone heating, the tube expansion deformation occurs only in the heating section, so that the tube can be expanded evenly throughout the tube.
On the other hand, in the case of heating the whole pipe, deformation concentrates on the weakest parts, such as the highest temperature part or the thinnest part, when the pipe is expanded. This tends to cause variations in the thickness of the inner tube of the product. In extreme cases, the inner tube may rupture. This zone heating does not require extensive furnace equipment. That is, in this zone heating, heating is performed for expanding the inner tube and brazing it, so long-term heating is unnecessary, and it can be said to be advantageous in terms of energy. This zone heating makes the thermal history of each part of the tube uniform. In contrast, in the case of furnace equipment, it takes a long time to uniformly heat a long tube. This zone heating simplifies the containment of the tube ends for heating the inner tube. In contrast, this is difficult with the furnace method. [Example] Next, the present invention will be described with reference to an example. Example 1 The outer tube is made of SUS304TP with an outer diameter of 17.3 mm and a wall thickness of 1.2 mm.
Inconel welded inner tube outer diameter 14.0mm, wall thickness 0.3mm
was used. The wax is heat-resistant wax BNi-4 powder (Ni
-Si-B system), and no flux was used. After making powdered wax into a paste with an organic solvent, it was applied to the outside surface of an Inconel pipe and inserted into SUS304TP. SUS304 seal caps are soldered to both ends of the inner tube. The double tube thus assembled was placed in a chamber to create an Ar-5% H 2 atmosphere. After evacuating the inside of the inner tube, evacuate it with Ar gas for 10 minutes.
Pressurization was carried out under the conditions shown in Table 1 up to kg/cm 2 . Band heating was performed up to 1150°C using a two-turn high-frequency coil, and the heating band was moved at a rate of 200 mm/min.
It was confirmed that the double pipe produced by the above method was completely soldered in the vertical cross section. Example 2 The outer tube is made of SUS304TP with an outer diameter of 17.3 mm and a wall thickness of 1.2 mm.
Inner tube: Kyupronikel erw tube outer diameter 14.0mm, wall thickness
0.5mm was used. The wax used was BAg-8 powder of silver wax, which was mixed with commercially available flux and applied to the outer surface of the Cypronickel tube. After forming a double tube in the same manner as in Example 1, both ends of the inner tube were sealed and set in a chamber. However, the inside of the chamber is vacuumed (10 -3 Torr), and the inside of the inner tube is 50Kg/cm 2 with Ar gas.
Pressurization was carried out under the conditions shown in Table 1. The temperature of the heating zone was 850°C, and the moving speed was 200 mm/min. As a result of vertical cross-sectional inspection of the double-walled pipe produced by the above method, it was confirmed that the pipe was completely soldered. Example 3 The outer tube is made of SUS304TP with an outer diameter of 17.3 mm and a wall thickness of 1.2 mm.
A copper tube with an outer diameter of 14.0 mm and a wall thickness of 0.5 mm was used for the inner tube. The solder used was solder 50Sn powder, which was mixed with a commercially available flux for stainless steel and applied to the outer surface of the copper tube.
After forming a double tube in the same manner as in Example 1, both ends of the inner tube were sealed and set in a chamber. However, the inside of the chamber was replaced with nitrogen. Further, the inside of the inner tube was pressurized with nitrogen to 50 kg/cm 2 under the conditions shown in Table 1. The temperature of the heating zone is approximately 300°C. The moving speed of the heating zone was 200 mm/min. In addition, a compressive force of 100 kg was applied from both ends of the inner tube in the longitudinal direction of the tube. As a result of vertical cross-sectional inspection of the double-walled pipe produced by the above method, it was confirmed that the pipe was completely soldered. Example 4 The outer tube is made of SUS304TP with an outer diameter of 17.3 mm and a wall thickness of 1.2 mm.
Inconel welded inner tube outer diameter 14.0mm, wall thickness 0.3mm
was used. After Cu plating is applied to the joint surfaces of these tubes, that is, the inner surface of the outer tube and the outer surface of the inner tube, silver solder is applied.
BAg-8 powder was applied to the outer surface of the inner tube together with flux. After assembling a double tube in the same manner as in Example 1 and joining seal caps at both ends, the inside of the chamber was replaced with Ar, and the inside of the inner tube was filled with Ar at 50 kg/cm 2
Pressurization was carried out under the conditions shown in Table 1. The temperature of the heating zone is 850℃, and the heating movement speed is 200mm/
It is min. As a result of vertical cross-sectional inspection of the double-walled pipe produced by the above method, it was confirmed that the pipe was completely soldered. Reference example In the same combination as in Example 1, a double pipe that does not satisfy the above formula (1), which was created under the same conditions as in Example 1 except that the inner pipe pressure was 30Kg/cm 2 , is The outer diameter had expanded to 18.0 to 18.5 mm. However, as a result of longitudinal cross-sectional inspection, the inner and outer tube surfaces were apparently soldered together.

【表】 以上の実施例でも明らかなように、本発明にお
ける内外管材料の組合わせは任意のものであり、
それらの材料に適応したロウ材を選択すればよ
い。また、ロウ接合を容易にするためには、接合
面に金属めつきを施したり、それと同等の金属溶
射を施したり、また、内管に管端より長手方向に
圧縮力を加えることが有利である。内管に加える
圧力は、ロウ接合作業温度における内管材料の弾
性変形または塑性変形量に応じたものである必要
があり、前記式(1)によつて定めることが必要であ
る。 なお、上記実施例においては、17.3mmφの小径
管のみについて述べたが、より大口径の、例えば
油井管などを本発明によつて製造することができ
る。さらにまた本発明を例えば多重層の箱形容器
等を製造するのに応用することもできる。 〔発明の効果〕 以上本発明によれば、従来高価な高耐食材料そ
のものよりなる管を使用せざるを得なかつた装置
などに対して、安価な外管と高価ではあるが高耐
食材料よりなる内管とをロウ接合させた比較的低
廉な二重管を有利に使用することができるので、
装置などのコスト低減に寄与することができ、産
業技術上のメリツトは大きい。
[Table] As is clear from the above examples, the combination of the inner and outer tube materials in the present invention is arbitrary.
It is sufficient to select a brazing material that is suitable for those materials. In addition, in order to facilitate soldering, it is advantageous to apply metal plating or equivalent metal spraying to the joint surfaces, and to apply compressive force to the inner tube in the longitudinal direction from the tube end. be. The pressure applied to the inner tube needs to be in accordance with the amount of elastic deformation or plastic deformation of the inner tube material at the soldering work temperature, and needs to be determined by the above formula (1). In the above embodiment, only a small-diameter pipe of 17.3 mmφ was described, but a larger-diameter pipe, such as an oil country pipe, can be manufactured according to the present invention. Furthermore, the present invention can also be applied to, for example, manufacturing multilayer box-shaped containers. [Effects of the Invention] As described above, according to the present invention, an inexpensive outer tube and an expensive but highly corrosion-resistant material made of an expensive but highly corrosion-resistant material can be used for devices that conventionally had to use a tube made of an expensive, highly corrosion-resistant material itself. It is possible to advantageously use a relatively inexpensive double pipe that is brazed to the inner pipe.
It can contribute to reducing the cost of equipment, etc., and has great advantages in terms of industrial technology.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の実施に用いることのできる1つ
の態様を示す装置の縦断面説明図である。 1…外管、2…内管、3…間隙部、4…シール
キヤツプ、5…雰囲気調整チヤンバー、6…加熱
コイル、7…圧縮加工装置、8…荷重測定器、9
…圧縮加工用ピストン、10…高周波電源、11
…加熱コイル移動装置、12…内管加圧用ガスボ
ンベ、14…雰囲気調整ガスボンベ。
The figure is an explanatory longitudinal cross-sectional view of an apparatus showing one embodiment that can be used to implement the present invention. DESCRIPTION OF SYMBOLS 1... Outer tube, 2... Inner tube, 3... Gap part, 4... Seal cap, 5... Atmosphere adjustment chamber, 6... Heating coil, 7... Compression processing device, 8... Load measuring device, 9
...Piston for compression processing, 10...High frequency power supply, 11
... Heating coil moving device, 12... Gas cylinder for pressurizing inner tube, 14... Atmosphere adjustment gas cylinder.

Claims (1)

【特許請求の範囲】 1 外管の内側に内管を挿入して外管と内管とを
重ね合わせて、内管の外側と外管の内側との間隙
部にロウ材またはロウ材とフラツクスとを充填し
た後、前記間隙部を不活性ガスまたは還元性ガス
の雰囲気とし、次いで前記内管内に気体を送り込
んで下記の式(1)によより定められる圧力Pに加圧
し、その後前記内、外管の重ね合わせ部を、前記
重ね合わせ部の全長にわたり加熱コイルを移動さ
せつつ、300〜1150℃の温度範囲内に帯域加熱す
ることにより、前記重ね合わせ部をロウ接合する
ことを特徴とする二重管の製造方法。 2σiti/Di<P/100<2σoto/Do …(1) 但し; σi:内管材料のロウ接合作業温度における降
伏応力もしくは耐力(Kg/mm2) ti:内管の肉厚(mm) Di:内管の外径(mm) σo:外管材料のロウ接合作業温度における降
伏応力もしくは耐力(Kg/mm2) to:外管の肉厚(mm) Do:外管の内径(mm) P;ガス圧力(Kg/mm2) 2 前記内管と外管とが互いに接合される面のい
ずれか少なくとも片面に、Ni、Cr、CuおよびFe
のなかから選ばれるいずれか1種または2種以上
もしくはロウ材を、鍍金あるいは溶射したことを
特徴とする特許請求の範囲第1項記載の製造方
法。 3 内管内を気体加圧下で帯域加熱する際に、内
管の両端部に管の長手方向に圧縮力を負荷するこ
とを特徴とする特許請求の範囲第1項あるいは第
2項に記載の製造方法。
[Claims] 1. The inner tube is inserted inside the outer tube, the outer tube and the inner tube are overlapped, and the gap between the outside of the inner tube and the inside of the outer tube is filled with brazing material or soldering material and flux. After filling the gap with an inert gas or reducing gas, gas is fed into the inner tube to pressurize it to a pressure P determined by the following formula (1), and then the inner tube is filled with an inert gas or a reducing gas. , characterized in that the overlapping portion of the outer tubes is band-heated within a temperature range of 300 to 1150° C. while moving a heating coil over the entire length of the overlapping portion, thereby brazing the overlapping portion. A method for manufacturing double pipes. 2σiti/Di<P/100<2σoto/Do...(1) However; σi: Yield stress or yield strength of the inner tube material at the soldering temperature (Kg/mm 2 ) ti: Wall thickness of the inner tube (mm) Di: Outer diameter of inner tube (mm) σo: Yield stress or proof stress of outer tube material at soldering temperature (Kg/mm 2 ) to: Wall thickness of outer tube (mm) Do: Inner diameter of outer tube (mm) P; Gas pressure (Kg/mm 2 ) 2 Ni, Cr, Cu, and Fe are applied to at least one of the surfaces where the inner tube and outer tube are joined to each other.
2. The manufacturing method according to claim 1, wherein one or more selected from the following or a brazing material is plated or thermally sprayed. 3. The manufacturing method according to claim 1 or 2, characterized in that compressive force is applied to both ends of the inner tube in the longitudinal direction of the tube when band heating the inside of the inner tube under gas pressure. Method.
JP8879781A 1981-06-11 1981-06-11 Manufacture of double-ply pipe Granted JPS57206517A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8879781A JPS57206517A (en) 1981-06-11 1981-06-11 Manufacture of double-ply pipe
GB08215344A GB2100641B (en) 1981-06-11 1982-05-26 A method of manufacturing bimetallic tubes.
US06/383,733 US4533806A (en) 1981-06-11 1982-06-01 Method of manufacturing bimetallic tubes
CA000404441A CA1198267A (en) 1981-06-11 1982-06-02 Method of manufacturing bimetallic tubes
DE3221887A DE3221887C2 (en) 1981-06-11 1982-06-09 Process for the manufacture of bimetal pipes
FR828210138A FR2507508B1 (en) 1981-06-11 1982-06-10 PROCESS FOR PRODUCING BIMETALLIC TUBES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8879781A JPS57206517A (en) 1981-06-11 1981-06-11 Manufacture of double-ply pipe

Publications (2)

Publication Number Publication Date
JPS57206517A JPS57206517A (en) 1982-12-17
JPH0138568B2 true JPH0138568B2 (en) 1989-08-15

Family

ID=13952844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8879781A Granted JPS57206517A (en) 1981-06-11 1981-06-11 Manufacture of double-ply pipe

Country Status (1)

Country Link
JP (1) JPS57206517A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620660A (en) * 1985-01-24 1986-11-04 Turner William C Method of manufacturing an internally clad tubular product
US6478213B1 (en) * 2001-06-01 2002-11-12 Raytheon Company Fluxless fabrication of a multi-tubular structure
KR100860593B1 (en) 2008-04-15 2008-09-26 주식회사 브이씨알 Heating function materialized doubleuneven pipe and manufacturing method thereof
CN111761194B (en) * 2020-06-10 2022-08-02 中国船舶重工集团公司第七二五研究所 Vacuum preheating electron beam welding method for large-thickness workpiece
CN112692149B (en) * 2020-12-09 2023-02-03 哈尔滨工业大学 Gas forming method for aluminum alloy covering part with short steps and small round corners

Also Published As

Publication number Publication date
JPS57206517A (en) 1982-12-17

Similar Documents

Publication Publication Date Title
US4533806A (en) Method of manufacturing bimetallic tubes
US4754911A (en) Method of manufacturing a large diameter internally clad tubular product
CN103433636B (en) Pressure welding composite algorithm manufactures the method for bimetal metallurgy multiple tube
US4966748A (en) Methods of producing clad metals
US4886203A (en) Method of producing by brazing bimetallic cylindrical articles
WO1999051370A1 (en) Clad tubular product and method of manufacturing same
RU2007239C1 (en) Method and blank for manufacturing bimetal tubes and tube itself
US2977675A (en) Methods of making copper-aluminum joints
CN103406627B (en) The method for welding of a kind of aluminum radiator hourglass pipe nitrogen protection
CN104227338B (en) A kind of preparation method of spacecraft thermal control al stainless steel multiple tube
JPH0138568B2 (en)
US3163449A (en) Pipe joint
US3602978A (en) Method of forming bimetallic transition joints
RU2438842C1 (en) Method of producing bimetal tube
CN115781204A (en) Forming process method of flat copper pipe
JPH0144408B2 (en)
US4881679A (en) Subassembly for use in manufacturing a tubular product
JPS58163264A (en) Rotary electric machine with superconductive rotor
JPH0245955B2 (en)
MX2014015399A (en) Creating clad materials using resistance seam welding.
RU2106941C1 (en) Process of soldering of telescopic structures
EP0788860B1 (en) Heat exchange assembly and relative process and production plant
RU2106942C1 (en) Process of soldering of telescopic structures
CN117564389A (en) Vacuum high-frequency induction brazing connection method for satellite flexible pipeline
JPS63215388A (en) Method for joining two-phase stainless steel members