JPH0138519Y2 - - Google Patents

Info

Publication number
JPH0138519Y2
JPH0138519Y2 JP1981053911U JP5391181U JPH0138519Y2 JP H0138519 Y2 JPH0138519 Y2 JP H0138519Y2 JP 1981053911 U JP1981053911 U JP 1981053911U JP 5391181 U JP5391181 U JP 5391181U JP H0138519 Y2 JPH0138519 Y2 JP H0138519Y2
Authority
JP
Japan
Prior art keywords
sample
cylinder
convex portion
annular wall
wall portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981053911U
Other languages
Japanese (ja)
Other versions
JPS57166162U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981053911U priority Critical patent/JPH0138519Y2/ja
Publication of JPS57166162U publication Critical patent/JPS57166162U/ja
Application granted granted Critical
Publication of JPH0138519Y2 publication Critical patent/JPH0138519Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は粘弾性測定装置に係わるものであり、
その目的は粘性が小さい液体の粘弾性を精確に測
定する事である。
[Detailed description of the invention] The invention relates to a viscoelasticity measuring device,
Its purpose is to accurately measure the viscoelasticity of liquids with low viscosity.

従来の液体粘弾性測定装置の原理を第1,2,
3図を参照して説明する。第1図で試料容器1を
一定方向に回転させるか、振動させ、又は回転と
振動を重畳させて動かす。この運動は試料8を介
して内筒5に伝わり、内筒5を回転する。その回
転角をミラー2の反射光を受けるフオトダイオー
ド対等のポジシヨンセンサー3で検出し、又変換
された電気信号をマグネツト6の間に置かれ、内
筒に固定されたコイル4に内筒5の回転を打消す
方向にフイードバツクする。その時のコイル電流
値(回転力に比例)から試料の粘弾性が測定され
る。第2図は第1図の試料容器1に内筒5と試料
8とが入つている状態を示す。
The principles of conventional liquid viscoelasticity measuring devices are explained in the first, second, and
This will be explained with reference to FIG. In FIG. 1, the sample container 1 is rotated in a certain direction, vibrated, or moved by superimposing rotation and vibration. This motion is transmitted to the inner cylinder 5 via the sample 8 and rotates the inner cylinder 5. The angle of rotation is detected by a position sensor 3 that is equivalent to a photodiode that receives the reflected light from the mirror 2, and the converted electric signal is sent between the magnets 6 and sent to the coil 4 fixed to the inner cylinder 5. Feedback in the direction of canceling the rotation of. The viscoelasticity of the sample is measured from the coil current value (proportional to the rotational force) at that time. FIG. 2 shows a state in which the inner tube 5 and the sample 8 are contained in the sample container 1 of FIG.

しかしこの様な従来の粘弾性測定装置では、試
料が少量の場合、試料との接触面積が小さく、試
料の内筒に与える回転力が小さくなる。特に試料
表面に膜が形成される様な場合、膜による回転力
への影響を無視出来ない測定誤差が大きくなる欠
点があつた。従来は実験室において、この様な誤
差を減少させるため第3図の様に固定円環7を設
置し試料8の液表面膜による回転力を遮断する方
法も用いられていたが、この液表面の影響を遮断
するための固定円環7の付加は測定装置の製作及
び測定時のセツテイングを複雑とし、又常に一定
の試料を試料容器1へ入れる事もわずらわしい事
であつた。又従来円筒5は第1,2,3図に示す
様にムクのロツドを使用しているため、固有振動
数が低く、測定可能振動数範囲が小さいと云う欠
点もあつた。
However, in such a conventional viscoelasticity measuring device, when the sample is small, the contact area with the sample is small, and the rotational force applied to the inner cylinder of the sample is small. Particularly in cases where a film is formed on the sample surface, there is a drawback that the measurement error increases because the influence of the film on the rotational force cannot be ignored. Conventionally, in the laboratory, in order to reduce such errors, a method was used in which a fixed ring 7 was installed as shown in Figure 3 to block the rotational force due to the liquid surface film of the sample 8. The addition of the fixed ring 7 to block the influence of the above complicates the manufacturing of the measuring device and the setting during measurement, and it is also troublesome to always put the same sample into the sample container 1. Furthermore, since the conventional cylinder 5 uses a solid rod as shown in FIGS. 1, 2, and 3, it also has the disadvantage of having a low natural frequency and a narrow measurable frequency range.

この様な従来の測定装置の欠点は本考案に従い
脱気孔を有する中空の懸垂円筒と、底面の中心か
ら前記の円筒へのびる凸状部分と、この凸状部分
を囲む環状壁部分とを有する試料容器とを含み、
前記の凸状部分の頂部周辺と前記の環状壁部分の
頂部内面とに切欠き部をつけた二重円筒式液状物
質粘弾性測定装置により改善される。
The disadvantage of such conventional measuring devices is that according to the present invention, a sample has a hollow suspended cylinder with a degassing hole, a convex portion extending from the center of the bottom surface to the cylinder, and an annular wall portion surrounding this convex portion. a container;
This is improved by a double cylindrical liquid material viscoelasticity measuring device in which notches are provided around the top of the convex portion and on the inner surface of the top of the annular wall portion.

第4,5図に従つて本考案を詳細に説明する。
第4図で脱気孔9を有する中空の懸垂円筒10
は、従来の内筒5に比べ中空円筒形状のため重量
が減少し、そのため固有振動数が高められ、測定
可能振動範囲は拡大するという利点があり、更に
円筒の内外で試料と接触するため、接触面積が増
大し、感度は向上する。更に液表面の影響を減少
させるため、試料容器11は底面の中心から中空
の懸垂円筒10へのびる凸状部分12と、この凸
状部分を囲む環状壁部分14を有し中空の懸垂円
筒10へのびる凸状部分12の頂部周辺と、この
凸状部分を囲む環状壁部分14の頂部内面とに
各々切欠き部13をつけている。この結果試料容
器の口が拡がり、第3図に示す様に固定円筒7を
付加しなくても液表面の膜形成による影響を減少
できる。常に一定試料を自動的にセツトするため
試料容器11の上部にオーバーフローの穴15を
設けると好都合である。これにより簡単に一定試
料をセツトでき、測定能率を向上させることがで
きる。
The present invention will be explained in detail with reference to FIGS.
A hollow suspended cylinder 10 with a deaeration hole 9 is shown in FIG.
Compared to the conventional inner cylinder 5, the hollow cylindrical shape reduces the weight, which increases the natural frequency and has the advantage of expanding the measurable vibration range.Furthermore, since it comes into contact with the sample inside and outside the cylinder, The contact area increases and sensitivity improves. In order to further reduce the influence of the liquid surface, the sample container 11 has a convex portion 12 extending from the center of the bottom surface to the hollow suspended cylinder 10 and an annular wall portion 14 surrounding this convex portion. Notches 13 are provided around the top of the extending convex portion 12 and on the inner surface of the top of the annular wall portion 14 surrounding the convex portion. As a result, the mouth of the sample container expands, and as shown in FIG. 3, the influence of film formation on the liquid surface can be reduced without adding the fixed cylinder 7. It is advantageous to provide an overflow hole 15 in the upper part of the sample container 11 in order to automatically set a constant sample at all times. This makes it possible to easily set a fixed sample and improve measurement efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の粘弾性測定装置の原理説明図、
第2図は試料容器に試料の入つている状態を説明
するための断面図、第3図は固定円筒を付加した
同様の断面図、第4図は本考案の実施例の断面
図。 図中、9:脱気孔、10:中空の懸垂円筒、1
1:試料容器、12:凸状部分、14:環状壁部
分、13:切欠き部。
Figure 1 is a diagram explaining the principle of a conventional viscoelasticity measurement device.
FIG. 2 is a sectional view for explaining the state in which a sample is contained in a sample container, FIG. 3 is a similar sectional view with a fixed cylinder added, and FIG. 4 is a sectional view of an embodiment of the present invention. In the figure, 9: deaeration hole, 10: hollow suspended cylinder, 1
1: sample container, 12: convex portion, 14: annular wall portion, 13: notch portion.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 脱気孔を有する中空の懸垂円筒と、底面の中心
から前記の円筒内へのびる凸状部分とこの凸状部
分を囲む環状壁部分とを有する試料容器とを含
み、前記の凸状部分の頂部周辺と前記の環状壁部
分の頂部内面とに切欠き部をつけたことを特徴と
する二重円筒式液状物質粘弾性測定装置。
a sample container having a hollow suspended cylinder having a degassing hole, a convex portion extending from the center of the bottom surface into the cylinder, and an annular wall portion surrounding the convex portion; A double cylindrical liquid substance viscoelasticity measuring device characterized in that a notch is provided in the top inner surface of the annular wall portion.
JP1981053911U 1981-04-15 1981-04-15 Expired JPH0138519Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981053911U JPH0138519Y2 (en) 1981-04-15 1981-04-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981053911U JPH0138519Y2 (en) 1981-04-15 1981-04-15

Publications (2)

Publication Number Publication Date
JPS57166162U JPS57166162U (en) 1982-10-20
JPH0138519Y2 true JPH0138519Y2 (en) 1989-11-17

Family

ID=29850527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981053911U Expired JPH0138519Y2 (en) 1981-04-15 1981-04-15

Country Status (1)

Country Link
JP (1) JPH0138519Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189880A2 (en) 2013-05-23 2014-11-27 Waters Technologies Corporation Orthogonal superposition rheometer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527950A (en) * 1975-07-07 1977-01-21 Tokyo Tanabe Co Ltd Preparation of ursodeoxycholic acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527950A (en) * 1975-07-07 1977-01-21 Tokyo Tanabe Co Ltd Preparation of ursodeoxycholic acid

Also Published As

Publication number Publication date
JPS57166162U (en) 1982-10-20

Similar Documents

Publication Publication Date Title
US4741200A (en) Method and apparatus for measuring viscosity in a liquid utilizing a piezoelectric sensor
AU712747B2 (en) Uniaxial horizontal sensor
JPH0522861B2 (en)
JPS62501235A (en) Methods and devices for measuring volume
US4811593A (en) Viscosity detector
JPH0138519Y2 (en)
SU478192A1 (en) Device for determining the angle of repose of powdered materials
JPS6122265Y2 (en)
JP2002365051A (en) Gradient angle measuring sensor
JPS5913906A (en) Measuring device of direction and displacement of rotating body in rotating shaft direction
JPH0446173Y2 (en)
SU794515A1 (en) Shaft rotation parameter transducer
JPH0627693B2 (en) Fluid specific gravity measuring device
JPH0339720Y2 (en)
SU757696A1 (en) Slope-angle sensor
JPS6123817Y2 (en)
JPS61129533A (en) Measuring instrument for mass of liquid within tank
JPH0372321U (en)
SU1020572A1 (en) Zenith angle transmitter
JPS5844367Y2 (en) Double junction type composite electrode for ion concentration measurement
JPH0438291Y2 (en)
JPH02144711U (en)
SU1471058A1 (en) Method of measuring thin-wall parts diameter
JPH0748535Y2 (en) Weighing and dispensing container
JPH01296104A (en) Angular displacement detector