JPH01321333A - Sample gas analyzer - Google Patents

Sample gas analyzer

Info

Publication number
JPH01321333A
JPH01321333A JP15564588A JP15564588A JPH01321333A JP H01321333 A JPH01321333 A JP H01321333A JP 15564588 A JP15564588 A JP 15564588A JP 15564588 A JP15564588 A JP 15564588A JP H01321333 A JPH01321333 A JP H01321333A
Authority
JP
Japan
Prior art keywords
decompression chamber
vacuum
sample gas
degree
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15564588A
Other languages
Japanese (ja)
Inventor
Taeko Honjo
本城 多恵子
Ikuko Minami
南 郁子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP15564588A priority Critical patent/JPH01321333A/en
Publication of JPH01321333A publication Critical patent/JPH01321333A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To enhance analytical accuracy by controlling the pressure of a primary pressure reducing chamber or the opening area of an orifice so that the flow rate of the sample gas introduced into a secondary reducing chamber from the primary pressure reducing chamber through the orifice becomes almost constant. CONSTITUTION:When an analysis start signal is inputted to a drive control part C1, the control part C1 operates vacuum pumps 11, 21 to respectively reduce the pressures of primary and secondary pressure reducing chambers 5, 15. Next, the control part C1 drives a solenoid 7 for a predetermined time during the exhaust process of an engine 2 after the vacuum degrees of the pressure reducing chamber 5, 15 reach respective set values to open a control valve 6. By this method, the exhaust gas in a combustion chamber 3 is introduced into the pressure reducing chamber 5 through an introducing pipe 4. At this time, the control part C1 keeps the vacuum degree of the pressure reducing chamber 5 constant on the basis of the pressure signal of a pressure sensor 10. Therefore, the difference between the vacuum degrees of the pressure reducing chambers 5, 15 during analysis becomes almost constant and, when analysis is performed by a quadrupole mass detector 8, an ionizing degree becomes almost constant and the ion mass of a specific gaseous component can be analyzed with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は試料ガス分析装置に関し、特に1次減圧室から
オリフィスを介して四重極質量検出器を設けた2次減圧
室に導入される試料ガスのガス流量を略一定にするよう
にしたものに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sample gas analyzer, and in particular, a sample gas is introduced from a primary vacuum chamber through an orifice into a secondary vacuum chamber equipped with a quadrupole mass detector. This relates to a device in which the gas flow rate of sample gas is kept approximately constant.

〔従来技術〕[Prior art]

一般に、例えばガス中に含まれる化学物質を分析する試
料ガス分析装置としては、サンプルした試料ガスが導入
される1次減圧室とこの1次減圧室にオリフィス等を介
して連通され四重極質量検出器を備えた2次減圧室とを
設け、1次減圧室に導入された試料ガスはそのガス流量
をオリフィスで規制されて2次減圧室に導入され、四重
極質量検出器で試料ガス中の特定ガス成分の質量を選択
的に検出するようにした装置が知られている。
Generally, a sample gas analyzer for analyzing chemical substances contained in gas, for example, has a primary vacuum chamber into which the sample gas is introduced, and a quadrupole mass that communicates with this primary vacuum chamber via an orifice or the like. A secondary decompression chamber equipped with a detector is provided, and the sample gas introduced into the primary decompression chamber is introduced into the secondary decompression chamber with its gas flow rate regulated by an orifice, and the sample gas is detected by a quadrupole mass detector. A device is known that selectively detects the mass of a specific gas component therein.

上記ガス分析装置は、自動車用エンジンの吸気ガス、燃
焼ガス或いは排気ガス等を分析するのに適したものであ
り、例えば、第6図に示すように構成されている。
The gas analyzer is suitable for analyzing intake gas, combustion gas, exhaust gas, etc. of an automobile engine, and is configured as shown in FIG. 6, for example.

このガス分析装置において、1次減圧室50と2次減圧
室51とは隣接して設けられ、2次減圧室51はオリフ
ィス52を介して1次減圧室50に連通され、1次減圧
室50は真空ポンプ53により設定値に減圧されると共
に、2次減圧室51はターボ分子ポンプ54と真空ポン
プ55により設定値に減圧されている。尚、2次減圧室
51の真空度は1次減圧室50の真空度より所定値だけ
高く設定されている。
In this gas analyzer, a primary decompression chamber 50 and a secondary decompression chamber 51 are provided adjacent to each other, and the secondary decompression chamber 51 communicates with the primary decompression chamber 50 via an orifice 52. is depressurized to a set value by a vacuum pump 53, and the secondary decompression chamber 51 is depressurized to a set value by a turbo molecular pump 54 and a vacuum pump 55. Note that the degree of vacuum in the secondary decompression chamber 51 is set higher than the degree of vacuum in the primary decompression chamber 50 by a predetermined value.

そして、例えばエンジン56が排気工程のときに制御弁
57が開弁されて、燃焼室58の排気ガス(試料ガス)
が試料ガス導入管59を経て1次減圧室50に導入され
、差動排気によりその試料ガスの一部がオリフィス52
を通って2次減圧室51に導入される。
For example, when the engine 56 is in the exhaust process, the control valve 57 is opened, and the exhaust gas (sample gas) in the combustion chamber 58 is
is introduced into the primary decompression chamber 50 via the sample gas introduction pipe 59, and a portion of the sample gas is introduced into the orifice 52 by differential pumping.
It is introduced into the secondary decompression chamber 51 through the passage.

そして、2次減圧室51の四重極質量検出器60で試料
ガスをイオン化させて分析し特定ガス成分のイオン質量
を検出するようになっている。
Then, the sample gas is ionized and analyzed by a quadrupole mass detector 60 in the secondary decompression chamber 51 to detect the ion mass of a specific gas component.

尚、実開昭58−26660号公報には、試料ガス導入
管内に設けた酸化触媒を加熱炉で約300℃以上に加熱
し、試料ガスを導入管を経て1次減圧室に尊大するとき
に、試料ガス中のco及び各種HCを酸化触媒で完全に
酸化させた後、2次減圧室内の四重極質量検出器で分析
し、この分析結果に基いて混合気の空燃比を算出するよ
うにした超高速試料ガス分析装置が記載されている。
In addition, Japanese Utility Model Application Publication No. 58-26660 discloses that when an oxidation catalyst provided in a sample gas introduction tube is heated to approximately 300°C or higher in a heating furnace, and the sample gas is sent through the introduction tube to the primary decompression chamber. After the CO and various HCs in the sample gas are completely oxidized with an oxidation catalyst, they are analyzed with a quadrupole mass detector in the secondary vacuum chamber, and the air-fuel ratio of the mixture is calculated based on the analysis results. An ultrahigh-speed sample gas analyzer is described.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の試料ガス分析装置(第6図参照)において、例え
ばエンジン56の排気ガス(試料ガス)を導入管59を
経て1次減圧室50に導入して分析する際に、真空ポン
プ53による1次減圧室50の真空度及び1対の真空ポ
ンプ54・55による2次減圧室51の真空度を略一定
に設定するけれども、エンジン56内の排気ガス圧が時
々刻々変化するので排気ガス圧が上昇すると、1次減圧
室50の真空度は試料ガスの導入により低くなり、画室
50・51の真空度の差が大きくなるので、1次減圧室
50からオリフィス52を介して2次減圧室51に導入
される試料ガスの流速が速くなり、オリフィスを通過す
るガス流量(導入量)が増加する。
In the conventional sample gas analyzer (see FIG. 6), for example, when the exhaust gas (sample gas) of the engine 56 is introduced into the primary decompression chamber 50 through the introduction pipe 59 and analyzed, the primary decompression chamber 50 is Although the degree of vacuum in the decompression chamber 50 and the degree of vacuum in the secondary decompression chamber 51 by the pair of vacuum pumps 54 and 55 are set to be approximately constant, the exhaust gas pressure inside the engine 56 changes from time to time, so the exhaust gas pressure increases. Then, the degree of vacuum in the primary decompression chamber 50 becomes lower due to the introduction of the sample gas, and the difference in the degree of vacuum between the compartments 50 and 51 increases, so that the vacuum level in the primary decompression chamber 50 is reduced through the orifice 52 to the secondary decompression chamber 51. The flow rate of the introduced sample gas increases, and the gas flow rate (introduction amount) passing through the orifice increases.

その結果、2次減圧室51の真空度が大きく変化すると
共に2次減圧室51内の試料ガスのガス濃度も変化する
ので、ガスの種類によっては真空度によってイオン化度
合が変化し、四重極質量検出器60でガス成分のイオン
質量を正確に検出することができないという問題がある
As a result, the degree of vacuum in the secondary decompression chamber 51 changes greatly, and the gas concentration of the sample gas in the secondary decompression chamber 51 also changes, so depending on the type of gas, the degree of ionization changes depending on the degree of vacuum, and the quadrupole There is a problem in that the mass detector 60 cannot accurately detect the ion mass of the gas component.

そこで、2次減圧室51の真空度を測定し、所定真空度
との差から補正のための係数を求め、四重極質量検出器
60で求めた実測値に係数を掛は算して補正することも
知られているが、この補正のための複雑な演算制御が必
要となりガス分析の高速化を妨げること、例えば酸素の
ように真空度とイオン化度合とが非線型の相関関係を有
しているガス成分では単に係数で補正するだけでは誤差
が生じること、など問題がある。
Therefore, the degree of vacuum in the secondary decompression chamber 51 is measured, a coefficient for correction is determined from the difference from the predetermined degree of vacuum, and the actual value determined by the quadrupole mass detector 60 is multiplied by the coefficient for correction. However, this correction requires complex arithmetic control, which impedes the speed of gas analysis.For example, the degree of vacuum and degree of ionization have a nonlinear correlation, such as in oxygen There are problems with gas components such as simply correcting them using coefficients, as errors may occur.

本発明の目的は、試料ガスの分析精度を向上させると共
に高速でガス分析し得るような試料ガス分析装置を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sample gas analyzer that can improve the accuracy of sample gas analysis and perform gas analysis at high speed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る試料ガス分析装置は、試料ガス導入管が導
入された1次減圧室と、上記1次減圧室にオリフィスを
介して連通された2次減圧室と、上記2次減圧室に設け
られた四重極質量検出器とを備えた試料ガス分析装置に
おいて、上記1次減圧室からオリフィスを介して2次減
圧室に導入される試料ガスの流量が略一定となるように
1次減圧室の圧力又はオリフィスの開口面積を制御する
ガス流量制御手段を設けたものである。
The sample gas analyzer according to the present invention includes a primary decompression chamber into which a sample gas introduction pipe is introduced, a secondary decompression chamber communicated with the primary decompression chamber through an orifice, and a secondary decompression chamber provided in the secondary decompression chamber. In a sample gas analyzer equipped with a quadrupole mass detector, the primary depressurization is performed such that the flow rate of the sample gas introduced from the primary decompression chamber to the secondary decompression chamber through the orifice is approximately constant. A gas flow rate control means is provided to control the pressure in the chamber or the opening area of the orifice.

〔作用〕[Effect]

本発明に係る試料ガス分析装置においては、試料ガス導
入管を経て1次減圧室に導入された試料ガスの一部がオ
リフィスを介して2次減圧室に導入されるときに、ガス
流量制御手段により1次減圧室の圧力又はオリフィスの
開口面積が制御されて、オリフィスを介して2次減圧室
に導入される試料ガスのガス流量が略一定となる。
In the sample gas analyzer according to the present invention, when a part of the sample gas introduced into the primary decompression chamber via the sample gas introduction tube is introduced into the secondary decompression chamber via the orifice, The pressure in the primary decompression chamber or the opening area of the orifice is controlled, and the flow rate of the sample gas introduced into the secondary decompression chamber through the orifice becomes approximately constant.

従って、2次減圧室に導入される試料ガスのガス濃度及
び2次減圧室の真空度が略一定となり、この状態で四重
極質量検出器で試料ガスを分析することができるので、
試料ガス中に含まれる選択された特定のガス成分のイオ
ン質量を正確に検出することができる。
Therefore, the gas concentration of the sample gas introduced into the secondary decompression chamber and the degree of vacuum in the secondary decompression chamber are approximately constant, and in this state the sample gas can be analyzed with a quadrupole mass detector.
It is possible to accurately detect the ion mass of a selected specific gas component contained in the sample gas.

〔発明の効果〕〔Effect of the invention〕

本発明に係る試料ガス分析装置によれば、以上説明した
ように、1次減圧室の圧力又はオリフィスの開口面積を
制御してオリフィスを介して2次減圧室に導入される試
料ガスのガス流量が略一定に制御され、2次減圧室に導
入される試料ガスのガス濃度及び2次減圧室の真空度が
略一定となるので、分析精度が大幅に向上する。
According to the sample gas analyzer according to the present invention, as explained above, the gas flow rate of the sample gas introduced into the secondary decompression chamber through the orifice by controlling the pressure in the primary decompression chamber or the opening area of the orifice. is controlled to be substantially constant, and the gas concentration of the sample gas introduced into the secondary decompression chamber and the degree of vacuum of the secondary depressurization chamber are substantially constant, so that analysis accuracy is greatly improved.

また、四重極質量検出器で検出した実測データを補正係
数などにより補正する必要がなく、分析速度の高速化を
図ることが出来る。
Furthermore, there is no need to correct the measured data detected by the quadrupole mass detector using a correction coefficient, etc., and the analysis speed can be increased.

〔実施例〕〔Example〕

以下、本発明の実施例について図面に基いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

本実施例はエンジンの排気ガス(これが、試料ガスに相
当する)を分析する試料ガス分析装置に本発明を適用し
た場合のものである。
This embodiment is a case where the present invention is applied to a sample gas analyzer that analyzes engine exhaust gas (which corresponds to sample gas).

試料ガス分析装置1について、第1図に基いて説明する
The sample gas analyzer 1 will be explained based on FIG. 1.

エンジン2の燃焼室3に試料ガス導入管(以下、導入管
という)4の上流端が接続されると共に、この導入管4
の下流端は1次減圧室5内に導入されている。更に、導
入管4の上流端部にはその上流端を開閉する制御弁6と
この制御弁6を上下に開閉駆動するソレノイド7とが設
けられている。
The upstream end of a sample gas introduction pipe (hereinafter referred to as introduction pipe) 4 is connected to the combustion chamber 3 of the engine 2, and this introduction pipe 4
The downstream end of is introduced into the primary decompression chamber 5. Further, the upstream end of the introduction pipe 4 is provided with a control valve 6 that opens and closes the upstream end, and a solenoid 7 that drives the control valve 6 to open and close up and down.

尚、符号8は吸気管、符号9は排気管である。Note that numeral 8 is an intake pipe, and numeral 9 is an exhaust pipe.

上記1次減圧室5には1次減圧室5内の負圧(真空度)
を測定するための圧力センサ10が設けられ、1次減圧
室5を減圧させるための真空ポンプ11が連通路12を
介して設けられている。
The negative pressure (degree of vacuum) inside the primary decompression chamber 5 is
A pressure sensor 10 for measuring the pressure is provided, and a vacuum pump 11 for reducing the pressure in the primary decompression chamber 5 is provided via a communication path 12.

この連通路12の途中には真空ポンプ11により減圧さ
れる1次減圧室5の真空度を調節するための可変バルブ
13が介設されている。更に、1次減圧室5の隣りには
仕切板14を隔てて2次減圧室15が設けられ、この仕
切板14には導入管4で導入された試料ガスを2次減圧
室15に導入する為のオリフィス16が形成され、上記
導入管4の下流端はこのオリフィス16の近傍に開端し
ている。
A variable valve 13 is interposed in the middle of the communication path 12 to adjust the degree of vacuum in the primary decompression chamber 5, which is depressurized by the vacuum pump 11. Furthermore, a secondary decompression chamber 15 is provided next to the primary decompression chamber 5 with a partition plate 14 in between, and the sample gas introduced through the introduction pipe 4 is introduced into the secondary decompression chamber 15 into the partition plate 14. An orifice 16 is formed for this purpose, and the downstream end of the introduction pipe 4 is open near this orifice 16.

上記2次減圧室15には、オリフィス16を介して試料
ガスを導入するためのガス導入用のバルブ17と導入さ
れた試料ガス中のガス成分のイオン強度を測定する四重
極質量検出器18と試料ガスを導出するためのバルブ1
9とが設けられている。
The secondary decompression chamber 15 includes a gas introduction valve 17 for introducing sample gas through an orifice 16, and a quadrupole mass detector 18 for measuring the ion intensity of gas components in the introduced sample gas. and valve 1 for extracting the sample gas.
9 is provided.

更に、2次減圧室15を所定の真空度に減圧させるため
のターボ分子ポンプ20及び真空ポンプ21が連通路2
2・23を介して夫々接続されている。
Further, a turbo molecular pump 20 and a vacuum pump 21 for depressurizing the secondary decompression chamber 15 to a predetermined degree of vacuum are connected to the communication path 2.
2 and 23, respectively.

上記4電極質量検出器18は、第2図に示すように試料
ガス中のガス成分に電子衝撃を与えてガス成分をイオン
化するイオンソース部24と、イオン化されたガス成分
を収束させてイオンビームを形成するレンズ系25と、
このレンズ系25を経て入射したイオンを振動させて特
定電荷比のイオンのみを通過させる4本のロンドからな
る電極部26と、この電極部26を通過したイオンのイ
オン強度をイオン電流として検出する二次電子増倍管2
7とを備えている。そして上記電極部26に印加される
電圧値を調節することによって特定電荷比のイオンつま
り各種HCイオンや02イオン等のイオン強度を選択的
に検出し、この検出信号を出力するものである。
As shown in FIG. 2, the four-electrode mass detector 18 includes an ion source section 24 that applies electron bombardment to gas components in a sample gas to ionize the gas components, and an ion source section 24 that converges the ionized gas components to form an ion beam. a lens system 25 forming a
There is an electrode section 26 consisting of four ronds that vibrates the ions that have entered through this lens system 25 and allows only ions with a specific charge ratio to pass through, and the ion intensity of the ions that have passed through this electrode section 26 is detected as an ion current. Secondary electron multiplier 2
7. By adjusting the voltage value applied to the electrode section 26, the ion intensity of ions with a specific charge ratio, ie, various HC ions, 02 ions, etc., is selectively detected, and this detection signal is output.

上記ソレノイド7、圧力センサ10、可変バルブ13、
各真空ポンプ11・21を駆動するモータ28・29及
びターボ分子ポンプ20を駆動するモータ30は夫々コ
ントローラCの駆動制御部C1に接続されている。上記
四重極質量検出器18はコントローラCの分析制御部C
2に接続されている。
The solenoid 7, pressure sensor 10, variable valve 13,
The motors 28 and 29 that drive the vacuum pumps 11 and 21 and the motor 30 that drives the turbo molecular pump 20 are connected to a drive control section C1 of the controller C, respectively. The quadrupole mass detector 18 is the analysis control section C of the controller C.
Connected to 2.

上記駆動制御部C1は、マイクロコンピュータ及び駆動
回路などで構成され、排気行程の所定のタイミングでソ
レノイド7を励磁させて制御弁6を下方へ駆動させると
共に、所定時間後にソレノイド7を消磁させて制御弁6
を上方へ復帰させる。
The drive control section C1 is composed of a microcomputer, a drive circuit, etc., and controls by energizing the solenoid 7 at a predetermined timing of the exhaust stroke to drive the control valve 6 downward, and by demagnetizing the solenoid 7 after a predetermined time. Valve 6
Return to the top.

また、駆動制御部C1は、分析開始信号に基いて各モー
タ28・29・30を駆動させるのと同時に、圧力セン
サ10からの圧力信号と予め設定された設定減圧値とに
基いて1次減圧室5の圧力が設定値と路間等となるよう
に可変バルブ13の開口度を制御する。
Further, the drive control unit C1 drives each motor 28, 29, and 30 based on the analysis start signal, and at the same time, the drive control unit C1 drives the primary pressure reduction based on the pressure signal from the pressure sensor 10 and a preset set pressure reduction value. The opening degree of the variable valve 13 is controlled so that the pressure in the chamber 5 is within the range between the set value and the pressure.

上記分析制御部C2は、四重極質量検出器18の電極部
26や二次電子増倍管27などに駆動電流を供給すると
共に、この四重極質量検出器1Bから出力される検出信
号(イオン強度信号)に基いて所望のガス成分のイオン
質量を測定するものである。
The analysis control section C2 supplies a drive current to the electrode section 26, the secondary electron multiplier tube 27, etc. of the quadrupole mass detector 18, and also supplies the detection signal ( The ion mass of a desired gas component is measured based on the ion intensity signal).

次に、試料ガス分析装置1で排気ガス中の選択された特
定のガス成分のイオン質量を検出するときの作用につい
て説明する。
Next, the operation when the sample gas analyzer 1 detects the ion mass of a selected specific gas component in the exhaust gas will be explained.

分析開始に伴って分析開始信号が駆動制御部C1に入力
されると、駆動制御部C1は、各モータ28・29・3
0を駆動させて各真空ポンプ11・20・21を作動さ
せ1次減圧室5内の圧力及び2次減圧室15内の圧力を
夫々減圧する。そして、圧カセンサエ0からの圧力信号
に基いて1次減圧室5内の圧力が設定値と路間等となる
ように可変バルブ13の開口度を制御する。このとき、
2次減圧室15の真空度は1次減圧室5の真空度より所
定値だけ高くなるように設定されている。
When an analysis start signal is input to the drive control unit C1 with the start of analysis, the drive control unit C1 controls each motor 28, 29, 3.
0 to operate the vacuum pumps 11, 20, and 21 to reduce the pressure in the primary decompression chamber 5 and the pressure in the secondary decompression chamber 15, respectively. Then, based on the pressure signal from the pressure sensor 0, the opening degree of the variable valve 13 is controlled so that the pressure in the primary decompression chamber 5 is within the range of the set value. At this time,
The degree of vacuum in the secondary decompression chamber 15 is set to be higher than the degree of vacuum in the primary decompression chamber 5 by a predetermined value.

上記1次減圧室5及び2次減圧室15の真空度が夫々設
定値に達した後エンジン2が排気行程のときに、駆動制
御部C1はソレノイド7を所定時間駆動して制御弁6を
所定時間だけ下方へ駆動して開弁する。これにより、燃
焼室3内の排気ガスが導入管4を経て1次減圧室5に導
入される。このとき、駆動制御部C1は圧力センサ10
の圧力信号に基いて、試料ガスの導入に伴い1次減圧室
5の真空値が設定値より低いときには可変バルブ13の
開口度を大きくし、また真空値が設定値より高いときに
は可変バルブ13の開口度を絞ることにより、1次減圧
室5の真空度は試料ガスが4人されている間略設定値通
りに一定に保持される。
After the degree of vacuum in the primary decompression chamber 5 and the secondary decompression chamber 15 reach their respective set values and when the engine 2 is in the exhaust stroke, the drive control section C1 drives the solenoid 7 for a predetermined period of time to control the control valve 6 to a predetermined value. The valve is opened by driving downward for a certain amount of time. Thereby, the exhaust gas in the combustion chamber 3 is introduced into the primary decompression chamber 5 via the introduction pipe 4. At this time, the drive control section C1 controls the pressure sensor 10.
Based on the pressure signal, when the vacuum value of the primary decompression chamber 5 is lower than the set value due to the introduction of the sample gas, the opening degree of the variable valve 13 is increased, and when the vacuum value is higher than the set value, the opening degree of the variable valve 13 is increased. By narrowing down the opening degree, the degree of vacuum in the primary decompression chamber 5 is kept constant at approximately the set value while four sample gases are being supplied.

従って、分析中には1次減圧室5の真空度と2次減圧室
15の真空度との差が略一定になるので、1次減圧室5
からオリフィス1Gを介して2次減圧室15に導入され
る試料ガスのガス流量が略−定となる。尚、1次減圧室
5に残留した試料ガスは真空ポンプ11で排出される。
Therefore, during analysis, the difference between the degree of vacuum in the primary decompression chamber 5 and the degree of vacuum in the secondary decompression chamber 15 becomes approximately constant, so that the degree of vacuum in the primary decompression chamber 5
The gas flow rate of the sample gas introduced into the secondary decompression chamber 15 through the orifice 1G is approximately constant. Note that the sample gas remaining in the primary decompression chamber 5 is exhausted by the vacuum pump 11.

その結果、2次減圧室15内の試料ガスのガス濃度及び
真空度が略一定となるので、四重掻質量検出器18で分
析するときにイオン化度合が略一定となり、特定のガス
成分のイオン質量を高精度に検出することができる。
As a result, the gas concentration and degree of vacuum of the sample gas in the secondary decompression chamber 15 are approximately constant, so when analyzed by the quadruple scratch mass detector 18, the degree of ionization is approximately constant, and ions of specific gas components are Mass can be detected with high accuracy.

尚、吸気行程や燃焼行程で制御弁6を駆動させて、吸気
ガスや燃焼ガスを試料ガスとして分析することも可能で
あり、この場合夫々に適した1次減圧室5の真空度及び
1次減圧室15の真空度が選択設定ささる。
It is also possible to analyze intake gas or combustion gas as sample gas by driving the control valve 6 during the intake stroke or combustion stroke. In this case, the degree of vacuum in the primary decompression chamber 5 and the primary The degree of vacuum in the decompression chamber 15 is selectively set.

次に、前記実施例を部分的に変更し、第3図に示すよう
に1次減圧室5への真空度を略一定に保持して1次減圧
室5Aからオリフィス16を介して2次減圧室15に導
入される試料ガスのガス流量を一定とするような試料ガ
ス分析装置1Aについけ説明する。但し、前記実施例と
異なる点について説明し、それ以外は前記実施例と同様
なので同様の符号を付してその説明を省略する。
Next, by partially modifying the above embodiment, as shown in FIG. A sample gas analyzer 1A in which the flow rate of the sample gas introduced into the chamber 15 is kept constant will be explained. However, the points different from the previous embodiment will be explained, and since the rest is the same as the previous embodiment, the same reference numerals will be given and the explanation thereof will be omitted.

前記1次減圧室5に代えて外部減圧室31が設けられ、
この外部減圧室31内にはオリフィス16に連通ずる1
次減圧室5Aが設けられ、導入管4の下流端が1次減圧
室5Aに接続されている。
An external decompression chamber 31 is provided in place of the primary decompression chamber 5,
Inside this external decompression chamber 31, there is a hole 1 that communicates with the orifice 16.
A secondary decompression chamber 5A is provided, and the downstream end of the introduction pipe 4 is connected to the primary decompression chamber 5A.

上記1次減圧室5Aは沸化ビニール樹脂などからなる伸
縮可能な材料の所定の厚さの仕切壁32で袋状に形成さ
れ、この1次減圧室5Aは連通管33を介して電磁切換
三方弁34の一方のボートに接続されると共に、外部減
圧室31は連通管35を介して切換三方弁34の他方の
ポートに接続され、この切換三方弁34には真空ポンプ
11が接続されている。
The primary decompression chamber 5A is formed into a bag shape with a partition wall 32 of a predetermined thickness made of a stretchable material such as vinyl fluoride resin, and the primary decompression chamber 5A is connected to a three-way electromagnetic switch via a communication pipe 33. In addition to being connected to one port of the valve 34, the external pressure reduction chamber 31 is connected to the other port of the switching three-way valve 34 via a communication pipe 35, and the vacuum pump 11 is connected to the switching three-way valve 34. .

コントローラCAの駆動制御部C3は、切換三方弁34
を切換制御することにより、1次減圧室5A或いは外部
減圧室31を減圧させる。
The drive control unit C3 of the controller CA is a three-way switching valve 34.
By controlling the switching, the pressure in the primary decompression chamber 5A or the external decompression chamber 31 is reduced.

次に、試料ガス分析装置IAで1次減圧室5Aからオリ
フィス16を介して2次減圧室15へ導入される試料ガ
スの流量を一定にする作用について説明する。
Next, a description will be given of the effect of keeping the flow rate of the sample gas introduced from the primary decompression chamber 5A through the orifice 16 into the secondary decompression chamber 15 in the sample gas analyzer IA constant.

分析開始に伴って分析開始信号が駆動制御部C3に入力
されると、駆動制御部C3は各モータ28・29・30
を駆動して各真空ポンプ11・20・21を作動させて
2次減圧室15を減圧するとともに、切換三方弁34を
切換えて外部減圧室31を減圧させる。
When an analysis start signal is input to the drive control unit C3 with the start of analysis, the drive control unit C3 controls each motor 28, 29, 30.
is driven to operate the vacuum pumps 11, 20, and 21 to reduce the pressure in the secondary pressure reduction chamber 15, and also to reduce the pressure in the external pressure reduction chamber 31 by switching the three-way switching valve 34.

外部減圧室31の圧力が所定の真空度に達したときに、
駆動制御部C3は切換三方弁34を切換えて1次減圧室
5Aを減圧する。そして、1次減圧室5Aの真空度が外
部減圧室31の真空度と路間等になったときに真空ポン
プ11の駆動を停止する。このとき、1次減圧室5Aと
外部減圧室31とは等しい真空度なので、仕切壁32は
弾性変形せずに一定の形状を保持している。
When the pressure in the external decompression chamber 31 reaches a predetermined degree of vacuum,
The drive control unit C3 switches the three-way switching valve 34 to reduce the pressure in the primary decompression chamber 5A. Then, when the degree of vacuum in the primary decompression chamber 5A becomes between the degree of vacuum in the external decompression chamber 31, etc., the driving of the vacuum pump 11 is stopped. At this time, since the primary decompression chamber 5A and the external decompression chamber 31 have the same degree of vacuum, the partition wall 32 maintains a constant shape without being elastically deformed.

エンジン2が排気行程のときに、駆動制御部C3はソレ
ノイド7を所定時間駆動して制御弁6を所定時間だけ下
方へ駆動して開弁する。これにより燃焼室3内の排気ガ
スが導入管4を経て1次減圧室5Aに導入される。この
ガス導入と同期して真空ポンプ11を作動させて、試料
ガスの導入に伴なう比較的大きな圧力上昇を吸収する。
When the engine 2 is in the exhaust stroke, the drive control unit C3 drives the solenoid 7 for a predetermined period of time to drive the control valve 6 downward for a predetermined period of time to open the valve. As a result, the exhaust gas in the combustion chamber 3 is introduced into the primary decompression chamber 5A via the introduction pipe 4. The vacuum pump 11 is operated in synchronization with this gas introduction to absorb the relatively large pressure increase accompanying the introduction of the sample gas.

このとき、試料ガスの導入に際して1次減圧室5Aの真
空度が外部減圧室31の真空度に対して変動しても、仕
切壁32は伸縮自在であるので、その真空度の差に応じ
て仕切壁32が弾性的に変形して1次減圧室5Aが拡大
又は縮小される。その結果、1次減圧室5Aの真空度は
減圧室31の真空度と同等となるので、1次減圧室5A
の真空度は略一定に保持される。その後、試料ガスのガ
ス圧が変化したときでも、そのガス圧の変化に応じて仕
切壁32が自由に弾性変形して1・火源圧室5Aの容積
が拡大成いは縮小されて、1次減圧室5Aの真空度が略
一定に保たれる。
At this time, even if the degree of vacuum in the primary decompression chamber 5A changes with respect to the degree of vacuum in the external decompression chamber 31 when introducing the sample gas, the partition wall 32 is expandable and retractable, so that it can be adjusted according to the difference in the degree of vacuum. The partition wall 32 is elastically deformed to expand or contract the primary decompression chamber 5A. As a result, the degree of vacuum in the primary decompression chamber 5A is equal to the degree of vacuum in the decompression chamber 31, so the degree of vacuum in the primary decompression chamber 5A is
The degree of vacuum is maintained approximately constant. Thereafter, even when the gas pressure of the sample gas changes, the partition wall 32 freely deforms elastically in accordance with the change in gas pressure, and the volume of the fire source pressure chamber 5A expands or contracts. Next, the degree of vacuum in the decompression chamber 5A is kept substantially constant.

従って、一定圧力の1次減圧室5Aからオリフィス16
を介して一定圧力の2次減圧室15に導入される試料ガ
スの流量が略一定となる。その結果、2次減圧室15内
の試料ガスのガス濃度及び真空度が略一定となるので、
四重極質量検出器18で分析するときにイオン化度合が
一定となり、高精度で特定のガス成分の質量を検出する
ことができる。
Therefore, from the primary decompression chamber 5A of constant pressure to the orifice 16
The flow rate of the sample gas introduced into the secondary decompression chamber 15 at a constant pressure through the secondary decompression chamber 15 becomes approximately constant. As a result, the gas concentration and degree of vacuum of the sample gas in the secondary decompression chamber 15 become approximately constant.
When analyzed by the quadrupole mass detector 18, the degree of ionization becomes constant, and the mass of a specific gas component can be detected with high accuracy.

尚、仕切壁32を伸縮可能な材料の膜状体で袋状に形成
することも可能であり、この場合外部減圧室31の真空
度を1次減圧室5Aの真空度よりも高く設定して仕切壁
32に張力が作用している状態で使用すれば、1次減圧
室5A内の圧力の変動に対する仕切壁32による圧力調
整作用糸得られる。
It is also possible to form the partition wall 32 into a bag-like shape using a film-like material made of an expandable material. In this case, the degree of vacuum in the external decompression chamber 31 is set higher than the degree of vacuum in the primary decompression chamber 5A. When used with tension acting on the partition wall 32, the partition wall 32 can provide a pressure regulating effect against fluctuations in pressure within the primary decompression chamber 5A.

前記実施例を部分的に変更し、第4図に示すようにオリ
フィス16の開口度を調節して1次減圧室5からオリフ
ィス16を介して2次減圧室15に導入される試料ガス
のガス流量を一定とするような試料ガス分析装置IBに
ついて説明する。
The above embodiment is partially modified, and the opening degree of the orifice 16 is adjusted as shown in FIG. A sample gas analyzer IB that maintains a constant flow rate will be described.

但し、前記実施例と異なる点について説明し、それ以外
は前記実施例と同様なので同様の符号を付してその説明
を省略する。
However, the points different from the previous embodiment will be explained, and since the rest is the same as the previous embodiment, the same reference numerals will be given and the explanation thereof will be omitted.

第4図・第5図に示すように、1次減圧室5の仕切板1
4に形成されたオリフィス16を略中心位置とする円板
36が仕切板14に固着され、この円板36にはオリフ
ィス16の開口度(開口面積)を調節する調節板37を
ガイドするための長孔36aが形成され、この調節板3
7の下端部には調節板37を上下駆動してオリフィス1
6の開口度を調節するためのりニアソレノイド38が連
結されている。尚、円板36と調節板37及びリニアソ
レノイド38でオリフィス開度調整機構39が構成され
ている。
As shown in FIGS. 4 and 5, the partition plate 1 of the primary decompression chamber 5
A disk 36 whose center position is approximately the orifice 16 formed in the orifice 16 is fixed to the partition plate 14, and this disk 36 has a disk 36 for guiding an adjustment plate 37 that adjusts the opening degree (opening area) of the orifice 16. A long hole 36a is formed, and this adjustment plate 3
At the lower end of 7, an adjustment plate 37 is moved up and down to open orifice 1.
A glue near solenoid 38 is connected to adjust the opening degree of the valve 6. Incidentally, the disk 36, the adjustment plate 37, and the linear solenoid 38 constitute an orifice opening adjustment mechanism 39.

エンジン2の燃焼室3には圧力センサ40が設けられ、
圧力センサ40及びリニアソレノイド38はコントロー
ラCBの駆動制御部c4に夫々接続されている。
A pressure sensor 40 is provided in the combustion chamber 3 of the engine 2,
The pressure sensor 40 and the linear solenoid 38 are each connected to the drive control section c4 of the controller CB.

駆動制御部C4は、圧力センサ4oからの圧力信号に基
いて燃焼室3内の圧力が設定値よりも上昇したときには
オリフィス開度調整機構39のりニアソレノイド38を
駆動してオリフィス16の開口度を圧力上昇の程度に応
じて絞り、また設定値よりも低下したときにはりニアソ
レノイド38を駆動してオリフィス16の開口度を圧力
低下の程度に応じて大きくする。尚、オリフィス16を
通過する試料ガスのガス流量を略一定とするために、圧
力信号とオリフィス16の開口度との相関関係を示す開
度特性は予め駆動制御部c4の記憶部に記憶されている
The drive control unit C4 drives the linear solenoid 38 of the orifice opening adjustment mechanism 39 to adjust the opening of the orifice 16 when the pressure in the combustion chamber 3 rises above a set value based on the pressure signal from the pressure sensor 4o. The opening of the orifice 16 is increased according to the degree of the pressure drop by driving the near solenoid 38 and increasing the opening degree of the orifice 16 when the pressure decreases below a set value. Incidentally, in order to keep the gas flow rate of the sample gas passing through the orifice 16 substantially constant, the opening degree characteristic indicating the correlation between the pressure signal and the opening degree of the orifice 16 is stored in advance in the storage section of the drive control section c4. There is.

次に、試料ガス分析装21Bで1次減圧室5からオリフ
ィス16を介して2次減圧室15へ導入される試料ガス
の流量を一定にする作用について説明する。
Next, a description will be given of the effect of keeping the flow rate of the sample gas introduced from the primary decompression chamber 5 into the secondary decompression chamber 15 via the orifice 16 in the sample gas analyzer 21B constant.

分析開始に伴って分析開始信号が駆動制御部C4に入力
されると駆動制御部C4は、各モータ28・29・30
を駆動して各真空ポンプ11・20・21を作動させて
1次減圧室5及び2次減圧室15を夫々設定真空度に減
圧する。1次減圧室5及び2次減圧室15の真空度が夫
々設定値に達した後、エンジン2の排気行程のときに、
駆動制御部C4はソレノイド7を所定時間駆動して制御
弁6を下方へ駆動して開弁する。これにより、燃焼室3
内の排気ガスが導入管4を経て1次減圧室5に導入され
る。このとき、駆動制御部C4は、圧力センサ40の圧
力信号と予め決定されている開度特性とに基いてオリフ
ィス開度調整機構39のりニアソレノイド38を駆動し
てオリフィス16の開口度を調節する。
When an analysis start signal is input to the drive control unit C4 with the start of analysis, the drive control unit C4 controls each motor 28, 29, 30.
The vacuum pumps 11, 20, and 21 are operated to reduce the pressure in the primary decompression chamber 5 and the secondary decompression chamber 15 to the respective set vacuum degrees. After the degree of vacuum in the primary decompression chamber 5 and the secondary decompression chamber 15 reach their respective set values, during the exhaust stroke of the engine 2,
The drive control unit C4 drives the solenoid 7 for a predetermined period of time to drive the control valve 6 downward and open it. As a result, the combustion chamber 3
The exhaust gas inside is introduced into the primary decompression chamber 5 via the introduction pipe 4. At this time, the drive control unit C4 drives the glide solenoid 38 of the orifice opening adjustment mechanism 39 based on the pressure signal of the pressure sensor 40 and the predetermined opening characteristic to adjust the opening of the orifice 16. .

従って、試料ガスのガス圧が高いときにはオリフィス開
度調整機構39によりオリフィス16の開口度が絞られ
、またそのガス圧が低いときにはオリフィス16の開口
度が大きくされるので、オリフィス16を通過する試料
ガスのガス流量が略一定となる。その結果、2火源圧室
工5内の試料ガスのガス濃度及び真空度が略一定となる
ので、四重極質量検出器18で分析するときにイオン化
度合が一定となり、高精度で特定のガス成分の質量を検
出することができる。
Therefore, when the gas pressure of the sample gas is high, the opening degree of the orifice 16 is narrowed down by the orifice opening degree adjustment mechanism 39, and when the gas pressure is low, the opening degree of the orifice 16 is increased, so that the sample passing through the orifice 16 is The gas flow rate of the gas becomes approximately constant. As a result, the gas concentration and degree of vacuum of the sample gas in the two-fire source pressure chamber 5 are approximately constant, so the degree of ionization is constant when analyzed by the quadrupole mass detector 18, and specific data can be detected with high precision. The mass of gas components can be detected.

以上説明したように、試料ガスの導入の際に1次減圧室
5・5Aの真空度を略一定にするようにし、またオリフ
ィス開度調整機構39によりオリフィス16の開口度を
制御するようにしたので、オリフィス16を通過する試
料ガスの流量が略−定となり、2次減圧室15の真空度
が安定し、四重極質量検出器18で分析するときに特定
のガス成分のイオン化度合が安定し、四重極質量検出器
18による分析精度が大幅に向上する。
As explained above, when introducing the sample gas, the degree of vacuum in the primary decompression chambers 5 and 5A is kept approximately constant, and the degree of opening of the orifice 16 is controlled by the orifice degree adjustment mechanism 39. Therefore, the flow rate of the sample gas passing through the orifice 16 becomes approximately constant, the degree of vacuum in the secondary decompression chamber 15 is stabilized, and the degree of ionization of a specific gas component is stabilized when analyzed by the quadrupole mass detector 18. However, the accuracy of analysis by the quadrupole mass detector 18 is greatly improved.

また、四重極質量検出器18で検出した実測データを補
正係数などにより補正する必要がなく、分析速度の高速
化が図れる。
Further, there is no need to correct the actual measurement data detected by the quadrupole mass detector 18 using a correction coefficient, etc., and the analysis speed can be increased.

尚、本発明に係る試料ガス分析装置1・IA・IBは研
究に用いる各種のガスや生活環境における環境ガスなど
を試料ガスとして分析し得ることは勿論である。
It goes without saying that the sample gas analyzer 1, IA, and IB according to the present invention can analyze various gases used in research, environmental gases in the living environment, etc. as sample gases.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は試料ガス
分析装置の概略構成図、第2図は四重極質量検出器の概
略構成図、第3図・第4図は夫々側実施例に係る試料ガ
ス分析装置の第1図相当図、第5図はオリフィス開度調
整機構の概略構成図、第6図は従来技術に係る試料ガス
分析装置の概略構成図である。 1・IA・IB・・試料ガス分析装置、 4・・試料ガ
ス導入管、 5・5A・・1次減圧室、10・40・・
圧力センサ、 11・21・・真空ポンプ、  15・
・2次減圧室、  16・・オリフィス、  18・・
四重極質量検出器、 39・・オリフィス開度調節機構
、 C1・C3・C4・・駆動制御部。
The drawings show an embodiment of the present invention. Figure 1 is a schematic diagram of a sample gas analyzer, Figure 2 is a schematic diagram of a quadrupole mass detector, and Figures 3 and 4 are side views of each side. 1 is a diagram corresponding to FIG. 1 of the sample gas analyzer according to the embodiment, FIG. 5 is a schematic diagram of the orifice opening adjustment mechanism, and FIG. 6 is a schematic diagram of the sample gas analyzer according to the prior art. 1・IA・IB・・Sample gas analyzer, 4・・Sample gas introduction tube, 5・5A・・Primary decompression chamber, 10・40・・
Pressure sensor, 11・21・・Vacuum pump, 15・
・Secondary decompression chamber, 16...orifice, 18...
Quadrupole mass detector, 39... Orifice opening adjustment mechanism, C1, C3, C4... Drive control unit.

Claims (1)

【特許請求の範囲】[Claims] (1)試料ガス導入管が導入された1次減圧室と、上記
1次減圧室にオリフィスを介して連通された2次減圧室
と、上記2次減圧室に設けられた四重極質量検出器とを
備えた試料ガス分析装置において、 上記1次減圧室からオリフィスを介して2次減圧室に導
入される試料ガスの流量が略一定となるように1次減圧
室の圧力又はオリフィスの開口面積を制御するガス流量
制御手段を設けたことを特徴とする試料ガス分析装置。
(1) A primary decompression chamber into which a sample gas introduction pipe is introduced, a secondary decompression chamber communicated with the primary decompression chamber through an orifice, and a quadrupole mass detection device provided in the secondary decompression chamber. In the sample gas analyzer equipped with A sample gas analyzer characterized by being provided with a gas flow rate control means for controlling area.
JP15564588A 1988-06-23 1988-06-23 Sample gas analyzer Pending JPH01321333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15564588A JPH01321333A (en) 1988-06-23 1988-06-23 Sample gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15564588A JPH01321333A (en) 1988-06-23 1988-06-23 Sample gas analyzer

Publications (1)

Publication Number Publication Date
JPH01321333A true JPH01321333A (en) 1989-12-27

Family

ID=15610499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15564588A Pending JPH01321333A (en) 1988-06-23 1988-06-23 Sample gas analyzer

Country Status (1)

Country Link
JP (1) JPH01321333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011043494A (en) * 2009-07-08 2011-03-03 Varian Spa Gas sampling device and gas analyzer employing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011043494A (en) * 2009-07-08 2011-03-03 Varian Spa Gas sampling device and gas analyzer employing the same
JP2011043495A (en) * 2009-07-08 2011-03-03 Varian Spa Gc-ms analysis device

Similar Documents

Publication Publication Date Title
US5552600A (en) Pressure stabilized ion mobility spectrometer
US8269166B2 (en) MS/MS mass spectrometer
US10388498B2 (en) Gas flow control
US5237175A (en) Reagent gas control for an ion trap mass spectrometer used in the chemical ionization mode
JPH01321333A (en) Sample gas analyzer
US4841934A (en) Oxygen pumping device for control of the air fuel ratio
US5616827A (en) Flow manifold for high purity analyzers
JPH05215020A (en) Purge controller for canister
JP2527645B2 (en) Carrier gas pressure control device for gas chromatograph
JPH10509242A (en) Device for measuring the concentration of components in gas mixtures
JPH10267721A (en) Exhaust gas flow measuring device for internal combustion engine
JP2000009639A (en) Infrared gas analyser
CN213633280U (en) Polymorphic substance analysis device
CN108662155A (en) A kind of gas pressure regulating valve with temperature compensation function
JP3138498B2 (en) Air-fuel ratio control device for internal combustion engine
JP2000036280A (en) Ionization device
RU19920U1 (en) CHROMATOGRAPH
JP4078166B2 (en) Gas analyzer using mass spectrometer
JP2632096B2 (en) Carrier gas pressure adjustment method for gas chromatograph
JPS641449Y2 (en)
JP3321277B2 (en) Output stabilizing device for variable resistance sensor
Kogan et al. Organic impurity preconcentration by a multimembrane inlet system of a mass spectrometer
GB2622809A (en) Pulsed supply of gas to a gas-analysis device
SU1656262A1 (en) Device for forming flow of sample gas through a permeable member
SU1089459A1 (en) Electric aspirator