JPH01319644A - Heat-resistant aluminum alloy material and its manufacture - Google Patents

Heat-resistant aluminum alloy material and its manufacture

Info

Publication number
JPH01319644A
JPH01319644A JP63150803A JP15080388A JPH01319644A JP H01319644 A JPH01319644 A JP H01319644A JP 63150803 A JP63150803 A JP 63150803A JP 15080388 A JP15080388 A JP 15080388A JP H01319644 A JPH01319644 A JP H01319644A
Authority
JP
Japan
Prior art keywords
powder
alloy material
alloy
aluminum alloy
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63150803A
Other languages
Japanese (ja)
Inventor
Hidemiki Matsumoto
松本 英幹
Minoru Hayashi
稔 林
Yoshisuke Asada
浅田 喜介
Shigenori Asami
浅見 重則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP63150803A priority Critical patent/JPH01319644A/en
Publication of JPH01319644A publication Critical patent/JPH01319644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily manufacture the subject alloy material by forming the molten metal of an Al alloy having the compsn. in which the content of Fe, Si, etc., is specified into powder by a gas atomizing method, subjecting it to hot compression molding and limiting the size of an iron-contg. intermetallic compound. CONSTITUTION:An alloy contg., by weight, 5.5-15% Fe, 0.5-2.5% Si and one or more kinds among 0.5-15% Ni, 0.5-15% Co, 0.3-10% Zr, 0.5-10% Ce, 0.5-10% Ti, 1-4.5% Cu, 0.1-5% Mg and 0.1-5% Zn, in which the total amt. of the elements to be added is regulated to <=25% and the balance Al with inevitable impurities is refined. The molten metal is subjected to rapid solidification by a gas atomizing method to form powder. After that, the powder is subjected to hot forming to manufacture an Al alloy material in which the average size of an Fe-contg. intermetallic compound is regulated to 0.07-1mum. By this method, the Al alloy material having excellent heat resistance can easily be mass-produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐熱性に優れるアルミニウム合金材及び粉末冶
金法によるその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an aluminum alloy material with excellent heat resistance and a method for manufacturing the same using a powder metallurgy method.

(従来の技術) 自動車用エンジン部品、ガスタービンのインペラー、航
空機部材なとの材料は100〜400°Cての高温強度
か必要とされる。これらの材料をアルミニウム合金とす
れば、軽量化に伴う多くの利点か得られる。しかし、ア
ルミニウム及びその合金は、一般に高温での強度か低い
。例えば室温ての強度に優れるアルミニウノ\合金(A
A2018.2218.4032なと)においても20
0°C以」二の温度では著しく強度か低下する。
(Prior Art) Materials for automobile engine parts, gas turbine impellers, aircraft parts, etc. are required to have high-temperature strength at 100 to 400°C. If these materials are made of aluminum alloy, many advantages associated with weight reduction can be obtained. However, aluminum and its alloys generally have low strength at high temperatures. For example, aluminum Uno alloy (A) has excellent strength at room temperature.
A2018.2218.4032) also has 20
At temperatures above 0°C, the strength decreases significantly.

これに対し、近年、アルミニウムに種々の遷移元素を多
量に添加し、溶湯な急冷凝固させて得られる粉末または
リボン状薄帯を高温圧縮加工して耐熱性アルミニウム合
金とするアルミニウム粉末冶金法か開発され、Al−8
Fe−4Ce、A!:L−8F e −2M o、A 
l −8F e−2G oなどの合金か提供されている
In response to this, in recent years, an aluminum powder metallurgy method has been developed in which a heat-resistant aluminum alloy is produced by high-temperature compression processing of powder or ribbon-shaped thin strip obtained by adding large amounts of various transition elements to aluminum and rapidly solidifying the molten metal. and Al-8
Fe-4Ce, A! :L-8F e-2Mo, A
Alloys such as l-8F e-2G o are provided.

アルミニウム合金系の粉末冶金法による製造工程は急冷
凝固法としてア)〜マイズ法、双ロール法、又は噴霧ロ
ール法等により合金溶湯を急冷凝固して粉末状、リボン
状、又はフレーク状とし、これを冷間成形により密度比
(真害度に対する比率)70%以上の圧粉体とし封缶後
、真空脱ガス処理を行った後熱間加工により密度比10
0%のビレッI〜を成形し、さらに粒子間の結合力を高
めるために押出し、鍛造等により成形する方法か一般的
に用いられている。
The manufacturing process using the powder metallurgy method for aluminum alloys includes a) rapid solidification of the molten alloy by the maize method, twin roll method, or spray roll method to form powder, ribbon, or flake. It is made into a green compact with a density ratio (ratio to true damage) of 70% or more by cold forming, sealed in a can, vacuum degassed, and then hot processed to a density ratio of 10.
A commonly used method is to mold a 0% billet I~, and further mold it by extrusion, forging, etc. in order to increase the bonding force between the particles.

(発明か解決しようとする課題) しかしなから」二記Al−8Fe−4Ce、A又−8F
 e−2M o、A9.−8Fe−2Goなとの合金は
、溶湯を105°C/sec以上て超急冷凝固させたも
のを圧縮成形加工することにより、はじめて優れた耐熱
性を発揮する合金てあり、製造か容易てかつ安価なガス
アトマイズ粉末(冷却速度102〜]05°C/5eC
)ては、十分な強度および耐熱性か得られないという問
題かあった。
(Invention or problem to be solved) However, there are two Al-8Fe-4Ce, A-8F
e-2Mo, A9. The -8Fe-2Go alloy is an alloy that exhibits excellent heat resistance only by compression molding the molten metal, which is ultra-rapidly solidified at 105°C/sec or higher, and is easy to manufacture. Inexpensive gas atomized powder (cooling rate 102~) 05°C/5eC
), there was a problem that sufficient strength and heat resistance could not be obtained.

一方、105°C/sec以上の冷却速度か達成てきる
超急冷凝固法には、急冷ロール法メルl〜スビニンク法
などがあるか、いずれも特殊な製造装置及び凝固技術を
必要とするため、コスI−J−昇をもたらす。さらに、
急冷ロール法によって製造される超急冷凝固法は、リボ
ン状薄帯またはフレーク状であり、このままの形状ては
圧縮成形に不適であるため、これを細片化する必要も生
し、そのためコスト高となるという問題かあった。
On the other hand, ultra-rapid solidification methods that can achieve a cooling rate of 105°C/sec or higher include the rapid-cooling roll method and the Svininck method, all of which require special manufacturing equipment and solidification technology. Kos I-J- brings about the rise. moreover,
The ultra-rapid solidification method produced by the quench roll method is in the form of ribbons or flakes, and as it is unsuitable for compression molding, it is necessary to cut it into small pieces, which leads to high costs. There was a problem with that.

従って本発明の目的は、製造か容易てかつ安価な、カス
ア1−マイズ粉末を圧縮成形加工して得られる耐熱性ア
ルミニウム合金及びその製造方法を提供することにある
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a heat-resistant aluminum alloy that is easy to manufacture and inexpensive, and which is obtained by compression molding a casualized powder, and a method for manufacturing the same.

(課題を解決するだめの手段) 本発明者らは」二記課題を解決するため鋭意研究を行っ
た結果特定のアルミニウム合金組成の溶湯を用いてガス
アトマイズ粉末を形成することにより−1−記目的を達
成しうろことを見出しこの知見に基づき本発明を完成す
るにいたった。
(Means for Solving the Problems) The present inventors have conducted intensive research to solve the problems described in 2. As a result, by forming a gas atomized powder using a molten metal of a specific aluminum alloy composition, They found that it was possible to achieve the following, and based on this knowledge, they completed the present invention.

すなわち、本発明は (+、) F e  5.5〜15重量%(以下、単に
%と記ず。)、Si0.5〜2.5%を含み、かつ、N
i0.5〜15%、Co 0.5〜15%、Zr 0.
:1〜10%、Ce 0.5〜1.0%、T10.5〜
10%、Cu ]〜4.5%、Mg0.1〜5%及びZ
n0.1〜5%のうち1種又は2種以上を含み、添加元
素の総量か25%以下てあり残部Alと不可避的不純物
を有してなり、Feを含む金属間化合物の平均サイズが
0.07〜llLmであることを特徴とする耐熱性アル
ミニウム合金利又は (2) F e  5.5〜15%、S i  0.5
〜2.5%を含み、かつ、N i  0.5〜15%、
Co 0.5〜]5%、Zr  0.:l−]00%C
e  0.5〜]、0%、Ti0.5〜10%、Cu 
 1〜4.5%、Mg  0.1〜5%及びZn(]、
1〜5%のうち1種又は2種以上を含み、添加元素の総
量か25%以下であり残部A父と不可避的不純物を有し
てなるA1合金溶湯を、ガスアトマイズ法によって急冷
凝固させて粉末を形成し、これを熱間て圧縮成形前]二
することを特徴とする前記組成を有し、かつ、Feを含
む金属間化合物の平均サイズか0.07〜Igmである
耐熱性アルミニウム合金利の製造方法を提供するもので
ある。
That is, the present invention contains (+,) Fe 5.5 to 15% by weight (hereinafter simply referred to as %), Si 0.5 to 2.5%, and N
i0.5-15%, Co 0.5-15%, Zr 0.
:1~10%, Ce 0.5~1.0%, T10.5~
10%, Cu]~4.5%, Mg0.1~5% and Z
n0.1 to 5%, the total amount of added elements is 25% or less, the balance is Al and unavoidable impurities, and the average size of the intermetallic compound containing Fe is 0. Heat-resistant aluminum alloy rate characterized by being .07~llLm or (2) Fe 5.5~15%, Si 0.5
~2.5%, and N i 0.5-15%,
Co 0.5~]5%, Zr 0. :l-]00%C
e 0.5~], 0%, Ti0.5~10%, Cu
1-4.5%, Mg 0.1-5% and Zn (],
A molten A1 alloy containing one or more of 1 to 5% of additive elements, the total amount of added elements is 25% or less, and the remainder contains A and unavoidable impurities is rapidly solidified by gas atomization to form a powder. A heat-resistant aluminum alloy having the above composition and having an average size of Fe-containing intermetallic compound of 0.07 to Igm. The present invention provides a method for manufacturing.

本発明によるアルミニウム合金材中の各成分の作用及び
その含有量を限定した理由は次の通りである。
The action of each component in the aluminum alloy material according to the present invention and the reason for limiting its content are as follows.

Fe含有量は5.5〜15%とする。Feはガスアトマ
イズ法による急冷凝固中にFeを含む金属間化合物とし
て微細に分散して高温強度を高める作用をする。この作
用はFe含有量か5.5%より少ない場合Li十分てな
く、Fe含有量か15%を越えるとその作用の度合か飽
和するばかりてばなく、金属間化合物か粗大となってし
まう。
Fe content shall be 5.5-15%. Fe is finely dispersed as an intermetallic compound containing Fe during rapid solidification by gas atomization, and has the effect of increasing high-temperature strength. When the Fe content is less than 5.5%, Li is not sufficient for this effect, and when the Fe content exceeds 15%, the degree of this effect not only becomes saturated, but also the intermetallic compound becomes coarse.

Sj含有量は05〜25%とする。SlはFeを含む金
属間化合物を微細化する作用かあり、この作用により高
温強度を高める。この作用はSiの含有量か0.5%よ
り少ない場合は十分てはなく、他方2.5%を越えると
その作用か飽和するたけてコストの上昇をまねく。
The Sj content is 05 to 25%. Sl has the effect of making intermetallic compounds containing Fe finer, and this effect increases high-temperature strength. This effect is not sufficient when the Si content is less than 0.5%, and on the other hand, when it exceeds 2.5%, this effect becomes saturated, leading to an increase in cost.

Ni、Co、Zr、Ce、Tiは、Feを含む金属間化
合物を熱的に安定化させる作用かあり、その作用によっ
て高温強度を高める。Cu、Mg、ZnはAuに固溶す
ることによって強度を向」ニさせる作用とその一部か微
細に析出することによって強度を向」−させる作用かあ
る。Ni、Co、Zr、Ce、Tj、Cu、Mg、Zn
はそれぞれ、Ni  0.5〜15%、Co 0.5〜
l−5%、Zr[]j 〜1.0%、Ce 0.5〜1
0%、Ti 0.5〜10%、Cu 0.]〜1.0%
、M g 0.5〜5%、Zn0.1〜5%の範囲で1
種又は2様態]−複合添加する。添加量か下限よりも少
ないとその作用か十分てはなく、また上限を越えても作
用の度合が飽和するばかりてはなくコストの」−昇をも
たらず。
Ni, Co, Zr, Ce, and Ti have the effect of thermally stabilizing the intermetallic compound containing Fe, thereby increasing the high-temperature strength. Cu, Mg, and Zn have the effect of improving the strength by solid solution in Au, and the effect of improving the strength by partially precipitating finely. Ni, Co, Zr, Ce, Tj, Cu, Mg, Zn
are Ni 0.5-15% and Co 0.5-15%, respectively.
l-5%, Zr[]j ~1.0%, Ce 0.5~1
0%, Ti 0.5-10%, Cu 0. ]~1.0%
, Mg 0.5-5%, Zn 0.1-5% 1
Species or two modes] - Combined addition. If the amount added is less than the lower limit, the effect will not be sufficient, and if it exceeds the upper limit, the degree of effect will not only be saturated, but will not result in an increase in cost.

また全区加元素の総量は25%以下とする。この総量か
25%を越えるとその作用は飽和するはかりてはなく、
コス1への−に昇をもたらず。
Further, the total amount of all additive elements shall be 25% or less. If the total amount exceeds 25%, the effect will not be saturated;
No increase in - to Kos 1.

またAu中にBe、B、Na、Caqの不可避的不純物
か0.5〜500ppm含まれていても、その特性に何
ら影響を受りない。
Further, even if 0.5 to 500 ppm of unavoidable impurities such as Be, B, Na, and Caq are contained in Au, the characteristics are not affected in any way.

次に、本発明において上記組成を有するアルミニウム合
金のFeを含む金属間化合物の平均サイズは0.07〜
1ルmとする。
Next, in the present invention, the average size of the intermetallic compound containing Fe in the aluminum alloy having the above composition is 0.07~
1 lm.

本発明のアルミニウム合金利の製造に当り、上記組成を
有するアルミニウム合金溶湯からカスア1〜マイス法に
よって好ましくは10〜10”°C/ s e cの冷
却速度て急冷凝固させて粉末を形成し、これを熱間て圧
縮成形加工する。カスア1〜マイス法は、塗料用、ロケ
ットの固体燃料用の純An粉末製造方法としてすてに広
く用いられている方法であり、その製造装置δを利用す
ることによって容易にかつ大量の合金粉末の製造か可能
である。したかって、製造技術か確立しており、大量生
産ブラン1へかずてにあるカスアl−マイス法を利用す
ることは、コスト面で多大の利益を有する。また、ガス
アl−マイズ法て製造される急冷凝固材は粒子状の粉末
であるのて、急冷ロール法等によって製造されるリボン
状薄帯、フレークなとの形状に比べて、その取扱、圧縮
成形か容易であるという利点かあり、製造コスト上有利
となる。
In producing the aluminum alloy of the present invention, a molten aluminum alloy having the above composition is rapidly solidified by the Kasua 1-Meiss method at a cooling rate of preferably 10 to 10"C/sec to form a powder, This is then subjected to hot compression molding.The Kasua 1-Mais method is a method that has been widely used for producing pure An powder for paints and rocket solid fuel, and its production equipment δ is utilized. By doing so, it is possible to easily produce a large amount of alloy powder.Therefore, the production technology has been established, and it is cost-effective to use the Casualmais method, which is already available for mass production. In addition, since the rapidly solidified material produced by the gas aluminization method is in the form of particulate powder, it can be shaped into ribbon-shaped thin strips, flakes, etc. produced by the quenching roll method, etc. In comparison, it has the advantage of being easier to handle and compression mold, and is advantageous in terms of manufacturing costs.

しかし、ガスアトマイス法ては、急冷凝固時に微細分散
するFeを含む金属間化合物のサイズを0.07gmよ
り小さくすることは現在のところ困難である。
However, in the gas atomization method, it is currently difficult to reduce the size of the Fe-containing intermetallic compound finely dispersed during rapid solidification to less than 0.07 gm.

下の粉末ては、Feを含む金属間化合物のサイズか0.
07)Lm以下となるか、ガスア1−マイズ法て製造し
た粉末における5gm以下の粉末の割合は約2〜3%と
低く、それのみを分級して使用することば著しいコスト
LAをもたらす。よってこの場合Feを含む金属間化合
物の大きざをQ、07gmより小さくすることば実質的
にてきない。しかし、通常、カスアl〜マイス粉末を圧
縮成形した成形材中のFeを含む金属間化合物の乎均す
イスは0.07〜Igmである6Feを含む金属間化合
物の大きさか0.07〜18Lmの範囲てあれば十分耐
熱性を発揮する。
The powder below has a size of 0.0.
07) The ratio of powder having a particle size of less than Lm or less than 5 gm in the powder produced by the gas amalization method is as low as about 2 to 3%, and classifying and using only it brings about a significant cost LA. Therefore, in this case, it is virtually impossible to make the size of the intermetallic compound containing Fe smaller than Q, 07 gm. However, normally, the size of the intermetallic compound containing Fe in the molded material obtained by compression molding the 6Fe powder is 0.07 to 18 Lm. If it is within this range, it will exhibit sufficient heat resistance.

次に粉末の熱間圧縮成形加工自体は常法に従って行うこ
とかてきるか温度は400°C以下とするのか好ましい
。成形加工性の点からは加工温度は高いほど良い。しか
し、Ni、Co、Zr、Ce、Tiの添加かFeを含む
金属間化合物を熱的に安定させ粗大化するのを防止する
とはいえ、400°Cを越えた加工温度ては金属間化合
物か粗大化し、強度及び耐熱性か低下することかある。
Next, hot compression molding of the powder itself can be carried out according to a conventional method, or preferably at a temperature of 400°C or less. From the viewpoint of moldability, the higher the processing temperature, the better. However, although the addition of Ni, Co, Zr, Ce, and Ti thermally stabilizes intermetallic compounds containing Fe and prevents them from becoming coarse, processing temperatures exceeding 400°C may cause intermetallic compounds to deteriorate. It may become coarse and its strength and heat resistance may decrease.

また高温加工した成形材は加工後直ちに水焼入れ等によ
り急冷するのか好ましい。これによりCu、Mg、Zn
の固溶量か増加してよりいっそうの強度向−1−かはか
れる。
Further, it is preferable that the molded material processed at high temperature be rapidly cooled by water quenching or the like immediately after processing. As a result, Cu, Mg, Zn
It can be seen whether the amount of solid solution is increased and the strength is further improved.

(実施例) 次に本発明を実施例に基づきさらに5τ細に説明する。(Example) Next, the present invention will be explained in further detail based on examples.

実施例 第1表に示す組成を有するアルミニウム合金(No、1
〜No、20)をそれぞれ常法により溶湯とし、この溶
湯からArカスア1〜マイス法によって平均粒径70ル
mの粉末を製造した。このア1ヘマイズにおける冷却速
度は10〜104°C/S e Cてあった。
Example Aluminum alloy (No. 1) having the composition shown in Table 1
-No., 20) were each made into a molten metal by a conventional method, and a powder having an average particle size of 70 m was produced from this molten metal by an Ar caster method. The cooling rate in this ahemization was 10 to 104°C/S e C.

次いて得られた各合金粉末を用いてそれぞれ、冷間予セ
1j成形(密度比80%まて圧縮、直径100mm、f
flさ120mm)−>アルミニウム缶封入→高温真空
脱ガス(300°C)→熱間プレス成形(真密度まて)
→外削・脱化の工程により、直径80mm、長さ150
mmのヒレッl−を作製し、これを300°Cにおいて
押出し、直径30mmの押出材とした。
Next, each of the obtained alloy powders was subjected to cold pre-forming (compression at a density ratio of 80%, diameter 100 mm, f
fl 120mm) -> Aluminum can enclosure → High temperature vacuum degassing (300°C) → Hot press forming (true density)
→Diameter: 80mm, length: 150mm due to external grinding and removal process
A fillet l-mm in diameter was prepared and extruded at 300°C to obtain an extruded material with a diameter of 30 mm.

以上のようにして得られた各合金押出材について、室温
および300°C(保持時間100hr)における引張
試験及びFeを含む金属間化合物の平均ライスの測定を
行った。その結果を第2表に示す。
For each of the alloy extruded materials obtained as described above, a tensile test was conducted at room temperature and 300°C (holding time: 100 hr), and the average rice of intermetallic compounds containing Fe was measured. The results are shown in Table 2.

なお、Feを含む金属間化合物の平均サイズは次のよう
にして求めた。すなわち、名押出材組織を透過型電子W
J微鏡をfnいて034察し、その組織写真から化合物
の大きさを画像解析を用いてfll11定する。多数(
iooo個以−に)の化合物について測定を行い、その
大きさを平均し′C化合物の平均サイズとする。
Note that the average size of the intermetallic compound containing Fe was determined as follows. In other words, the structure of the extruded material is transferred to the transmission electron W.
Observe with a J microscope and determine the size of the compound from the tissue photograph using image analysis. Many (
Measurements are made for iooo (or more) compounds, and the sizes are averaged and taken as the average size of the 'C compound.

第2表の結果から明らかなように、本発明方法によるア
ルミニウム合金(No、1〜No、17)は超急冷凝固
法において用いられていた比較例(No、 18〜No
、20 )に比し、室温及び高温保持後の強度の双方に
おいて優れている。
As is clear from the results in Table 2, the aluminum alloys (Nos. 1 to 17) produced by the method of the present invention were compared to the comparative examples (Nos. 18 to 17) used in the ultra-rapid solidification method.
, 20), it is superior in both strength at room temperature and after being kept at high temperature.

(発明の効果) 本発明によれは、超急冷凝固法によらず、カスアl〜マ
イズ法により、耐熱強度(高温強度)を必要とするエン
ジン部品、タービンインペラー、航空機部材などの材料
に好適な耐熱性アルミニウム合金を得ることかてきる。
(Effects of the Invention) According to the present invention, it is possible to produce materials suitable for engine parts, turbine impellers, aircraft parts, etc. that require heat-resistant strength (high-temperature strength) by a customization method without using an ultra-rapid solidification method. It is possible to obtain a heat-resistant aluminum alloy.

しかも、本発明によるアルミニウム合金急冷凝固材は製
造か容易であるはかりでなく、アl〜マイス粉末として
得られるのでそのまま圧縮成形に用いることかでき」二
記材料の量産及びコスl〜低下に顕著な優れた効果を奏
する。
Moreover, the rapidly solidified aluminum alloy material according to the present invention is not only easy to manufacture, but also can be obtained as aluminum powder, so it can be used as it is for compression molding. It has excellent effects.

Claims (1)

【特許請求の範囲】[Claims] (1)Fe5.5〜15%、Si0.5〜2.5%を含
み、かつ、Ni0.5〜15%、Co0.5〜15%、
Zr0.3〜10%、Ce0.5〜10%、Ti0.5
〜10%、Cu1〜4.5%、Mg0.1〜5%及びZ
n0.1〜5%のうち1種又は2種以上を含み、添加元
素の総量が25%以下(以上、%は重量%を示す。)で
あり残部Alと不可避的不純物を有してなり、Feを含
む金属間化合物の平均サイズが0.07〜1μmである
ことを特徴とする耐熱性0.1〜5%のうち1種又は2
種以上を含み、添加元素の総量が25%以下(以上、%
は重量%を示す。)であり残部Alと不可避的不純物を
有してなるAl合金溶湯を、ガスアトマイズ法によって
急冷凝固させて粉末を形成し、これを熱間で圧縮成形加
工することを特徴とする前記組成を有し、かつ、Feを
含む金属間化合物の平均サイズが0.07〜1μmであ
る耐熱性アルミニウム合金材の製造方法。
(1) Contains 5.5-15% Fe, 0.5-2.5% Si, and 0.5-15% Ni, 0.5-15% Co,
Zr0.3-10%, Ce0.5-10%, Ti0.5
~10%, Cu1~4.5%, Mg0.1~5% and Z
n0.1 to 5%, the total amount of added elements is 25% or less (herein, % indicates weight %), and the remainder contains Al and inevitable impurities, One or two types of heat resistance 0.1 to 5%, characterized by the average size of the intermetallic compound containing Fe being 0.07 to 1 μm
The total amount of added elements is 25% or less (or more, %
indicates weight %. ) having the above-mentioned composition, which is characterized in that a molten Al alloy having the remainder Al and unavoidable impurities is rapidly solidified by gas atomization to form a powder, which is then hot compression molded. and a method for producing a heat-resistant aluminum alloy material, wherein the average size of the intermetallic compound containing Fe is 0.07 to 1 μm.
JP63150803A 1988-06-18 1988-06-18 Heat-resistant aluminum alloy material and its manufacture Pending JPH01319644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63150803A JPH01319644A (en) 1988-06-18 1988-06-18 Heat-resistant aluminum alloy material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63150803A JPH01319644A (en) 1988-06-18 1988-06-18 Heat-resistant aluminum alloy material and its manufacture

Publications (1)

Publication Number Publication Date
JPH01319644A true JPH01319644A (en) 1989-12-25

Family

ID=15504768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63150803A Pending JPH01319644A (en) 1988-06-18 1988-06-18 Heat-resistant aluminum alloy material and its manufacture

Country Status (1)

Country Link
JP (1) JPH01319644A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254735A (en) * 1988-08-18 1990-02-23 Showa Alum Corp Aluminum brazing sheet
JPH0480343A (en) * 1990-07-20 1992-03-13 Sumitomo Light Metal Ind Ltd Non-heat treated rapidly solidified aluminum alloy for die material
EP0508426A2 (en) * 1991-04-12 1992-10-14 Hitachi, Ltd. Highly ductile sintered aluminum alloy, method for production thereof and use thereof
US5809161A (en) * 1992-03-20 1998-09-15 Commonwealth Scientific And Industrial Research Organisation Vehicle monitoring system
CN107699758A (en) * 2017-08-22 2018-02-16 宁波华源精特金属制品有限公司 A kind of robot firm banking
FR3082764A1 (en) * 2018-06-25 2019-12-27 C-Tec Constellium Technology Center PROCESS FOR PRODUCING AN ALUMINUM ALLOY PART
WO2020002813A1 (en) * 2018-06-25 2020-01-02 C-Tec Constellium Technology Center Process for manufacturing an aluminum alloy part
DE102018127401A1 (en) * 2018-11-02 2020-05-07 AM Metals GmbH High-strength aluminum alloys for the additive manufacturing of three-dimensional objects
CN112609109A (en) * 2020-12-09 2021-04-06 大连交通大学 Ce-Mg-containing high-strength heat-resistant aluminum alloy and preparation method thereof
CN112805105A (en) * 2018-10-05 2021-05-14 肯联铝业技术中心 Method for manufacturing aluminum alloy parts

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254735A (en) * 1988-08-18 1990-02-23 Showa Alum Corp Aluminum brazing sheet
JPH0480343A (en) * 1990-07-20 1992-03-13 Sumitomo Light Metal Ind Ltd Non-heat treated rapidly solidified aluminum alloy for die material
EP0508426A2 (en) * 1991-04-12 1992-10-14 Hitachi, Ltd. Highly ductile sintered aluminum alloy, method for production thereof and use thereof
US5387272A (en) * 1991-04-12 1995-02-07 Hitachi, Ltd. Highly ductile sintered aluminum alloy, method for production thereof and use thereof
US5809161A (en) * 1992-03-20 1998-09-15 Commonwealth Scientific And Industrial Research Organisation Vehicle monitoring system
CN107699758A (en) * 2017-08-22 2018-02-16 宁波华源精特金属制品有限公司 A kind of robot firm banking
FR3082764A1 (en) * 2018-06-25 2019-12-27 C-Tec Constellium Technology Center PROCESS FOR PRODUCING AN ALUMINUM ALLOY PART
WO2020002813A1 (en) * 2018-06-25 2020-01-02 C-Tec Constellium Technology Center Process for manufacturing an aluminum alloy part
CN112805105A (en) * 2018-10-05 2021-05-14 肯联铝业技术中心 Method for manufacturing aluminum alloy parts
CN112805107A (en) * 2018-10-05 2021-05-14 肯联铝业技术中心 Method for manufacturing aluminum alloy parts
CN112805107B (en) * 2018-10-05 2023-10-27 肯联铝业技术中心 Method for manufacturing aluminum alloy parts
CN112805105B (en) * 2018-10-05 2023-12-01 肯联铝业技术中心 Method for manufacturing aluminum alloy parts
DE102018127401A1 (en) * 2018-11-02 2020-05-07 AM Metals GmbH High-strength aluminum alloys for the additive manufacturing of three-dimensional objects
CN112609109A (en) * 2020-12-09 2021-04-06 大连交通大学 Ce-Mg-containing high-strength heat-resistant aluminum alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
US2963780A (en) Aluminum alloy powder product
US4702885A (en) Aluminum alloy and method for producing the same
JPH01319644A (en) Heat-resistant aluminum alloy material and its manufacture
US4676830A (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
JPH0551683A (en) Hypereutectic al-si powder metallurgical alloy with high strength
JPH01316433A (en) Heat-resistant aluminum alloy material and its manufacture
JPH0261023A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPH06330263A (en) Production of high toughness al-si series alloy
JPS6247449A (en) Heat resistant aluminum alloy for powder metallurgy and its manufacture
JPS639576B2 (en)
JPH01316434A (en) Heat-resistant aluminum alloy material and its manufacture
JPH0261021A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
EP0137180B1 (en) Heat-resisting aluminium alloy
JPS60125345A (en) Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JPS62250146A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPH01149935A (en) Green compact of heat-resistant aluminum alloy powder and its production
JPH01319643A (en) Heat-resistant aluminum alloy material and its manufacture
JPH0379738A (en) High strength al alloy material
JPH0261024A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JP2856251B2 (en) High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same
JPH01242749A (en) Heat-resistant aluminum alloy
JPH01159345A (en) Heat-resistant and wear-resistant aluminum alloy powder molded body and its manufacture
JPS62250145A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPS6310222B2 (en)
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property