JPH01317091A - Multi-directional stereoscopic video equipment - Google Patents

Multi-directional stereoscopic video equipment

Info

Publication number
JPH01317091A
JPH01317091A JP63149540A JP14954088A JPH01317091A JP H01317091 A JPH01317091 A JP H01317091A JP 63149540 A JP63149540 A JP 63149540A JP 14954088 A JP14954088 A JP 14954088A JP H01317091 A JPH01317091 A JP H01317091A
Authority
JP
Japan
Prior art keywords
image
eye
display
selector
directional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63149540A
Other languages
Japanese (ja)
Inventor
Shojiro Osada
長田 昌次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP63149540A priority Critical patent/JPH01317091A/en
Publication of JPH01317091A publication Critical patent/JPH01317091A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To observe a multi-directional stereoscopic image without reducing the resolution by controlling a direction image selector and a display position switch in response to the position of eyes detected by an eye position detector. CONSTITUTION:A display position control circuit 3 inputs a position signal detected from the position of an observer, accurately from the measurement of the position of eyes by means of an eye, position detector, from the measurement of the position of the forehead spot by means of a photoelectric sensor or the like or from the measurement of the propagation time of an ultrasonic wave reflected in the head and generates signal to control a direction image selector and a display position switch 8 in a direction position conversion circuit 2. That is, in response to the eye position, a direction selection signal as to which direction image among direction images displayed by the direction selector 7 is selected is outputted and whether or not the position of eyes enters nonobserving area is discriminated by a built-in arithmetic function and a control signal of the display position switch 8 is outputted. Thus, the observation of the stereoscopic image in the multi-direction is attained without reducing the resolution.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多方向立体映像装置に係り、特に観察位置が
自由な立体映像が19られる眼鏡不要の多方向立体映像
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a multi-directional stereoscopic imaging device, and more particularly to a multidirectional stereoscopic imaging device that does not require glasses and can display stereoscopic images from any observation position.

(発明の以東) 本ブで明は、レンズ板と画像との相対的IQ置を変える
ことにより、非観察域が観察域に変わるという原理に基
づき、lI!京者のlidの位置を検出し、その位置に
応じて方向像を選択し、画像表示位置を移!lJさせる
ことにより、立体映像の解像Lαを減少さUずに、観察
前が眼の位置庖自由に移動しで、多くの方向像を観察で
き、かつ正しい前後の立体映像を見ることができる。し
かも、カラー表示は、フィールド順次または線順次によ
り実現される多方向立体映像装置である。
(Beyond the invention) In this book, Akira uses the principle that by changing the relative IQ position between the lens plate and the image, the non-observation area changes to the observation area. Detect the position of Kyoto's lid, select the direction image according to that position, and move the image display position! By moving the eye, the eye position in front of the observation can be moved freely without reducing the resolution Lα of the 3D image, allowing images in many directions to be observed, and the 3D image in front and behind can be viewed correctly. . Moreover, the color display is a multidirectional stereoscopic image device that is realized by field sequential or line sequential.

(従来の技術) 立体映像は、対象を左右・鵠に並んだ2点から児lζ2
方向の左右像を、左右の眼にそれぞれ分離して(2映し
、立体像どして観察覆るものである。実際空間では、串
に2点から見るのみでなく、頭・眼を移動させて、対象
の側面または隠れた対象を見ることができる。実際空間
と同様な立体映像を再現するには、2つ以上の視線方向
の像を立体映像として観察し1qる多方向立体映像方式
が必要である。また、QIHttを必要としない立体映
像は、多方向立体映像方式に基づいて可能でおる。
(Conventional technology) Three-dimensional images are created by viewing an object from two points arranged in a row on the left and right.
The left and right images of the direction are separated into the left and right eyes (two images are projected, and the three-dimensional image is used to cover the observation. In real space, you can not only view from two points on a skewer, but also by moving your head and eyes. , it is possible to see the side of the object or hidden objects.In order to reproduce 3D images similar to those in real space, a multidirectional 3D image method is required in which images from two or more line-of-sight directions are observed as 3D images. Furthermore, stereoscopic images that do not require QIHtt are possible based on a multidirectional stereoscopic image system.

また、蜆察者が特定の位置に左右眼を位置して、立体翻
庖見るのではなく、自由な位置で観察できる多方向立体
映像方式が必要である。
Furthermore, there is a need for a multi-directional 3D image system that allows observers to view images from any position, rather than positioning their left and right eyes at specific positions to view the 3D translation.

従来、この種の多方向立体映@装置は、空間分割法であ
るグリッドバリV一方式あるいはレンチキュラー板方式
と呼ばれるものであった。
Conventionally, this type of multi-directional stereoscopic projection apparatus has been of the grid burr V type or lenticular plate type, which is a space division method.

これらの方法は、写真等の光学系では、フィルムにレン
チキュラー板(シリンドリカルレンズの翫)を重ねて目
映し、テレビ系では対象の各方向陸を分割し、方向清報
を位置情報に変換した画像を表示し、グリッドバリせ(
間口格子)またはレンチキュラー板を手ね、特定の位置
に映像を投映し、その位置に観察考の眼を位置覆ること
により、立体映像どして観察するものである。この際、
テレビ映像による場合も立体写真の場合と同様に、各方
向像の各画木酊を、方向の順番にレンチキュラー板の各
レンズ木石に対応させでいた。
In optical systems such as photography, a lenticular plate (cylindrical lens pole) is superimposed on a film for viewing, and in television systems, the target land is divided in each direction, and the directional information is converted into position information. and check the grid (
By using a grid or lenticular board to project an image at a specific position, and placing the observer's eye at that position, one can observe a three-dimensional image. On this occasion,
In the case of television images, as in the case of stereoscopic photography, each directional image was made to correspond to each lens block on the lenticular plate in the order of direction.

(光間が解決しようとする問題点) ところが、各方向像の左右眼に対でる分離は、クリッド
バリヤまたはレンチキュラー板でfiなわれるために、
立体像がKl寮される眼の位置(観察域という)は特定
の場所に限られていた。なJり、この多方向立体映像と
は別に、左右象の分離を特別の眼鏡(行なう立体方式は
、観察域に制限はない代りに、目映の視点範囲(視域と
いう)は常に同一の倣で・ある。
(Problem that the optical system aims to solve) However, since the separation of the left and right images in each direction is achieved by a lid barrier or a lenticular plate,
The position of the eye (called the observation area) at which a 3D image is viewed is limited to a specific location. In addition to this multi-directional 3D image, the 3D system uses special glasses to separate left and right images.Although there is no limit to the observation area, the visual viewpoint range (called the viewing area) is always the same. It is an imitation.

従来の方式における方向v14のときの表示画素と、レ
ンチキュラー板の各レンズ基との位置関係Jj」、ひ観
察域の状態を示す第2図において、4は画像表示器、6
はレンチ1ニラ−仮で、このレンチキュラー板6のレン
ズ素子GA内で黒丸と黒丸の間に表示された4方向@(
m=4)の画素をi −1,i−2,i−3,i−4と
する。また、ntt瞳孔瞳孔間通常的6・5 ctn 
)に投映される画素の数で、実用可能な数はコないし2
であるが、図ではn=1の場合を示す。レンズ基6Δに
対応して、方向P4、P3.P2.Piの順で画素i−
4,i−3,!−2,!−1が表示され、両11fJの
位置P7とP2)P2どP3、P3とPiの3fI!]
所は観察域で、PiとPlは非観察域になる。また、第
3図は瞳孔間aに投映される画素B2 n = 2の場
合を示し、両眼の位置かPlとP3、P2とPiは観察
域、P3とPl、PiどP2は非観察域になる。
In FIG. 2 showing the state of the observation area between the display pixels and each lens base of the lenticular plate in the direction v14 in the conventional method, 4 is the image display, 6
is a temporary wrench, and the four directions @(
Let the pixels of m=4) be i-1, i-2, i-3, and i-4. In addition, the ntt pupil distance is normally 6.5 ctn.
), the practical number is between 1 and 2.
However, the figure shows the case where n=1. Corresponding to the lens base 6Δ, directions P4, P3 . P2. Pixel i- in the order of Pi
4,i-3,! -2,! -1 is displayed, both 11fJ positions P7 and P2) P2, P3, P3 and Pi 3fI! ]
is the observation area, and Pi and Pl are the non-observation area. Furthermore, Fig. 3 shows the case where pixels B2 n = 2 are projected to the interpupillary space a, where the positions of both eyes are Pl and P3, P2 and Pi are observation areas, P3 and Pl, Pi and P2 are non-observation areas. become.

まIζ、第6図にポリように左右2方向P1どP2のみ
の画像の場合には、観察域は所定の視距離C゛、横方向
に誦孔間隔aごとに繰り返し発生する。この際、両眼の
位置P1とP2が観察域で゛、このLQ奈域P1とP2
)次の観察域P1と1〕2の間には、左右□□□が逆転
して奥行きが萌後する非観察域P2どPlか存在Jる。
In the case of an image only in the two left and right directions P1 and P2, as shown in FIG. 6, the observation area is repeatedly generated at a predetermined visual distance C' and at each hole interval a in the lateral direction. At this time, the positions P1 and P2 of both eyes are the observation area, and this LQ area P1 and P2
) Between the next observation area P1 and 1]2, there is a non-observation area P2 where the left and right □□□ are reversed and the depth is different.

一般に、中央の観察域の中心を零として、左右眼の中央
の位置を×とすると、次式(1)の範囲が観察域になる
Generally, if the center of the central observation area is zero and the center positions of the left and right eyes are x, then the range of the following equation (1) becomes the observation area.

(m−b 、’n −(m/ r)−1) /’ :’
) ・a<x< (rr+−b /n+ (m/n −
1) /2) ・a・・・・・・  (1) ここで、bは観察域の繰り返し数でOからの自然数であ
る。
(m-b,'n-(m/r)-1)/':'
) ・a<x< (rr+-b /n+ (m/n-
1) /2) ·a... (1) Here, b is the number of repetitions of the observation area and is a natural number from O.

これにより、観察域の節回は(rn、/n−1) a、
非観察域は常にaであることが求められ、従ってiJ+
!奈域を広く取ろうどすれば、方向数を増加しなければ
ならず、立体間で観察した映像の単位である1桧木内の
画素数を多くする必要がある。しかし、表示装置の画素
密度が決っていると、その解像度が低下ケる。解像度は
表示能力/′方向数で表わされ、解像度を向上させるた
めに方向数を減少すれば、非NA寮域が度々生じ、眼の
位置を自由に選定でさデ、観察に不便を生じ、特定の場
所に眼を限定ツることは、眼鏡不要の利点が失われる。
As a result, the node times of the observation area are (rn, /n-1) a,
The unobserved region is always required to be a, so iJ+
! In order to obtain a wider field of view, the number of directions must be increased, and the number of pixels within one cypress tree, which is the unit of image observed between three dimensions, must be increased. However, if the pixel density of the display device is fixed, its resolution will be reduced. Resolution is expressed as display capacity/number of directions, and if the number of directions is reduced to improve resolution, non-NA areas often occur, making observation inconvenient because the eye position cannot be freely selected. However, by restricting the eye to a specific location, the advantage of not needing glasses is lost.

本発明は、上述の点に鑑み、従来技(hの問題点を(7
効に解決し、解陸度を低下さけることなく、多方向の立
体像を観察することが可能で、非観察域を排除して、方
向数を観察の条件に応じて容易に変更可能な多方向立体
映像装置を提供す゛ることを目的とする。
In view of the above-mentioned points, the present invention solves the problems of the prior art (h).
It is possible to observe 3D images in multiple directions without reducing the degree of dissolution, eliminate non-observation areas, and easily change the number of directions according to the observation conditions. The purpose of this invention is to provide a directional stereoscopic imaging device.

(問題点を解決(るための手段) このような目的を達成するために、本発明は、多方向か
ら[1した立体映像用方向像信号を選択する方向像選択
器とこの方向像選択器により選択された方向1象イム号
を眼の位置に合わせてり賛える表示位置切替器とからな
る方向位置変換回路と、この方向位置変換回路からの出
力画像を表示する画像表示器と、この画像表示器に表示
された画像を見る眼の位置を検出する眼位置検出器とを
備え、前記眼位置検出器により検出された眼の位置に応
じて前記方向像選択器と前記表示位置切替器とを制御1
1−Jることを特徴とする。
(Means for Solving the Problems) In order to achieve such an object, the present invention provides a directional image selector that selects a stereoscopic image directional image signal from multiple directions, and a directional image selector that selects a stereoscopic image directional image signal from multiple directions. a direction and position conversion circuit consisting of a display position switch that adjusts the selected direction to the position of the eye; an image display that displays an output image from this direction and position conversion circuit; an eye position detector that detects the position of the eye viewing the image displayed on the image display, and the direction image selector and the display position switch according to the eye position detected by the eye position detector. and control 1
1-J.

本発明の他の形態によれば、画像表示器は、3原色の各
映像信号を高速にフィールド順次または線順次で表示す
ることを特徴とする。
According to another aspect of the present invention, the image display is characterized in that it displays video signals of three primary colors at high speed in field sequential or line sequential manner.

(作用) このような技術手段により、眼の位置が非観察域にきた
ときには、表示条件が変り、観察域に変化でることによ
り、眼の位置に拘らず、常に観察域になり、多方向の正
しい前後の立体像を見ることが(′きるのである。ゴな
わら、本発明によれば、前述した第2図、第3図、第6
図のように、各方向画素を方向の順番に各レンズ木6A
毎に対応させること、換言すれば1つのレンズ木6A内
に1・・・・・・mの順で方向像を収納させることは必
要でなく、全体として各方向画素の順序が変らなければ
、レンズ素6Aと画素とが相対的に横座標(位相)でず
れで、方向P1・・・plの画像が2つのレンズ素6A
t、:跨ってし、先の11!奈域が移動するのみC1立
体映像が成立する。第2図の場合のP4とPlに眼が位
置したとき、第4図のように画素の表示位置が変ると正
しい立体像を観察C・さ゛る。
(Function) With such technical means, when the eye position is in the non-observation area, the display conditions change and the observation area changes, so that regardless of the eye position, it is always in the observation area and can be viewed in multiple directions. According to the present invention, it is possible to see the correct front and rear stereoscopic images.
As shown in the figure, pixels in each direction are arranged in each lens tree 6A in order of direction.
In other words, it is not necessary to store the direction images in the order of 1...m in one lens tree 6A, and as long as the order of the pixels in each direction does not change as a whole, The lens element 6A and the pixel are relatively shifted in the abscissa (phase), and the image in the direction P1...pl is the two lens elements 6A.
T,: Straddle, 11 ahead! A C1 stereoscopic image is established only when the area moves. When the eyes are positioned at P4 and Pl in the case of FIG. 2, if the display position of the pixels changes as shown in FIG. 4, a correct stereoscopic image will be observed.

また、第3図の場合には第5図のように画素の表示位置
が変ればよく、第6図の場合には画素i−2とi−1と
が入れ替ればよい。
Further, in the case of FIG. 3, the display position of the pixel may be changed as shown in FIG. 5, and in the case of FIG. 6, the pixels i-2 and i-1 may be interchanged.

だれ故、レンチキュラー仮位置または画像表示位置を動
かして、非に京成を観察域にすることができる。レンチ
キュラー仮位置に比較して、画像表示位置の電子的操作
は容易であるから、観察者の眼が非観察域に入ったとき
、この表示位置を勅かし、観察域に変更ダる。
Therefore, by moving the temporary lenticular position or the image display position, it is possible to make Keisei the observation area. Compared to the temporary lenticular position, it is easier to electronically control the image display position, so when the observer's eyes enter the non-observation area, the display position is commanded to change to the observation area.

(実施例) 次に、本発明の実施例を図面に基づき、詳細に説明する
(Example) Next, an example of the present invention will be described in detail based on the drawings.

第1図(よ本発明の一実施例の概略@成因を示1.。FIG. 1 shows an outline of an embodiment of the present invention.

図において多方両立体映@装置10は、主として多数の
テレビカメラ1−1.1−2.1−3.・・・1−k、
方向位置変換回路2)表示位置制御回路3、画像表示器
4、眼位置検出器5、レンチキュラー仮6および同期回
路9から構成される。テレビカメラ1−1.1−2.・
・・1−kによる各方向映像信号は、方向位置変換回路
2を経て、マトリックス型またはインデックス型の画像
表示器4に表示きれる。
In the figure, the multi-directional stereoscopic projection device 10 mainly includes a large number of television cameras 1-1.1-2.1-3. ...1-k,
Direction and position conversion circuit 2) Consists of a display position control circuit 3, an image display 4, an eye position detector 5, a lenticular temporary 6, and a synchronization circuit 9. Television camera 1-1.1-2.・
. . 1-k in each direction can be displayed on a matrix-type or index-type image display 4 through a direction and position conversion circuit 2.

方向位置変換回路2は、方向@選択器7および表示位置
切替器8からなり、各方向映像信号が並列に入力し、方
向[択器7で2(1!]以上のどの方向像を選ぶか選択
して、表示位置切替器8で連環し切替えながら出力し、
画像表示iW4に表示する。
The direction/position conversion circuit 2 is composed of a direction @ selector 7 and a display position switch 8, and each direction video signal is input in parallel, and the direction selector 7 selects which direction image from 2 (1!) or more. Select it, connect it with the display position switch 8, and output it while switching.
Display on image display iW4.

すなわち、水平走査期間を表示画面の分割数Fに合せ標
本化して、さらに方向像数mで時間分割した標本tIJ
間で順次方向像信号+71.・・・3.2.1゜rn、
・・・3.2.1の順に取出づ。これと同時に、表示位
置制御回路3の制御信号の切替える位相を遅らせること
により、表示画像が遅れた位相の画素分だけ右方向に移
vJ1ノ表示される。
That is, the horizontal scanning period is sampled according to the number of divisions F of the display screen, and the sample tIJ is further divided in time by the number of directional images m.
The direction image signal is sequentially increased between +71. ...3.2.1゜rn,
...Remove in the order of 3.2.1. At the same time, by delaying the switching phase of the control signal of the display position control circuit 3, the display image is shifted to the right by the amount of pixels of the delayed phase and displayed by vJ1.

表示位置制御回路3は、観察者の位置、正確には眼の位
置を眼位置検出器5、例えば充電センサーによる額部の
輝点の計測あるいは頭部に反01ツ゛る超音波の伝播時
間の計測等により、検出した位置信号を入力して、方向
位置変換回路2における方向@選択器7ど表示位置切替
器8を制御するための4を号を発生する。すなわち、眼
の位置に応じて、方向選択器7にJ5いて表示する方向
像の内のどの方向像を選択するかの方向選択信丹召出力
し、かつ内臓された演算顆能により眼の位置が非観察域
に入ったかどうか判断して、表示位置切替器8の制il
O(8号を出力するのである。
The display position control circuit 3 detects the position of the observer, more precisely, the position of the eyes, by using the eye position detector 5, for example, to measure a bright spot on the forehead using a charging sensor, or to measure the propagation time of ultrasonic waves that are directed against the head. A position signal detected by measurement or the like is inputted to generate a signal 4 for controlling the direction @ selector 7 and display position switch 8 in the direction/position conversion circuit 2. That is, according to the position of the eye, the direction selector 7 outputs a direction selection signal to select which direction image to display from among the direction images displayed, and the position of the eye is determined by the built-in arithmetic function. determines whether or not it has entered the non-observation area and controls the display position switch 8.
O(It outputs No. 8.

画像表示器4は、画面満幅に水平走査期量分のrxm個
の画素数があるとして、方向位置変換回路2の変換され
た出力信号をi項次表示する。
The image display device 4 displays the converted output signal of the direction and position conversion circuit 2 in i-order order, assuming that there are rxm pixels equal to the horizontal scanning period in the full width of the screen.

レンチキュラー板6は、画像表示器4に重ねて設けられ
、各レンズ木6Aのピッチが画像表示器4の画素ピッチ
のおよそm倍として、各レンズピッチにm叫の画素か対
応して、各方向像の画素が表示される。
The lenticular plate 6 is provided overlapping the image display device 4, and the pitch of each lens tree 6A is approximately m times the pixel pitch of the image display device 4, and the pitch of each lens tree 6A is approximately m times the pixel pitch of the image display device 4. The pixels of the image are displayed.

次に、第2図および第3図において、各方向像の画X 
i −1,i−2・・・か各レンズ素6A内に表示され
る。例えば、第2図において、入力方向@数K・4で、
選択方向像vll=2.瞳孔間aの画素数n・1の場合
、方向P1とP2.P2どP3あるいはP3とP4の各
組の映像を両眼に投映覆る。また、第3図にてn・2の
場合に、PlとP3あるいはP2と24の映像を両11
&’に投映する。
Next, in FIGS. 2 and 3, the image X of each direction image
i-1, i-2, . . . are displayed in each lens element 6A. For example, in Figure 2, input direction @ number K4,
Selected direction image vll=2. When the number of pixels between the pupils a is n·1, the directions P1 and P2. Images of each pair of P2 and P3 or P3 and P4 are projected onto both eyes. In addition, in the case of n・2 in Fig. 3, the images of Pl and P3 or P2 and 24 are both 11
Project to &'.

第2図では眼のIQ置がP4どPlて、第3図ではP3
とPlのときは、表示位置制御回路3からの信号により
、第4図および第5図に示すように、表示位置が変化し
、正しい立体像が観察される。
In Figure 2, the IQ position of the eye is P4, and in Figure 3, it is P3.
and Pl, the display position changes according to the signal from the display position control circuit 3, as shown in FIGS. 4 and 5, and a correct stereoscopic image is observed.

さらに、眼の位置に応じて、方向像の選択をし、i−1
〜i−4の代りにi−4〜i−7の画素を表示すると、
第4図において眼の位置に合った方向P4どP5の像が
投映され、また第5図にJiいてはP3とP5の像が投
映される。
Furthermore, the directional image is selected according to the position of the eye, and i-1
~If pixels i-4 to i-7 are displayed instead of i-4,
In FIG. 4, images in directions P4 and P5 that match the eye position are projected, and in FIG. 5, images in directions P3 and P5 are projected.

第7図は本発明の他の実施例の慨略構成図を示す。本例
にJjいては、レンチキュラー板6の各レンズ木OAに
表示する象の方向数を2とし、この2方向像を2台のカ
ラー投映表示器”ioA、10Bで、シン1キユラー板
6に投映覆る。カラー投映表示器10A、10Bの後に
(よ、それぞれ1q光角が芹いに直交する2枚の偏i光
板11をAt置し、レンチキュラー板6の前には、各レ
ンズ素子6Aに偏光板11ど同保に、Ω光用が互いにI
C1交する隔光面を2面舵列σる縦状の漏光格子8装百
した品光格T付スクリーン12を配置4る。
FIG. 7 shows a schematic diagram of another embodiment of the present invention. In this example, in Jj, the number of directions of the elephant displayed on each lens tree OA of the lenticular plate 6 is set to 2, and the two-directional image is displayed on the thin 1 yular plate 6 using two color projection displays "ioA and 10B". After the color projection display 10A, 10B, two polarizing plates 11 whose optical angles of 1q are perpendicular to each other are placed, and in front of the lenticular plate 6, a polarizing plate 11 is placed on each lens element 6A. The polarizing plates 11 and 11 are connected to each other for Ω light.
A screen 12 with a quality light rating T, which has 8 vertical light leakage gratings with two rudder rows σ having intersecting light-intersecting surfaces C1, is arranged.

方向位置変換回路2Aの方向像)ハ択器7Aにて−にか
ら方向像S3どS4を選択し、表示位置切替器8Aにて
カラー投映表示器10Aに方向像S4が入力し、カラー
投映表示器10Bに方向像3が入力するように切替え、
さらに偏光板11および錨光格子付スクリーン12によ
り鵠光分離゛することにより、両眼の位置P1と22に
おいてイれぞれ方向像S4と83が映り、正しい立体像
が観察される。次に、両眼の位置がP2−とP3とに移
動したどきには、方向@選択器7Aにて上から方向像S
2と$3を)双択し、表示位置切替器8にてカラー投映
表示器10Aに方向像S24・入力し、カラー投映表示
器10Bに方向DS3を入力することにより、両眼の位
置P2′とP3にそれぞれ方向像S3と82が映り、■
Lい立体像がiIl!京される。以上、眼が移0するご
とに、所定の方向像と表示位置とをυ+at+−するこ
とにより、眼の位置に対1芯した方向の立体像が観察さ
れる。
Direction image of the direction position conversion circuit 2A) Select the direction image S3 or S4 from - with the selector 7A, input the direction image S4 to the color projection display 10A with the display position switch 8A, and display the color projection. Switch so that the direction image 3 is input to the device 10B,
Furthermore, by separating the light using the polarizing plate 11 and the screen 12 with an anchor light grating, directional images S4 and 83 are reflected at the positions P1 and 22 of both eyes, respectively, and a correct stereoscopic image is observed. Next, when the positions of both eyes move to P2- and P3, the direction image S from above is selected using the direction @ selector 7A.
2 and $3), input the direction image S24 to the color projection display 10A using the display position switch 8, and input the direction DS3 to the color projection display 10B, thereby changing the position P2' of both eyes. Directional images S3 and 82 are reflected on and P3, respectively, and ■
The L three-dimensional image is iIl! Kyoto is done. As described above, by changing the predetermined directional image and the display position to υ+at+- every time the eye moves, a stereoscopic image in a direction one center from the eye position is observed.

また、4\映(象方式でのカラー表示は、第1図におい
ては通常の偵方向の色配列が取れないので、電界発光(
エレクトロルミネセンス、EL)のように透過発光体の
赤(R)、縁(G)、青(8)の3層を重ねる方法、あ
るいはR,G、Bの各3原色の映像<2号について、上
述の回路M4成を行ない、各色の画像についてフィール
ド順次あるいは線順次に表示することにより可能である
In addition, in the color display using the 4\image method, the color arrangement in the normal rectangular direction cannot be obtained in Fig. 1, so electroluminescence (
A method of stacking three layers of transmissive light emitting material such as red (R), edge (G), and blue (8) as in electroluminescence (EL), or an image of each of the three primary colors of R, G, and B <No. 2 This is possible by constructing the circuit M4 described above and displaying images of each color in field sequence or line sequence.

曲者のフィールド順次方法は、Rの画像の1フイールド
、G画像の1フイールド、8画像の1ノイールドという
iffに高速て切替λて表示りろごとによって、カラー
映像の立体映像を4517)a白色表示器のレンチキュ
ラー板に、3枚の3原色鵠光フィルタを挟/υた2枚の
隔光旋回仮(1/2偉(Uす」−り)ヲ・さらに重ねて
、これを上述のフィールド切替えと組合せて制t11′
?jることにより、カラー立体映像が得られる。この際
に、高速な走査を必要とするが、カラー化のための垂直
解像度の劣化は生じない。ここで、R,G、Bの各色画
像のフィールド周波数は、理想的には3x6011z・
18011zであるが、3x40Hz・120tlzに
してし、混色画像のときにはR,G、B画像に各輝度成
分が適当に混合し、単色のときにはIffが低いので、
フリッカ−による妨害は少ない。
The field sequential method of the composer is to change the stereoscopic image of the color image to 4517) a white color by switching quickly and displaying 1 field of the R image, 1 field of the G image, and 1 field of the 8 images. On the lenticular plate of the display, three three-primary color spectroscopic filters are sandwiched between two diaphragm rotary filters (1/2). Control t11' in combination with switching
? By doing this, a color stereoscopic image can be obtained. At this time, high-speed scanning is required, but vertical resolution does not deteriorate due to colorization. Here, the field frequency of each color image of R, G, and B is ideally 3x6011z・
18011z, but it is set to 3x40Hz/120tlz, and when it is a mixed color image, each luminance component is appropriately mixed in the R, G, and B image, and when it is a single color, Iff is low, so
There is little interference from flicker.

後者の線順次方法は、画素の色配列をM1方向にR,G
、B線順次配列とした表示器で、各色映像信号を水平走
査線3本毎に順次走査して表示器る。
The latter line sequential method changes the pixel color arrangement to R, G in the M1 direction.
, B-line sequential array display, each color video signal is sequentially scanned every three horizontal scanning lines and displayed.

この際、標準の垂直解像度を保持するには、3倍の走査
線と走査速度が必要である。標準の走査線数を使用する
と、垂直解像度は低下するが水平解像度と見合うから問
題はない。また、本光明の他の実施例である第7図にJ
’>いては、漏光分離と組合じたため、従来のカラー投
映表示でよい。
In this case, three times as many scan lines and a scan speed are required to maintain standard vertical resolution. If the standard number of scanning lines is used, the vertical resolution will be reduced, but this is not a problem because it is commensurate with the horizontal resolution. In addition, J
Since it is combined with light leakage separation, conventional color projection display is sufficient.

なj>、本Jt明の他の実施例によれば、方向位置変換
回路2内で各方向映像をテジタルメしりに記lしで、読
み出し番地を方向選択信号と位置制御信号との合成した
番地で読み出すことにより、方向像選択器7よメよび表
示位置切替器8を一体とすることて同(1の別能が臂ら
れる。
According to another embodiment of the present invention, each direction image is recorded in a digital format in the direction and position conversion circuit 2, and the readout address is set to an address obtained by combining the direction selection signal and the position control signal. By reading out the information, the direction image selector 7 and the display position switch 8 can be integrated to provide the same function.

さらに、上述θ1において、眼の位置検出器5の代わり
に、例えば可変抵抗器にA / D変換器を組合ねUた
回路あるいはロータリエンコーダにカウンタを組合わせ
た回路とすることにより、頭をCsかさないで、手動で
上記回路を操作勺ることにより、あたかも頭を初かした
と同様に、各方向像が順次観察することができ、立体感
の強い立体映像が観察される。
Furthermore, in the above-mentioned θ1, by using a circuit that combines a variable resistor with an A/D converter or a circuit that combines a rotary encoder and a counter instead of the eye position detector 5, the head position can be adjusted to Cs. By manually operating the above-mentioned circuit without moving the camera, images in each direction can be observed sequentially, just as if the user opened his/her head for the first time, and a stereoscopic image with a strong three-dimensional effect can be observed.

(発明の効果) 以上に説明するように、本発明によれば、従来立体像の
解像度を向上させるには、方向数を減少覆る必要があり
、少なくづれば立体映像を観察できる観察域が限定され
、自由な観察が困難であった従来技術の問題点が有効に
解決され、観京名が眼を自由な位置に置くも多方向の立
体像を観察でき、その回路構成が筒中で、解像度を低下
8せず、多方りの立体像の観察が可能で、非観察域が除
かれ、方面数を観察条件に応じて変更dることが容易で
ある笠の効果を秦する。
(Effects of the Invention) As explained above, according to the present invention, in order to improve the resolution of conventional stereoscopic images, it is necessary to reduce the number of directions, and to put it simply, the observation area where stereoscopic images can be observed is limited. The problem of the conventional technology, which made it difficult to observe freely, was effectively solved, and Kankyona was able to observe 3D images in multiple directions even if he placed his eyes in any position. The effect of a shade is that three-dimensional images can be observed in many directions without any degradation, non-observable areas are removed, and the number of directions can be easily changed according to observation conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は木光明の一実施例の慨略嵩成因、第2図は従来
方1(にdj C)る方向数m=/Iのと3の表示画素
とレンチキユラー板の各レンス木どのIV装関係および
瞳孔間に投映される両ぶ↓′171−1の場合の観察域
および非観察域の状態図、第3図は第2図と同じ方向数
で画素数「1−2の場合のiI+!察域J京成び非観察
域の状態図、第11図は本発明の実施例にJ5いて、第
2図にお(プる眼の位置の移動に応じて切替えられる画
素位置と観察域との状態図、 第5図は本発明の実施例において、第3図における眼の
位置の移aに応じて切替えられる画素1ヶ置と観察域と
の状態図、 第6図は従来方式にJ5いて方向数m=2の場合の両県
位置と観察域との状態図、 第7図(ユ木光明の他の実施例の概略構成図である。 2.2A:方向位置変換回路、 3:表示(12置制御回路、 4:画像表示器、 5:眼位置検出器、 6:レンチキユラー仮、 7.7A:方向像選択器、 8:、8A:表示位置切替器、 9:同期回路、 10;多乃向立体映1象装置、 10A、10B:カラー投映表示器、 11:偏光膜、 12:隔光洛子飼スクリーン。 (らA訂韓鎗家りχ 篤    図 第2121 \、 第5図
Figure 1 is a schematic diagram of the bulk factor of one embodiment of the conventional method 1 (dj Fig. 3 is a state diagram of the observation area and non-observation area in the case of ↓'171-1, which is projected between the eyes and the pupil. iI+! The state diagram of the observation area J-kein and non-observation area, Fig. 11 is J5 in the embodiment of the present invention, and Fig. 2 shows (pixel position and observation area that are switched according to the movement of the eye position) FIG. 5 is a state diagram of one pixel position and observation area that are switched according to the movement a of the eye position in FIG. 3 in the embodiment of the present invention, and FIG. State diagram of the positions of both prefectures and the observation area when the number of directions m = 2 in J5, Figure 7 (schematic configuration diagram of another embodiment of Mitsuaki Yuki. 2.2A: Direction position conversion circuit, 3 : Display (12 position control circuit, 4: Image display, 5: Eye position detector, 6: Lenticular temporary, 7.7A: Direction image selector, 8:, 8A: Display position switch, 9: Synchronous circuit, 10: Three-dimensional projection device, 10A, 10B: Color projection display, 11: Polarizing film, 12: Partitioned light screen.

Claims (1)

【特許請求の範囲】 1)多方向から撮像した立体映像用方向像信号を選択す
る方向像選択器とこの方向像選択器により選択された方
向像信号を眼の位置に合わせて切替える表示位置切替器
とからなる方向位置変換回路と、この方向位置変換回路
からの出力画像を表示する画像表示器と、この画像表示
器に表示された画像を見る眼の位置を検出する眼位置検
出器とを備え、前記眼位置検出器により検出された眼の
位置に応じて前記方向像選択器と前記表示位置切替器と
を制御することを特徴とする多方向立体映像装置。 2)特許請求の範囲第1項に記載の多方向立体映像装置
において、画像表示器は、3原色の各映像信号を高速に
フィールド順次または線順次で表示することを特徴とす
る多方向立体映像装置。
[Claims] 1) A directional image selector that selects directional image signals for stereoscopic video captured from multiple directions, and a display position switch that switches the directional image signals selected by the directional image selector in accordance with the eye position. an image display device that displays an output image from the direction and position conversion circuit; and an eye position detector that detects the position of the eye viewing the image displayed on the image display device. A multidirectional stereoscopic imaging device comprising: controlling the direction image selector and the display position switch according to the position of the eye detected by the eye position detector. 2) In the multidirectional stereoscopic video apparatus according to claim 1, the image display device displays the video signals of three primary colors at high speed in field sequential or line sequential. Device.
JP63149540A 1988-06-17 1988-06-17 Multi-directional stereoscopic video equipment Pending JPH01317091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63149540A JPH01317091A (en) 1988-06-17 1988-06-17 Multi-directional stereoscopic video equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63149540A JPH01317091A (en) 1988-06-17 1988-06-17 Multi-directional stereoscopic video equipment

Publications (1)

Publication Number Publication Date
JPH01317091A true JPH01317091A (en) 1989-12-21

Family

ID=15477376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63149540A Pending JPH01317091A (en) 1988-06-17 1988-06-17 Multi-directional stereoscopic video equipment

Country Status (1)

Country Link
JP (1) JPH01317091A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250145A (en) * 1988-08-12 1990-02-20 Nippon Telegr & Teleph Corp <Ntt> Stereoscopic image display device
JPH02106735A (en) * 1988-10-15 1990-04-18 Nippon Telegr & Teleph Corp <Ntt> Stereoscopic image display device
JPH0340692A (en) * 1989-07-07 1991-02-21 Nippon Telegr & Teleph Corp <Ntt> Stereoscopic picture display method
JPH0353695A (en) * 1989-07-21 1991-03-07 Nippon Telegr & Teleph Corp <Ntt> Motion parallax cube display processing system
JPH0389794A (en) * 1989-09-01 1991-04-15 Nippon Telegr & Teleph Corp <Ntt> Three-dimensional display system for a large number of people
JPH0418893A (en) * 1990-05-14 1992-01-23 Nippon Telegr & Teleph Corp <Ntt> Stereoscopic display device
JPH0583746A (en) * 1991-09-19 1993-04-02 Nippon Telegr & Teleph Corp <Ntt> Three-dimension display device
JPH06225344A (en) * 1992-10-14 1994-08-12 Tomohiko Hattori Time division head tracking type stereoscopic television
JP2004289681A (en) * 2003-03-24 2004-10-14 Sharp Corp Image processing apparatus, imaging system, image display system, imaging and display system, image processing program, and computer-readable recording medium with image processing program recorded thereon
JP2006174434A (en) * 2004-12-13 2006-06-29 Samsung Electronics Co Ltd Three-dimensional image display apparatus
JP2008015188A (en) * 2006-07-05 2008-01-24 Ntt Docomo Inc Image presenting system and image presenting method
JP2008233180A (en) * 2007-03-16 2008-10-02 Seiko Epson Corp Image display device
JP2010250330A (en) * 2010-05-24 2010-11-04 Sony Corp Spatial image display device
JP2012222605A (en) * 2011-04-08 2012-11-12 Sony Corp Image processing apparatus, image processing method, and program
JP2013022247A (en) * 2011-07-21 2013-02-04 Toshiba Corp Image processing system, device and method, and medical image diagnostic apparatus
JP2014121097A (en) * 2012-12-18 2014-06-30 Lg Display Co Ltd Multi-view autostereoscopic display and method for controlling optimal viewing distance thereof
JP2015089104A (en) * 2013-09-26 2015-05-07 Nltテクノロジー株式会社 Stereoscopic image display device, terminal device, stereoscopic image display method, and program thereof
JP2016099621A (en) * 2014-11-18 2016-05-30 華為技術有限公司Huawei Technologies Co.,Ltd. Image system
JP2017038367A (en) * 2015-08-07 2017-02-16 三星電子株式会社Samsung Electronics Co.,Ltd. Rendering method and apparatus for plurality of users
JP2018182745A (en) * 2013-09-26 2018-11-15 Tianma Japan株式会社 Stereoscopic image display device and terminal device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190514A (en) * 1975-02-06 1976-08-09
JPS6473330A (en) * 1987-09-14 1989-03-17 Nippon Telegraph & Telephone Three-dimensional image display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190514A (en) * 1975-02-06 1976-08-09
JPS6473330A (en) * 1987-09-14 1989-03-17 Nippon Telegraph & Telephone Three-dimensional image display device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250145A (en) * 1988-08-12 1990-02-20 Nippon Telegr & Teleph Corp <Ntt> Stereoscopic image display device
JPH02106735A (en) * 1988-10-15 1990-04-18 Nippon Telegr & Teleph Corp <Ntt> Stereoscopic image display device
JPH0340692A (en) * 1989-07-07 1991-02-21 Nippon Telegr & Teleph Corp <Ntt> Stereoscopic picture display method
JPH0353695A (en) * 1989-07-21 1991-03-07 Nippon Telegr & Teleph Corp <Ntt> Motion parallax cube display processing system
JPH0389794A (en) * 1989-09-01 1991-04-15 Nippon Telegr & Teleph Corp <Ntt> Three-dimensional display system for a large number of people
JPH0418893A (en) * 1990-05-14 1992-01-23 Nippon Telegr & Teleph Corp <Ntt> Stereoscopic display device
JPH0583746A (en) * 1991-09-19 1993-04-02 Nippon Telegr & Teleph Corp <Ntt> Three-dimension display device
JPH06225344A (en) * 1992-10-14 1994-08-12 Tomohiko Hattori Time division head tracking type stereoscopic television
US7453489B2 (en) 2003-03-24 2008-11-18 Sharp Kabushiki Kaisha Image processing apparatus, image pickup system, image display system, image pickup display system, image processing program, and computer-readable recording medium in which image processing program is recorded
JP2004289681A (en) * 2003-03-24 2004-10-14 Sharp Corp Image processing apparatus, imaging system, image display system, imaging and display system, image processing program, and computer-readable recording medium with image processing program recorded thereon
JP2006174434A (en) * 2004-12-13 2006-06-29 Samsung Electronics Co Ltd Three-dimensional image display apparatus
JP2008015188A (en) * 2006-07-05 2008-01-24 Ntt Docomo Inc Image presenting system and image presenting method
JP2008233180A (en) * 2007-03-16 2008-10-02 Seiko Epson Corp Image display device
JP2010250330A (en) * 2010-05-24 2010-11-04 Sony Corp Spatial image display device
JP2012222605A (en) * 2011-04-08 2012-11-12 Sony Corp Image processing apparatus, image processing method, and program
JP2013022247A (en) * 2011-07-21 2013-02-04 Toshiba Corp Image processing system, device and method, and medical image diagnostic apparatus
US9838674B2 (en) 2012-12-18 2017-12-05 Lg Display Co., Ltd. Multi-view autostereoscopic display and method for controlling optimal viewing distance thereof
JP2014121097A (en) * 2012-12-18 2014-06-30 Lg Display Co Ltd Multi-view autostereoscopic display and method for controlling optimal viewing distance thereof
JP2015089104A (en) * 2013-09-26 2015-05-07 Nltテクノロジー株式会社 Stereoscopic image display device, terminal device, stereoscopic image display method, and program thereof
JP2018182745A (en) * 2013-09-26 2018-11-15 Tianma Japan株式会社 Stereoscopic image display device and terminal device
US10567741B2 (en) 2013-09-26 2020-02-18 Tianma Microelectronics Co., Ltd. Stereoscopic image display device, terminal device, stereoscopic image display method, and program thereof
CN105676475A (en) * 2014-11-18 2016-06-15 华为技术有限公司 Imaging system
US9778556B2 (en) 2014-11-18 2017-10-03 Huawei Technologies Co., Ltd. Imaging system having a polarization element
JP2016099621A (en) * 2014-11-18 2016-05-30 華為技術有限公司Huawei Technologies Co.,Ltd. Image system
CN105676475B (en) * 2014-11-18 2018-04-10 华为技术有限公司 Imaging system
JP2017038367A (en) * 2015-08-07 2017-02-16 三星電子株式会社Samsung Electronics Co.,Ltd. Rendering method and apparatus for plurality of users

Similar Documents

Publication Publication Date Title
JPH01317091A (en) Multi-directional stereoscopic video equipment
JP3901072B2 (en) Video display device and video display method
US8147073B2 (en) Image signal processing apparatus and virtual reality creating system
US7726816B2 (en) Stereoscopic display device and method
JPH08501397A (en) Three-dimensional optical observation device
US5416509A (en) Method and apparatus for the generation of a stereoscopic presentation
US4729017A (en) Stereoscopic display method and apparatus therefor
US6055027A (en) Display unit and display system thereof
JPH08182024A (en) Display device for three dimensional
JP3232408B2 (en) Image generation device, image presentation device, and image generation method
US7154528B2 (en) Apparatus for placing primary image in registration with lenticular lens in system for using binocular fusing to produce secondary 3D image from primary image
CN104584075B (en) Object-point for description object space and the connection method for its execution
RU2576481C2 (en) Simultaneous reproduction of multiple images by means of two-dimensional imaging matrix
JP2003279894A (en) Multi-projection stereoscopic video display device
JPH0583746A (en) Three-dimension display device
JPS63142991A (en) Panoramic image synthesizing system
JP3600422B2 (en) Stereo image display method and apparatus
JP3114119B2 (en) 3D image display device
JPH0350684A (en) Stereoscopic video display system
EP0511802A2 (en) Display apparatus
JPH10191400A (en) Three-dimensional image display device
JP2992192B2 (en) 3D information reproducing device
KR100489213B1 (en) View finder system for stereo picture
JPH08321992A (en) Image processing unit
JPH0397390A (en) Solid display device