JPH01305144A - Fuel injection controller of internal combustion engine - Google Patents

Fuel injection controller of internal combustion engine

Info

Publication number
JPH01305144A
JPH01305144A JP13670088A JP13670088A JPH01305144A JP H01305144 A JPH01305144 A JP H01305144A JP 13670088 A JP13670088 A JP 13670088A JP 13670088 A JP13670088 A JP 13670088A JP H01305144 A JPH01305144 A JP H01305144A
Authority
JP
Japan
Prior art keywords
injection
amount
synchronous
asynchronous
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13670088A
Other languages
Japanese (ja)
Other versions
JP2591069B2 (en
Inventor
Hatsuo Nagaishi
初雄 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP13670088A priority Critical patent/JP2591069B2/en
Priority to US07/360,813 priority patent/US4922877A/en
Publication of JPH01305144A publication Critical patent/JPH01305144A/en
Application granted granted Critical
Publication of JP2591069B2 publication Critical patent/JP2591069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enhance flatness of air fuel ratio per cylinder so as to improve emission characteristics by switching the correction of the next time synchronous injection quantity depending on whether the present asynchronous injection timing is sooner or later than the synchronous injection corresponding to the next time intake stroke. CONSTITUTION:Asynchronous injection is judged by a means (b) on the basis of the running condition of an engine detected by a means (a), namely an amount of engine load variation, and also calculation is carried out by a means (c) so that the next time synchronous injection quantity may be corrected depending upon a synchronously transferring correction quantity. Also calculation is carried out by a means (d) so that an asynchronous injection quantity may be corrected according to an injection timing correction factor during the asynchronous injection process. Further, the injection timing correction factor is set up by a means (e) according to the timing of the asynchronous injection. On the other hand, the synchronously transferring correction quantity is set up by a means (f) depending upon whether the timing of the asynchronous injection is sooner or later than the synchronous injection corresponding to the next time intake stroke, during the asynchronous injection process. And fuel is injected by a means (g) on the basis of the output from each of means (c) and (d).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等内燃機関の燃料噴射制御装置に係り
、詳しくは加速時に割込噴射を行う装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fuel injection control device for an internal combustion engine such as an automobile, and more particularly to a device that performs interrupt injection during acceleration.

(従来の技術) 一般に、エンジンに対する要求出力が変化した際には、
その要求程度に応じて応答性よく燃料供給量を制御する
ことが必要であり、これは特に過度運転時における空燃
比に影響を与え、ドライブフィーリングや排気組成等の
運転性能を左右する。
(Prior art) Generally, when the required output for the engine changes,
It is necessary to control the amount of fuel supplied with good responsiveness according to the degree of demand, and this affects the air-fuel ratio particularly during excessive driving, and influences driving performance such as drive feeling and exhaust composition.

従来のこの種の内燃機関の燃料噴射制御装置としては、
例えば特開昭59−101556号公報に記載されたも
のがある。この装置では、吸入空気量とエンジン回転数
に基づいて基本噴射量Tpを演算するとともに、絞弁の
開度を検出し、その増加割合が一定値を超えると基本噴
射量とは独立に燃料の一時的加算を直ちに実行し加速の
程度に応じた増量補正を行うとともに、急加速時に吸入
空気量の応答遅れによる基本噴射量Tpの不足分を絞弁
の動きに応じて決定される割込噴射により補っている。
Conventional fuel injection control devices for this type of internal combustion engine include:
For example, there is one described in JP-A-59-101556. This device calculates the basic injection amount Tp based on the intake air amount and the engine speed, and also detects the opening degree of the throttle valve, and when the rate of increase exceeds a certain value, the fuel injection amount is increased independently of the basic injection amount. Immediately performs temporary addition and increases the amount according to the degree of acceleration, and also performs interrupt injection that is determined according to the movement of the throttle valve to compensate for the shortfall in the basic injection amount Tp due to a delay in the response of the intake air amount during sudden acceleration. It is supplemented by

しかしながら、上記従来の装置では吸気行程中又は直後
に噴射した燃料は、その吸気行程中には微かじか入らず
、次の吸気行程で大量に吸入されるため、非同期噴射の
メリットが十分に活かせないという欠点があった。一方
、そのために非同期噴射のパルス幅を大きくすると、2
回目の吸気分がリッチになり過ぎてやはり都合が悪い。
However, in the conventional device described above, the fuel injected during or immediately after the intake stroke enters only a small amount during the intake stroke, and is inhaled in large quantities during the next intake stroke, so the benefits of asynchronous injection cannot be fully utilized. There was a drawback. On the other hand, if the pulse width of asynchronous injection is increased for this purpose, 2
The feeling of inhaling for the first time is too rich, which is still inconvenient.

そこで、本発明の出願人は非同期噴射を行うことが判定
された場合に、その時点でのサイクル位置に応じて非同
期噴射量を気筒別に補正する装置を先に提案しており(
特願昭62−156121号参照)、この装置によれば
、非同期噴射からその直後の吸気行程までの待ち時間の
相違に伴う空燃比のばらつき(−回一回、気筒毎)を改
良することができ、失火やトルク落ちのない良好な運転
性と排気性能を確保するようにしている。
Therefore, the applicant of the present invention has previously proposed a device that corrects the asynchronous injection amount for each cylinder according to the cycle position at that time when it is determined that asynchronous injection is to be performed (
(Refer to Japanese Patent Application No. 156121/1982), this device makes it possible to improve the air-fuel ratio dispersion (- times, cylinder by cylinder) caused by the difference in waiting time between asynchronous injection and the immediately following intake stroke. This ensures good drivability and exhaust performance with no misfires or loss of torque.

(発明が解決しようとする課題) ところで、上記先願に係る装置にあっては、非同期噴射
に伴う過大分だけ次の同期噴射で少なく供給することに
より、空燃比がリッチ化することを防止することはでき
るものの、気筒別にみると空燃比のリッチ、リーンが発
生し、エミッション特性にいわゆるヒゲが現れることが
あり(空燃比のフラット性が良くない)、三元触媒の転
化効率を高めるうえで改善の余地があることが判明した
(Problem to be Solved by the Invention) By the way, in the device according to the above-mentioned prior application, the air-fuel ratio is prevented from becoming rich by supplying less fuel in the next synchronous injection to compensate for the excess amount caused by the asynchronous injection. However, if you look at each cylinder, the air-fuel ratio may become rich or lean, and so-called whiskers may appear in the emission characteristics (the air-fuel ratio is not flat). It turns out that there is room for improvement.

(発明の目的) そこで本発明は、非同期噴射が次回の吸気行程に対応す
る同期噴射よりも早期か後期かによって次回の同期噴射
に反映させる補正量を切換えることにより、気筒別に空
燃比のフラット性を高めて、エミッション特性を向上さ
せることを目的としている。
(Objective of the Invention) Therefore, the present invention aims to improve the flatness of the air-fuel ratio for each cylinder by switching the correction amount to be reflected in the next synchronous injection depending on whether the asynchronous injection is earlier or later than the synchronous injection corresponding to the next intake stroke. The purpose is to increase the emission characteristics and improve the emission characteristics.

(課題を解決するための手段) 本発明による内燃機関の燃料噴射制御装置は上記目的達
成のため、その基本概念図を第1図に示すように、エン
ジンの運転状態を検出する運転状態検出手段aと、エン
ジンの運転状態からエンジン負荷の変化量を求め、該エ
ンジン負荷の変化量に基づいて回転毎の同期噴射とは別
に非同期噴射を行うか否かを判定する判定手段すと、エ
ンジンの運転状態に基づいて回転毎の同期噴射量を演算
し、非同期噴射があると、次回の同期噴射量を同期移行
補正量に応じて補正する同期噴射演算手段Cと、非同期
噴射を行うことが判定されたとき、前記エンジン負荷の
変化量に基づいて気筒別に非同期噴射量を演算し、該非
同期噴射量を噴射時期補正率に応じて補正する非同期噴
射演算手段dと、非同期噴射のタイミングに応じ°ζ山
I記噴射時期補正率を設定する補正率設定手段eと、非
同期噴射を行うことが判定されたとき、非同期噴射のタ
イミングが次回の吸気行程に対応する同期噴射よりも早
期か後期かに応じて前記同期移行補正量を設定する移行
補正量設定手段fと、同期噴射演算手段Cおよび非同期
噴射演算手段dの出力に基づいて燃料を噴射する燃料噴
射手段gと、を備えている。
(Means for Solving the Problems) In order to achieve the above object, the fuel injection control device for an internal combustion engine according to the present invention has an operating state detection means for detecting the operating state of the engine, as a basic conceptual diagram thereof is shown in FIG. (a) and determining means for determining the amount of change in engine load from the operating state of the engine and determining whether or not to perform asynchronous injection separately from synchronous injection for each revolution based on the amount of change in engine load. Synchronous injection calculation means C calculates the synchronous injection amount for each rotation based on the operating state, and if there is an asynchronous injection, corrects the next synchronous injection amount according to the synchronous transition correction amount, and it is determined that the asynchronous injection is to be performed. an asynchronous injection calculating means d which calculates an asynchronous injection amount for each cylinder based on the amount of change in the engine load and corrects the asynchronous injection amount according to an injection timing correction factor; A correction factor setting means e for setting an injection timing correction factor; and a correction factor setting means e for setting an injection timing correction factor; It is provided with a transition correction amount setting means f for setting the synchronous transition correction amount accordingly, and a fuel injection means g for injecting fuel based on the outputs of the synchronous injection calculation means C and the asynchronous injection calculation means d.

(作用) 本発明では、非同期噴射を行うことが判定されたとき、
非同期噴射のタイミングが次回の吸気行程に対応する同
期噴射よりも早期か後期かに応じて次回の同期噴射量を
補正する同期移行補正量が気筒別に設定される。
(Operation) In the present invention, when it is determined to perform asynchronous injection,
A synchronous transition correction amount for correcting the next synchronous injection amount is set for each cylinder depending on whether the timing of the asynchronous injection is earlier or later than the synchronous injection corresponding to the next intake stroke.

したがって、気筒別に非同期および次回の同期噴射量が
適切なものとなって、空燃比のフラットが高まり、エミ
ッション特性が向上する。
Therefore, the asynchronous and next synchronous injection amounts are appropriate for each cylinder, resulting in a more flat air-fuel ratio and improved emission characteristics.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第2〜10図は本発明に係る内燃機関の燃料噴射制御装
置の一実施例を示す図である。まず、構成を説明する。
2 to 10 are diagrams showing an embodiment of a fuel injection control device for an internal combustion engine according to the present invention. First, the configuration will be explained.

第2図は本装置の全体的構成を示す図である。第2図に
おいて、1はエンジンであり、吸入空気はエアクリーナ
2から吸気管3を通り、燃料は噴射信号Siに基づきイ
ンジェクタ(燃料噴射手段)4から噴射される。そして
、気筒内で燃焼した排気は排気管5を通して触媒コンバ
ータ6に導入され、触媒コンバータ6内で排気中の有害
成分(Co、HC,N0x)を三元触媒により清浄化し
て排出される。
FIG. 2 is a diagram showing the overall configuration of this device. In FIG. 2, 1 is an engine, intake air passes through an air cleaner 2 and an intake pipe 3, and fuel is injected from an injector (fuel injection means) 4 based on an injection signal Si. Then, the exhaust gas combusted in the cylinder is introduced into the catalytic converter 6 through the exhaust pipe 5, where the harmful components (Co, HC, NOx) in the exhaust gas are purified by a three-way catalyst and then discharged.

吸入空気の流11Qaはホットワイヤ式のエアフロメー
タフにより検出され、吸気管3内の絞弁8によって制御
される。なお、エアフロメータフのタイプとしては、ホ
ットフィルム式でもよく、要は吸入空気の流量を測定す
るものであればよい。
The intake air flow 11Qa is detected by a hot wire airflow meter and controlled by a throttle valve 8 in the intake pipe 3. Note that the type of airflow meter may be a hot film type, and in short, any type that measures the flow rate of intake air may be used.

したがって、フラップ弐のものでもよいが、本実施例で
は負圧センサは除かれる。なお、負圧センサを用いたシ
ステムに本発明を適用することばいっこうにかまわない
Therefore, although the second flap may be used, the negative pressure sensor is omitted in this embodiment. Note that the present invention may be applied to any system using a negative pressure sensor.

絞弁8の開度TVOは開度センサ9により検出され、エ
ンジン1の回転数Nはクランク角センサ10により検出
される。また、ウォータジャケットを流れる冷却水の温
度Twは水温センサ11により検出され、排気中の酸素
濃度は酸素センサ12により検出される。酸素センサ1
2としては、例えば特開昭61−241434号公報に
示したリッチからリーンまで検知可能センサ等が用いら
れる。さらに、スタータモータの作動はスタートスイッ
チ13により検出される。
The opening TVO of the throttle valve 8 is detected by an opening sensor 9, and the rotation speed N of the engine 1 is detected by a crank angle sensor 10. Further, the temperature Tw of the cooling water flowing through the water jacket is detected by a water temperature sensor 11, and the oxygen concentration in the exhaust gas is detected by an oxygen sensor 12. oxygen sensor 1
As the sensor 2, for example, a sensor that can detect from rich to lean as disclosed in Japanese Patent Application Laid-Open No. 61-241434 is used. Furthermore, the operation of the starter motor is detected by the start switch 13.

上記エアフロメータ7、開度センサ9、クランク角セン
サ10、水温センサ11、酸素センサ12およびスター
トスイッチ13は運転状態検出手段14を構成しており
、運転状態検出手段14からの出力はコントロールユニ
ット20に入力される。コントロールユニット20は判
定手段、同期噴射演算手段、非同期噴射演算手段、補正
率設定手段および移行補正量設定手段としての機能を有
し、CPU21、ROM22、RAM23およびIlo
、+5−ト24により構成される。CP U21はRO
M22に書き込まれているプログラムに従ってI10ボ
ート24より必要とする外部データを取り込んだり、ま
たRAM23との間でデータの授受を行ったりしながら
噴射量制御に必要な処理値を演算処理し、必要に応じて
処理したデータをI10ボート24へ出力する。I10
ボート24には運転状態検出手段14からの信号が人力
されるとともに、I10ポート24からは噴射信号St
が出力される。ROM22はCPU21における演算プ
ログラムを格納しており、RAM23は演算に使用する
データをマツプ等の形で記憶している。
The air flow meter 7, the opening sensor 9, the crank angle sensor 10, the water temperature sensor 11, the oxygen sensor 12, and the start switch 13 constitute an operating state detecting means 14, and the output from the operating state detecting means 14 is sent to a control unit 20. is input. The control unit 20 has functions as a determination means, a synchronous injection calculation means, an asynchronous injection calculation means, a correction factor setting means, and a transition correction amount setting means, and includes a CPU 21, a ROM 22, a RAM 23, and an Ilo
, +5-to 24. CPU U21 is RO
According to the program written in the M22, necessary external data is taken in from the I10 boat 24, and while data is exchanged with the RAM 23, the processing values necessary for injection amount control are calculated, and the necessary The data processed accordingly is output to the I10 boat 24. I10
A signal from the operating state detection means 14 is manually input to the boat 24, and an injection signal St is input from the I10 port 24.
is output. The ROM 22 stores calculation programs for the CPU 21, and the RAM 23 stores data used in calculations in the form of a map or the like.

次に、作用を説明する。Next, the effect will be explained.

本実施例のメインプログラムは第5図以降のように示さ
れるが、第5図のプログラムにおいて演算されるAVT
pはサブルーチンで演算される。
The main program of this embodiment is shown as shown in FIG. 5 and thereafter.
p is calculated in a subroutine.

説明の都合上、最初にAvTpを求めるサブルーチンか
ら述べる。
For convenience of explanation, the subroutine for determining AvTp will be described first.

第3図は平滑噴射1AvTpを求めるサブルーチンであ
る。
FIG. 3 is a subroutine for calculating smooth injection 1AvTp.

まず、Plでエアフロメータフの出力を読み込んで吸入
空気量Qaを求める。これは、例えばテーブルルックア
ップによる。次いで、P2で0式に従って平滑部基本パ
ルス幅Tpoを演算する。
First, the output of the air flow meter is read at Pl to determine the intake air amount Qa. This is for example by table lookup. Next, in P2, the smoothing part basic pulse width Tpo is calculated according to the formula 0.

次いで、P、でTpoを加重平均して基本パルス幅Tp
を演算する。これにより、エアフロメータフの出力に基
づく脈動が平滑化される。P4では次式〇に従ってフラ
ット修正基本パルス幅TrTpを求める。
Next, the basic pulse width Tp is obtained by weighted averaging Tpo by P.
Calculate. As a result, pulsations based on the output of the airflow meter are smoothed out. In P4, the flat corrected basic pulse width TrTp is determined according to the following equation.

T r T p =T p X Kflat  −−・
・−・00式において、KflatはフラットA/F補
正係数であり、回転数Nとα−N流量Qhoとにより割
付けられたマツプから補間計算付きで求める。なお、α
−N流量とは絞弁開度TVOと回転数Nから空気量を求
めるものであり、既に公知のものである。
T r T p = T p X Kflat --・
...In formula 00, Kflat is a flat A/F correction coefficient, which is obtained with interpolation from a map assigned by the rotational speed N and the α-N flow rate Qho. In addition, α
The -N flow rate is the amount of air determined from the throttle valve opening TVO and the rotational speed N, and is already known.

次いで、P、でTrTpを所定の最大リミット値T p
maxと比較し、T r T p >Tpmaxのとき
はP6でT r T pをTpmaxに制限してP、に
進み、7rTp≦TpmaxのときはP6をジャンプし
てP7に進む。P、ではα−N先取り補正パルス幅とし
ての遅れ修正パルス幅T HS T Pを求める。これ
は、α−N流量Qhoに基づき補間計算付きテーブルか
らルックアップした値TH3TPの10m5毎の変化量
として求める。但し、該変化量が補正判定レベル以下で
あれば、TH3TP=Oとし、変化量が負(減速)の場
合は変化量に所定の減速修正率を乗じて求める。THS
TPは絞弁8の変化を先取りして噴射量を応答性良く補
正する項である。次いで、P8で次式■に従って平滑噴
射1AvTp (平滑吸気量に対応)を求める。
Then, P, sets TrTp to a predetermined maximum limit value T p
max, when T r T p > Tpmax, limit T r T p to Tpmax at P6 and proceed to P, and when 7rTp≦Tpmax, jump from P6 and proceed to P7. P, the delay correction pulse width T HS T P as the α-N preemption correction pulse width is determined. This is determined as the amount of change every 10 m5 in the value TH3TP looked up from the table with interpolation calculation based on the α-N flow rate Qho. However, if the amount of change is below the correction determination level, TH3TP=O, and if the amount of change is negative (deceleration), the amount of change is multiplied by a predetermined deceleration correction rate. THS
TP is a term that anticipates changes in the throttle valve 8 and corrects the injection amount with good responsiveness. Next, in P8, the smooth injection 1AvTp (corresponding to the smooth intake air amount) is determined according to the following equation (2).

AvTp=TrTpxFLOAD+AvTp−+X (
1−Fl、0AD)+TH3TP・・・・・・■ 0式において、FLOADは加重平均係数であり、FL
OAD=TFLOAD+に2D (減速のみ)によって
与えられる。TFLOADは吸気ボリウムのみの関数と
するため、絞弁8によって決まる流量面積AAと(排気
量×回転数)NVMとからマツプにより求める。したが
って、0式の第1項および2項はエアフロメータフの出
力を脈動修正した値に基づいて演算されたフラット修正
基本パルス幅TrTpについて、FLOADを用いて加
重平均した値、言い換えればTrTpの一次遅れを計算
により(ソフトにより)算出する部分に相当する。また
、0式の第3項は絞弁開度TVOによる先取り補正の部
分であり、この部分は先願には無(、本実施例で初めて
開示するものである。
AvTp=TrTpxFLOAD+AvTp-+X (
1-Fl, 0AD) + TH3TP...■ In formula 0, FLOAD is a weighted average coefficient, and FL
OAD=TFLOAD+ given by 2D (deceleration only). Since TFLOAD is a function only of the intake volume, it is determined by a map from the flow area AA determined by the throttle valve 8 and (displacement amount x rotational speed) NVM. Therefore, the first and second terms of Equation 0 are the weighted average values using FLOAD of the flat corrected basic pulse width TrTp calculated based on the pulsation corrected value of the output of the airflow meter, in other words, the first order of TrTp. This corresponds to the part where the delay is calculated (by software). Furthermore, the third term in Equation 0 is a preemptive correction based on the throttle valve opening TVO, and this part is not found in the prior application (but is disclosed for the first time in this embodiment).

このような第3項のTHSTPを加えた効果は第4図の
ように示される。第4図において、あるタイミングで加
速した場合、絞弁開度の変化にやや遅れて基本パルス幅
Tpo、Tpが変化し、Tpo、Tpを修正した波形は
フラット修正基本パルス幅TrTpとして第4図のよう
に変化する。
The effect of adding the third term THSTP is shown in FIG. In Fig. 4, when acceleration occurs at a certain timing, the basic pulse widths Tpo and Tp change slightly after the change in the throttle valve opening, and the waveform obtained by correcting Tpo and Tp is shown as a flat corrected basic pulse width TrTp in Fig. 4. It changes like this.

一方、α−N流量は絞弁8の開き具合に応じてステップ
的に変化しており、この開度変化量により遅れ修正パル
ス幅TH3TPが演算される。また、平滑噴射盪A v
 T pはTrTpの一次遅れで与えられ、T HS 
TPなしの従来の位相制御の場合は図中の一点鎖線で示
す変化となり、応答性に欠ける。このとき、吸入負圧は
破線で示され、噴射弁部(インジェクタ4部)の空気流
量に略等しいが、これとて絞弁8の開度変化に遅れなく
追随できるものではない。また、吸気ボリウムにより吸
気管3の壁面への燃焼付着量にも影響を与える。
On the other hand, the α-N flow rate changes stepwise according to the degree of opening of the throttle valve 8, and the delay correction pulse width TH3TP is calculated based on the amount of change in the degree of opening. Also, smooth jet Av
T p is given by the first-order delay of TrTp, and T HS
In the case of conventional phase control without TP, the change is shown by the dashed line in the figure, and responsiveness is lacking. At this time, the suction negative pressure is shown by a broken line and is approximately equal to the air flow rate of the injection valve section (injector 4 section), but this cannot follow the change in the opening degree of the throttle valve 8 without delay. In addition, the amount of combustion adhering to the wall surface of the intake pipe 3 is also influenced by the intake volume.

これに対して、本実施例のAVTpは図中実線で示すよ
うに、T !13 T Pなる補正項がα−Nの先取り
補正(10m Sの先取り補正)として加えられている
から、掻めて応答性が良く、実際の空気流量変化にマソ
ヂしたものとなる。なお、高地の例も図示している。
On the other hand, the AVTp of this embodiment is T! as shown by the solid line in the figure. Since a correction term of 13 TP is added as a pre-preparation correction of α-N (pre-preparation correction of 10 mS), the response is excellent and it is massed to actual air flow rate changes. An example of a highland area is also shown.

第5図は割込噴射のプログラムを示すフローチャートで
ある。まず、pHでスターl−スイッチ13がONであ
るか否かを判別し、スタートスイッチ13がONである
ときはクランキング中であると判断し、て今回のルーチ
ンを終了する。一方、スタートスイッチ13がONでな
いときは起動完了と判断しP1□以降のステップに進む
、P1□では次式■に従ってAVTpの変化量ΔAvT
pn (但し、nは気筒番号)を求める。ΔAvTp 
nはエンジン負荷の変化量に対応する。
FIG. 5 is a flowchart showing a program for interrupt injection. First, it is determined whether the star l-switch 13 is on based on the pH, and if the start switch 13 is on, it is determined that cranking is in progress, and the current routine is ended. On the other hand, when the start switch 13 is not ON, it is determined that the startup is complete and the process proceeds to steps after P1□.In P1□, the amount of change in AVTp ΔAvT according to the following formula ■
Find pn (where n is the cylinder number). ΔAvTp
n corresponds to the amount of change in engine load.

ΔAvTp=AvTp−AVTpozn ++++++
■但し、A v T p oinは前回の値(A v 
T p−〇のことであり、n番目の気筒に対応している
ΔAvTp=AvTp−AVTpozn +++++++
■However, A v T point is the previous value (A v T point
T p-〇 corresponds to the n-th cylinder.

次いで、PI3で変化量ΔAvTpnを割込み噴射判定
値LASN Iと比較する。ΔA v T p n <
LASN Iのときは割込み噴射を行う必要がないと判
断し、PI4で割込み噴射量(気筒別非同期噴射パルス
幅に相当)IN、JsETnを“0″としてPN2にジ
ャンプする。一方、ΔA V T p n≧LASNI
のときは割込み噴射を行う必要があると判断し、次いで
PI5で急加速か否かを判別する。
Next, at PI3, the amount of change ΔAvTpn is compared with the interrupt injection determination value LASN I. ΔA v T p n <
When LASN I, it is determined that there is no need to perform interrupt injection, and at PI4, the interrupt injection amount (corresponding to cylinder-specific asynchronous injection pulse width) IN and JsETn are set to "0" and jump to PN2. On the other hand, ΔA V T p n≧LASNI
In this case, it is determined that it is necessary to perform an interrupt injection, and then the PI5 determines whether or not there is sudden acceleration.

急加速のときはPI6で急加速用のテーブルから非同期
噴射の噴射時期補正率GZCYLをルックアップし、急
加速でないときはP、で緩加速用のテーブルから噴射時
期補正率GZCLSをルックアップする。GZCYL、
GZCLSは非同期噴射タイミング中において燃料噴射
量を補正するものである。次いで、pH1で割込噴射1
1NJsETnを次式■に従って演算する。
When there is sudden acceleration, the injection timing correction factor GZCYL for asynchronous injection is looked up from the table for sudden acceleration using PI6, and when the acceleration is not sudden, the injection timing correction factor GZCLS is looked up from the table for slow acceleration using P. GZCYL,
GZCLS is for correcting the fuel injection amount during asynchronous injection timing. Then, interrupt injection 1 at pH 1
1NJsETn is calculated according to the following equation (2).

rNJSETn=ΔAvTp nXGZTwXGZCY
n+Ts  ・・・・・・00式において、GZTwは
気箇別非同期噴射の水温補正率であり、第6図に示すよ
うなテーブルマツプに基づき第7図に示すバンクグラウ
ンドジョブのステップP31で冷却水温′rWをパラメ
ータとしてルックアップにより求められる。また、■式
中GZCYnは前記噴射時期修正率GZCYLおよびG
ZCLSを総括して表すものであり、TSはインジェク
タ4のむだ時間修正係数である。
rNJSETn=ΔAvTp nXGZTwXGZCY
n+Ts...In formula 00, GZTw is the water temperature correction factor for asynchronous injection by air, and the cooling water temperature is adjusted in step P31 of the bank ground job shown in Fig. 7 based on the table map shown in Fig. 6. It is determined by lookup using 'rW as a parameter. In addition, GZCYn in the formula (■) is the injection timing correction rate GZCYL and G
It represents ZCLS in general, and TS is the dead time correction coefficient of the injector 4.

次いで、Pl’lで今回の非同期噴射のタイミングが同
期噴射と吸気行程との間(以下、この区間をB区間とい
う)にあるか否かを判別する。なお、非同期噴射のタイ
ミングが吸気行程と同期噴射との間にある場合は、A区
間にあると表現し、Δ、8間区間は第9図のように示さ
れる。
Next, at Pl'l, it is determined whether the timing of the current asynchronous injection is between the synchronous injection and the intake stroke (hereinafter, this section will be referred to as section B). Note that when the timing of asynchronous injection is between the intake stroke and synchronous injection, it is expressed as being in section A, and the section between Δ and 8 is shown as shown in FIG.

B区間にあるとき、すなわち、pH9でNo分岐に伴う
ときはP2゜で次式〇に従って補正量(非同期移行化パ
ルス幅であり、請求の範囲にいう同期移行補正量に相当
する)、ERACInを演算する。
When it is in section B, that is, when there is a No branch at pH 9, the correction amount (which is the asynchronous transition pulse width and corresponds to the synchronous transition correction amount in the claims) is set at P2° according to the following formula 〇. calculate.

ERACI n =ΔAvTp nXGZTwx (G
ZCYn−ERACPH) 十ERACI n ’  ・・・・・・■但し、ERA
Crn’:前回の値 0式においてERACPHは非同期噴射移行化基準補正
率であり、壁流にとられる壁流分のみをまかなうための
倍率である。したがって、例えばGZCYnがE RA
 CP Hより大の場合はERACInはプラスとなり
、その差の倍率で次の同期噴射をERACI nにより
減量させる。これは、負荷増大に対応する空気量の増加
については次回の同期噴射で間に合うから、壁流分の補
正のみとするためである。なお、ERACI n ’は
比較的速い時定数で変化する壁流補正分、いわゆる高周
波分に相当する。
ERACI n =ΔAvTp nXGZTwx (G
ZCYn-ERACPH) 10ERACI n' ・・・・・・■However, ERA
Crn': Previous value 0 In the equation, ERACPH is the asynchronous injection transition standard correction factor, and is a magnification for covering only the wall flow portion taken by the wall flow. Therefore, for example, GZCYn is E RA
If it is larger than CPH, ERACIn becomes positive, and the next synchronous injection is reduced by ERACIn by the magnification of the difference. This is because the next synchronous injection will be enough to compensate for the increase in air amount corresponding to the increase in load, so only the wall flow is corrected. Note that ERACI n ′ corresponds to a wall flow correction component that changes with a relatively fast time constant, a so-called high frequency component.

一方、pH9でB区間にないときはPH1で次式■に従
って増量補正率ERACI nを演算する。
On the other hand, when the pH is 9 and not in the B section, the increase correction rate ERACI n is calculated at PH 1 according to the following equation (2).

ERACIn=ΔAvTp nXGZTwx (GZC
Yn−ERACP) +ERACI n ’ −−−−−一■ここで、ERA
CPはERACPHと異なり、璧流分に空気■の増加も
加えた非同期噴射移行化基準補正率である。ここでは次
の吸気の同期噴射は終了した区間であるため、空気量増
加もまかなわなくてはならず、また空気量の増加分を噴
射したからといって、次の同期噴射(次の次の吸気分)
を減らす必要はないためであり、そのためERACPは
ERACPHより大とするものである。
ERACIn=ΔAvTp nXGZTwx (GZC
Yn-ERACP) +ERACI n' --------1 ■Here, ERA
Unlike ERACPH, CP is an asynchronous injection transition standard correction factor that also adds an increase in air to the perfect flow. Since this is the section where the next intake synchronous injection has finished, the increase in air volume must also be compensated for, and even if the increased air volume is injected, the next synchronous injection (the next Inhalation feeling)
This is because there is no need to reduce ERACP, and therefore ERACP is set larger than ERACPH.

したがって、0式においてERACPは同じく非同期噴
射移行化基準補正率であるが、この場合は同期噴射から
の空気量増加分も割込みに加える必要があるため、割込
み噴射と、同期噴射を合せたトータル増量分は、 トータル増量分−壁流+空気増加分 −ERACP XGZTw ×ΔAvTp という関係になる。次いで、P2□で今回のAV’rp
を田植AvTpoinとし、PX3で6気筒共終了した
か否かを判別する。終了していないときはpH2に戻り
、終了するとpH4で割込噴射1rNJSETnを出力
ポートにセントし、割込噴射を実行する。
Therefore, in formula 0, ERACP is also the asynchronous injection transition standard correction factor, but in this case, the increase in air amount from synchronous injection must also be added to the interruption, so the total increase in amount for interruption injection and synchronous injection is The relationship is as follows: total increase - wall flow + air increase - ERACP XGZTw x ΔAvTp. Next, this AV'rp on P2□
is set as Taue AvTpoint, and it is determined whether or not all 6 cylinders have finished in PX3. If it is not completed, the pH returns to 2, and when it is completed, the interrupt injection 1rNJSETn is sent to the output port at pH 4, and the interrupt injection is executed.

第8図は同期噴射のプログラムを示すフローチャートで
あり、本プログラムはエンジン回転に同期して実行され
る。まず、P41で同期噴射量Tiを次式■に従って演
算する。
FIG. 8 is a flowchart showing a synchronous injection program, and this program is executed in synchronization with engine rotation. First, in P41, the synchronous injection amount Ti is calculated according to the following equation (2).

Ti−(AvTpxαm+Kathos)xα+Ts 
+ (Ch o s n−ERAC1n) ・・・・・
・■ 0式において、)(athosは比較的遅い時定数で変
化する壁流補正分(いわゆる低周波分)であり、正負の
値を有し、燃料の付着速度V社〔ms〕と補正率Ghf
(%〕の関数で与えられる。
Ti-(AvTpxαm+Kathos)xα+Ts
+ (Chos n-ERAC1n) ・・・・・・
・■ In formula 0, ) (athos is the wall flow correction component (so-called low frequency component) that changes with a relatively slow time constant, has positive and negative values, and is dependent on the fuel deposition speed V [ms] and the correction factor. Ghf
It is given as a function of (%).

αは酸素センサ12の出力に基づく空燃比のλ制御補正
係数であり、αmは混合比学習制御補正係数である。ま
た、Chosnは気筒別壁流補正量であり、 Ch o s n=ΔAvTpnXGZTWP(又はG
ZTWM)・・・・・・[相]なる式によって与えられ
る。但し、GZTWPは加速時の水温補正係数、GZT
WMは減速時の水温補正係数である。次いで、P4□で
同期噴射iTiを出力ボートにセントし、同期噴射を実
行する。
α is an air-fuel ratio lambda control correction coefficient based on the output of the oxygen sensor 12, and αm is a mixture ratio learning control correction coefficient. In addition, Chosn is the wall flow correction amount for each cylinder, and Chosn=ΔAvTpnXGZTWP (or G
ZTWM)...[phase] is given by the formula. However, GZTWP is the water temperature correction coefficient during acceleration, GZT
WM is a water temperature correction coefficient during deceleration. Next, at P4□, the synchronous injection iTi is sent to the output port, and synchronous injection is executed.

その後、Pd2でERACIn=Qにリセットし、P4
4で今回のAVTpを田植AvTpoinと置いてルー
チンを終了する。
After that, Pd2 resets ERACIn=Q, and P4
In step 4, the current AVTp is set as the Taue AvTpoin and the routine ends.

上記各プログラムの実行による実際の噴射状況は第9図
のタイミングチャートのように示される。
The actual injection situation resulting from the execution of each of the above programs is shown in the timing chart of FIG.

エンジン負荷(すなわち空気量でAVTpに相当)がタ
イミングL、で変化した場合と、タイミングt2で変化
した場合を例に採ると、タイミング1.では割込噴射が
B区間で行われ、タイミングL2では割込噴射がA区間
で行われる。
Taking as an example the case where the engine load (that is, the air amount equivalent to AVTp) changes at timing L and the case where it changes at timing t2, consider timing 1. Then, the interrupt injection is performed in the B section, and at timing L2, the interrupt injection is performed in the A section.

−司玉C笥」コ付’   −4h   −9*(a)の
11人)このときは負荷の増加に伴う空気量の変化分(
Δ空気量分)は次回の同期噴射のAVTpに含まれるた
め、壁流分のみを割込噴射すればよく、その噴射fft
 I N J S T nは0式で演算される。なお、
噴射時間補正率CZCYL、CZCLSと噴射タイミン
グとの関係は第10図のように示される。
-4h -9*11 people in (a)) At this time, the change in air volume due to the increase in load (
Δair amount) is included in the AVTp of the next synchronous injection, so it is only necessary to perform interrupt injection of the wall flow, and the injection fft
I N J S T n is calculated using the 0 formula. In addition,
The relationship between the injection time correction factors CZCYL and CZCLS and the injection timing is shown in FIG.

例えば、割込み噴射のGZCYnがERACPHよりも
大きい分は噴き過ぎとしてERACI nにより同期噴
射は減量される。それは第8図のプログラムによって同
期噴射が実行される。したがって、該同期噴射では第9
図(a)にハンチングで示す部分が増量補正量ERAC
I nとして減量される。なお、割込噴射した壁流分は
図に示すように以後の吸気行程毎に順次減少していく。
For example, if GZCYn of the interrupt injection is larger than ERACPH, the synchronous injection is considered to be over-injected and reduced by ERACI n. The synchronous injection is executed by the program shown in FIG. Therefore, in the synchronous injection, the ninth
The part shown by hunting in Figure (a) is the increase correction amount ERAC.
It is reduced as I n. Note that the wall flow portion resulting from the interruption injection gradually decreases with each subsequent intake stroke, as shown in the figure.

したがって、割込み噴射のタイミングにより定まるGZ
CYnが空気増加分も、もし、含めるならば、ERAC
PHより大きい分となり、次の同期噴射から空気増加分
は減量されることとなる。同期噴射のタイミングが吸気
直前にある場合、同期噴射分がその吸気には少ない割合
しか吸入されないため、むしろ空気増加分も割込み噴射
で早めに噴いた方が、次のリーン化を防止したうえで次
の次の吸気のリッチ化を防止できる。
Therefore, GZ determined by the timing of interrupt injection
If CYn also includes air increment, ERAC
This amount is greater than the PH, and the amount of air increase will be reduced from the next synchronous injection. If the timing of synchronous injection is just before intake air, only a small proportion of the synchronous injection will be inhaled into the intake air, so it would be better to inject the air increase earlier with interrupt injection to prevent the next lean. It is possible to prevent the subsequent intake air from becoming richer.

同期噴射タイミングが吸気行程より十分前にある場合そ
の必要性は少ない。
There is little need for this if the synchronous injection timing is well in advance of the intake stroke.

いずれにせよ、ERACPH(倍)XGZTW(倍)が
割込み噴射と次の減量を合せた総補正倍率となる。
In any case, ERACPH(times)XGZTW(times) becomes the total correction magnification including the interrupt injection and the next reduction.

込1副込1u打rグ&     9E  b  (’)
−場W−このときは負荷の増加に伴う空気量の変化分が
今回の割込噴射に一1mに加えられる。すなわち、前回
の同期噴射以後の空気量増加分も割込噴射量に反映され
、ERACI nは前記0式に従って演算される。この
場合のERACI nは第10図に示すようにB RA
 CP IIよりも空気量増加分だけ、値の大きいER
ACPに基づいて演算される。したがって、次の同期噴
射の減量ERAcInは割込み噴射により壁流が増え過
ぎた分のみをJffiすることとなる。そのため、次回
の同期噴射で図に示すハンチングの部分のみが小さくな
るパルス幅に演算される。すなわち、次回の同期噴射間
が減量補正される。したがって、非同期噴射Vが不足す
るという事態は全くな(、また、同期噴射間も適切に減
量されるため、空燃比が気筒別に最適な状態となり、空
燃比のフラット性が確保される。
Include 1 sub-include 1u rg & 9E b (')
-Field W- At this time, the change in air amount due to the increase in load is added to the current interrupt injection by 1m. That is, the increase in air amount since the previous synchronous injection is also reflected in the interrupt injection amount, and ERACI n is calculated according to the above formula 0. In this case, ERACI n is B RA
The ER value is larger than that of CP II by the amount of air increase.
Calculated based on ACP. Therefore, the reduction ERAcIn of the next synchronous injection is Jffi only for the excessive increase in wall flow due to the interrupt injection. Therefore, in the next synchronous injection, the pulse width is calculated such that only the hunting portion shown in the figure becomes smaller. In other words, the amount during the next synchronous injection is corrected to be reduced. Therefore, there is never a situation where the amount of asynchronous injection V becomes insufficient (also, since the amount is appropriately reduced between synchronous injections, the air-fuel ratio becomes optimal for each cylinder, and the flatness of the air-fuel ratio is ensured.

なお、第5図のステップP2゜、Palによる演算では
00式のような例に限らず、例えば次式0に従ってER
ACI nを演算するようにしてもよい。
Note that in step P2゜ in FIG.
ACI n may also be calculated.

ERACI n−ΔAvTpxGZTwx (G Z 
C’/ n −E RA CP H)−ΔAvTp +
ERACI n ’ ・・・・・・0 0式ではAAvTp項が空気量変化分として減じられて
いるが、これは第9図(b)の場合に限られ(A)の場
合は一ΔAvTpは必要ない。
ERACI n-ΔAvTpxGZTwx (G Z
C'/n-ERACPH)-ΔAvTp+
ERACI n'...0 In the 0 formula, the AAvTp term is subtracted as the air amount change, but this is only in the case of Fig. 9 (b), and in the case of (A), -ΔAvTp is necessary. do not have.

以上のことから、非同期噴射のタイミングに応じて気筒
別にきめ細かく燃料噴射の補正が行われることとなり、
先願例に対して気筒別に空燃比のリンチ、リーンが発生
せずフラット性を確保してエミッション特性のヒゲも防
止することができる。
Based on the above, fuel injection will be finely corrected for each cylinder depending on the timing of asynchronous injection.
Unlike the example of the prior application, the air-fuel ratio does not lynch or lean for each cylinder, ensuring flatness and preventing deviations in emission characteristics.

その結果、特に三元触媒の転化効率を高めることができ
る。
As a result, the conversion efficiency of the three-way catalyst in particular can be increased.

(発明の効果) 本発明によれば、非同期噴射のタイミングが次回の吸気
行程に対応する同期噴射よりも早期か後期かによって次
回の同期噴射量の補正を切換えているので、気筒別に非
同期噴射量および次回の同期噴射量を適切なものとして
空燃比のフラット性を高めることができ、エミソシジン
特性のヒゲを防止することができる。その結果、本装置
を適用したエンジンにあっては三元触媒の転化効率を高
めることができる。
(Effects of the Invention) According to the present invention, since the correction of the next synchronous injection amount is switched depending on whether the timing of the asynchronous injection is earlier or later than the synchronous injection corresponding to the next intake stroke, the amount of the asynchronous injection is changed for each cylinder. Furthermore, by setting the next synchronous injection amount to an appropriate value, it is possible to improve the flatness of the air-fuel ratio, and it is possible to prevent emisocidine characteristics. As a result, in an engine to which this device is applied, the conversion efficiency of the three-way catalyst can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本概念図、第2〜io図は本発明に
係る内燃機関の燃料噴射制御装置の一実施例を示す図で
あり、第2図はその全体構成図、第3図はその平滑噴射
量を演算するサブルーチンを示すフローチャート、第4
図は平滑噴射量に基づく作用を説明するタイミングチャ
ート、第5図はその割込噴射のプログラムを示すフロー
チャート、第6図はその水温補正率の特性を示す図、第
7図は水温補正率をルックアンプするサブルーチンを示
すフローチャート、第8図は同期噴射のプログラムを示
すフローチャート、第9図はその割込噴射の作用を説明
するタイミングチャート、第10図はその各種補正量の
特性を示す図である。 1・・・・・・エンジン、 4・・・・・・インジェクタ(、燃料噴射手段)、14
・・・・・・運転状態検出手段、 20・・・・・・コントロールユニット(判定手段、同
期噴射演算手段、非同期噴射演算手段、補正率設定手段
、移行補正量設定手段)。
Figure 1 is a basic conceptual diagram of the present invention, Figures 2 to io are diagrams showing an embodiment of the fuel injection control device for an internal combustion engine according to the present invention, Figure 2 is an overall configuration diagram thereof, and Figure 3 is a diagram showing an embodiment of the fuel injection control device for an internal combustion engine according to the present invention. 4 is a flowchart showing a subroutine for calculating the smooth injection amount.
The figure is a timing chart explaining the effect based on the smooth injection amount, Figure 5 is a flowchart showing the interrupt injection program, Figure 6 is a diagram showing the characteristics of the water temperature correction factor, and Figure 7 is the water temperature correction factor. FIG. 8 is a flowchart showing the look amplification subroutine, FIG. 8 is a flowchart showing the synchronous injection program, FIG. 9 is a timing chart explaining the effect of the interrupt injection, and FIG. 10 is a diagram showing the characteristics of the various correction amounts. be. 1...Engine, 4...Injector (fuel injection means), 14
... Operating state detection means, 20 ... Control unit (determination means, synchronous injection calculation means, asynchronous injection calculation means, correction rate setting means, transition correction amount setting means).

Claims (1)

【特許請求の範囲】 a)エンジンの運転状態を検出する運転状態検出手段と
、 b)エンジンの運転状態からエンジン負荷の変化量を求
め、該エンジン負荷の変化量に基づいて回転毎の同期噴
射とは別に非同期噴射を行うか否かを判定する判定手段
と、 c)エンジンの運転状態に基づいて回転毎の同期噴射量
を演算し、非同期噴射があると、次回の同期噴射量を同
期移行補正量に応じて補正する同期噴射演算手段と、 d)非同期噴射を行うことが判定されたとき、前記エン
ジン負荷の変化量に基づいて気筒別に非同期噴射量を演
算し、該非同期噴射量を噴射時期補正率に応じて補正す
る非同期噴射演算手段e)非同期噴射のタイミングに応
じて前記噴射時期補正率を設定する補正率設定手段と、 f)非同期噴射を行うことが判定されたとき、非同期噴
射のタイミングが次回の吸気行程に対応する同期噴射よ
りも早期か後期かに応じて前記同期移行補正量を設定す
る移行補正量設定手段と、 g)同期噴射演算手段および非同期噴射演算手段の出力
に基づいて燃料を噴射する燃料噴射手段と、 を備えたことを特徴とする内燃機関の燃料噴射制御装置
[Scope of Claims] a) Operating state detection means for detecting the operating state of the engine; b) Determining the amount of change in engine load from the operating state of the engine, and performing synchronous injection for each revolution based on the amount of change in engine load. c) Calculates the synchronous injection amount for each revolution based on the operating state of the engine, and if there is an asynchronous injection, transfers the next synchronous injection amount to synchronous. d) when it is determined to perform asynchronous injection, calculates an asynchronous injection amount for each cylinder based on the amount of change in the engine load, and injects the asynchronous injection amount; Asynchronous injection calculation means for correcting according to the timing correction factor; e) correction factor setting means for setting the injection timing correction factor according to the timing of the asynchronous injection; and f) when it is determined to perform the asynchronous injection, the asynchronous injection is performed. g) transition correction amount setting means for setting the synchronous transition correction amount according to whether the timing of the synchronous injection corresponding to the next intake stroke is earlier or later than the synchronous injection corresponding to the next intake stroke; 1. A fuel injection control device for an internal combustion engine, comprising: a fuel injection means for injecting fuel based on the fuel injection means;
JP13670088A 1988-06-03 1988-06-03 Fuel injection control device for internal combustion engine Expired - Fee Related JP2591069B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13670088A JP2591069B2 (en) 1988-06-03 1988-06-03 Fuel injection control device for internal combustion engine
US07/360,813 US4922877A (en) 1988-06-03 1989-06-02 System and method for controlling fuel injection quantity for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13670088A JP2591069B2 (en) 1988-06-03 1988-06-03 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH01305144A true JPH01305144A (en) 1989-12-08
JP2591069B2 JP2591069B2 (en) 1997-03-19

Family

ID=15181435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13670088A Expired - Fee Related JP2591069B2 (en) 1988-06-03 1988-06-03 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2591069B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5765533A (en) * 1996-04-18 1998-06-16 Nissan Motor Co., Ltd. Engine air-fuel ratio controller
EP1645744A2 (en) 2004-10-08 2006-04-12 Nissan Motor Co., Ltd. Fuel injection control of engine
JP2007247629A (en) * 2006-03-20 2007-09-27 Nissan Motor Co Ltd Fuel injection control device
WO2012090991A1 (en) 2010-12-27 2012-07-05 日産自動車株式会社 Internal combustion engine control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5765533A (en) * 1996-04-18 1998-06-16 Nissan Motor Co., Ltd. Engine air-fuel ratio controller
EP1645744A2 (en) 2004-10-08 2006-04-12 Nissan Motor Co., Ltd. Fuel injection control of engine
US7092813B2 (en) 2004-10-08 2006-08-15 Nissan Motor Co., Ltd. Fuel injection control of engine
JP2007247629A (en) * 2006-03-20 2007-09-27 Nissan Motor Co Ltd Fuel injection control device
WO2012090991A1 (en) 2010-12-27 2012-07-05 日産自動車株式会社 Internal combustion engine control device

Also Published As

Publication number Publication date
JP2591069B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
JP3926522B2 (en) Intake control device for turbocharged engine
JPS62162746A (en) Air-fuel ratio control device
US5450837A (en) Apparatus and method for controlling the air-fuel ratio of an internal combustion engine
JP3768780B2 (en) Air-fuel ratio control device for internal combustion engine
JP3791032B2 (en) Fuel injection control device for internal combustion engine
JPH0460132A (en) Fuel control device of engine
JPH01305144A (en) Fuel injection controller of internal combustion engine
JPH01305142A (en) Fuel injection controller of internal combustion engine
JP2696444B2 (en) Fuel supply control device for internal combustion engine
JPH1162658A (en) Control device for internal combustion engine
JPH09287494A (en) Controller for internal combustion engine having electronically controlled throttle
JP2668940B2 (en) Fuel supply control device for internal combustion engine
JP3692629B2 (en) Engine air-fuel ratio control device
JPH0719090A (en) Stability controller of engine
JPH01211648A (en) Fuel injection controller of internal combustion engine
JPH0830441B2 (en) Fuel supply control device for internal combustion engine
JP5206221B2 (en) Method and system for controlling the fuel supply of an internal combustion engine
JPH01244139A (en) Fuel feed control device for internal combustion engine
JPH0612233Y2 (en) Air-fuel ratio controller for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0211839A (en) Fuel injection controller for internal combustion engine
JP2958595B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPH02108827A (en) Fuel injection controller for two-cycle internal combustion engine
JPS62162742A (en) Air-fuel ratio control device
JPS62203948A (en) Air-fuel ratio control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees