JPH01298763A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPH01298763A
JPH01298763A JP63131028A JP13102888A JPH01298763A JP H01298763 A JPH01298763 A JP H01298763A JP 63131028 A JP63131028 A JP 63131028A JP 13102888 A JP13102888 A JP 13102888A JP H01298763 A JPH01298763 A JP H01298763A
Authority
JP
Japan
Prior art keywords
field effect
capacitive element
type
drain
effect transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63131028A
Other languages
Japanese (ja)
Inventor
Shinken Okawa
大川 真賢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63131028A priority Critical patent/JPH01298763A/en
Publication of JPH01298763A publication Critical patent/JPH01298763A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78612Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device for preventing the kink- or the snapback effect, e.g. discharging the minority carriers of the channel region for preventing bipolar effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Static Random-Access Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To restrain kink phenomena, strengthen resistance to noise and enable maintenance of storage by adding a capacitive element into a storage element. CONSTITUTION:A capacitive element is constituted of a P-type MOSFET's channel 2, an insulating film 14 and a grounding wiring 9. When voltage is applied to terminals D and G with a terminal S earthed and a terminal B floated, the drain voltage current characteristics show kink phenomena in which currents increase abnormally in a saturation region. By giving potential to the terminal B, the capacitive element functions and draws hot carriers generated in the channel by impact ionization toward the terminal B and reduces the effect on the drain currents flowing on the channel surface on the side of and gate electrode G and restrains the kink phenomena.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体記憶回路装置、特に記憶素子の高密度集
積化に最適なSOI (Sil 1conon  In
5ulator)構造の素子を記憶素子内に有するMO
5型スタティックRAM (以下、SRAMと略す)に
関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to semiconductor memory circuit devices, particularly SOI (Sil 1conon In
MO having an element of 5ulator) structure in the memory element
The present invention relates to a 5-type static RAM (hereinafter abbreviated as SRAM).

[従来の技術] 第3a図はMOS型SRAMの記憶素子の回路図である
。通常のCMO5(相補型MO9)型のSRAMでは、
T1及びT2はP型MO9電界効果トランジスタ(以下
、FET)T3及′UT4はN型MOSFETにより構
成され、T1及びT3て構成される第1のCMOSイン
バータ、T2及びT4て構成される第2のCMOSイン
バータが互いに人力と出力とを接続されているので、双
安定性を有する記憶動作が可能である。
[Prior Art] FIG. 3a is a circuit diagram of a memory element of a MOS type SRAM. In normal CMO5 (complementary MO9) type SRAM,
T1 and T2 are P-type MO9 field effect transistors (hereinafter referred to as FETs), and T3 and 'UT4 are N-type MOSFETs. Since the CMOS inverters are connected power and output to each other, storage operation with bistable properties is possible.

ここて、T5及びT6は記憶素子と、外部回路とを接続
する動作を行うゲート素子であり、通常N型MO3FE
Tで構成される。またVは電源電位、Gは接地電位に接
続される。第3b図は第3a図中のT1のP型MO5F
ETとT3のN型MOSFETより構成される第1のイ
ンバータの断面構造を示している。高集積度のSRAM
では素子の占有面積を縮小させるために素子内のP型M
O5FETをSol (Silicon  on  1
nsulator)で構成することが多い。第3b図の
30はP型シリコン基板、33はゲート電極、31A、
31Bは共に102”−10” c m−3の不純物濃
度のN型拡散層、34はゲート絶縁膜で、30,33,
34.31A、31Bであり、第3a図のT3ON型M
OSFETを構成する。
Here, T5 and T6 are gate elements that operate to connect the storage element and an external circuit, and are usually N-type MO3FE.
Consists of T. Further, V is connected to a power supply potential, and G is connected to a ground potential. Figure 3b shows the P-type MO5F of T1 in Figure 3a.
It shows a cross-sectional structure of a first inverter composed of an N-type MOSFET of ET and T3. Highly integrated SRAM
Then, in order to reduce the area occupied by the element, the P-type M inside the element is
O5FET Sol (Silicon on 1
nsulator). 30 in FIG. 3b is a P-type silicon substrate, 33 is a gate electrode, 31A,
31B is an N-type diffusion layer with an impurity concentration of 102"-10" cm-3, 34 is a gate insulating film, and 30, 33,
34.31A, 31B, T3ON type M in Figure 3a
Configure OSFET.

ここで31Aは第3a図の接地電位Gに接続される。一
方、第3b図において32はシリコン薄膜、32A、3
2Bは32のシリコン薄膜中に形成された1 019〜
10 ” c m−3の不純物濃度のP型拡散層、35
はゲート絶縁膜て33.35.32A。
Here, 31A is connected to ground potential G in FIG. 3a. On the other hand, in FIG. 3b, 32 is a silicon thin film, 32A, 3
2B is 1019~ formed in the silicon thin film of 32
P-type diffusion layer with impurity concentration of 10” cm−3, 35
The gate insulating film is 33.35.32A.

32Bで第3a図のT1のP型MOSFETをSoIて
構成する。ここで32Aは第3a図の電源電位Vに接続
されろ。第3b図において、36は第3a図のT2のP
型MO5FET、T4のN型MOSFETより構成され
る第2のインバータのゲート電極であり、31B、32
Bと接続される。
32B constitutes the P-type MOSFET of T1 in FIG. 3a as an SoI. Here, 32A is connected to the power supply potential V in FIG. 3a. In Figure 3b, 36 is P of T2 in Figure 3a.
This is the gate electrode of the second inverter composed of a type MO5FET and a T4 N type MOSFET, and
Connected to B.

37は絶縁膜である。37 is an insulating film.

[発明が解決しようとする問題点コ 上述した従来のSOI素子を有するMOS型SRAMの
記憶素子では、Solのチャンネル(第3b図では33
)は電位が固定されていないフローティング状態である
。したがって、ドレイン及びゲートの電位の状態により
、インパクトイオン化が起きて多量のホットキャリアを
発生し、異常なトレイン電流を流すSOI素子特有のキ
ング現象を引き起こし、素子の劣化を引き起こす原因と
なっていた。
[Problems to be Solved by the Invention] In the storage element of the MOS type SRAM having the conventional SOI element described above, the Sol channel (33 in FIG. 3b)
) is in a floating state where the potential is not fixed. Therefore, depending on the potential state of the drain and gate, impact ionization occurs and a large amount of hot carriers are generated, causing a king phenomenon peculiar to SOI devices that causes abnormal train current to flow, and causing deterioration of the device.

また、SOIを構成するシリコン薄膜に多結晶シリコン
等を用い、P型MO5FETの電流駆動能力が単結晶シ
リコンに比べて劣る場合、高電位を出力しているインバ
ータがα線等のノイズによって蓄えられていた電荷を流
失して出力が反転し、記憶保持動作を不可能にしてしま
う欠点があった。
In addition, if polycrystalline silicon or the like is used as the silicon thin film constituting the SOI, and the current driving ability of the P-type MO5FET is inferior to that of single-crystal silicon, the inverter outputting a high potential will be affected by the accumulation of noise such as alpha rays. This had the disadvantage that the stored charge was washed away and the output was reversed, making the memory retention operation impossible.

[発明の従来技術に対する相違点コ 上述した従来のSOI構造を有するMOS型SRAMの
記憶素子に対して、本発明は記憶素子内に容量性素子を
付加することにより、Sol構造に特有にキンク現象を
おさえ、あるいはノイズに対する耐性を強化し、記憶の
保持を可能にするという相違点を有する。
[Differences between the invention and the prior art] The present invention adds a capacitive element to the storage element of the MOS type SRAM having the conventional SOI structure as described above, thereby eliminating the kink phenomenon unique to the Sol structure. The difference is that it suppresses noise, strengthens resistance to noise, and enables memory retention.

[問題点を解決するための手段] 本発明の半導体記憶装置は、半導体基板主表面に形成さ
れた第1導電型の第1及び第2のMOSFETと、シリ
コン薄膜中に形成された第2導電型の第3及び第4のM
OSFETより成り、該第3及び第4のMOSFETは
それぞれ、該第1及び第2のMOSFETの上部に配置
され、該第1及び第3のMOSFETのゲート電極は第
1の導電層で共通に形成され、該第2及び第4のMOS
FETのゲート電極は第2の導電層で共通に形成され、
該第1及び第2のMOSFETのソースは第1の電源に
、また、該第3及び第4のMOSFETのソースは第2
の電源に接続され、該第1及び第3のMOSFETのト
レインと該第2の導電層を共通に接続した第1の領域と
、該第2及び第4のMOSFETのドレインと該第1の
導電層を共通に接続した第2の領域を有し、第1及び第
2の容量性素子を有し、該第1の容量性素子は、該第3
のMOSFETのチャンネル領域と該第1の電源の間に
、また、該第2の容量性素子は該第4のMOSFETの
チャンネル領域と該第1の電源の間に設けた特徴を有す
る。
[Means for Solving the Problems] The semiconductor memory device of the present invention includes first and second MOSFETs of a first conductivity type formed on the main surface of a semiconductor substrate, and a second conductivity type MOSFET formed in a silicon thin film. 3rd and 4th M of mold
The third and fourth MOSFETs are respectively arranged on top of the first and second MOSFETs, and the gate electrodes of the first and third MOSFETs are formed in common with the first conductive layer. and the second and fourth MOS
A gate electrode of the FET is formed in common with the second conductive layer,
The sources of the first and second MOSFETs are connected to a first power supply, and the sources of the third and fourth MOSFETs are connected to a second power supply.
a first region that is connected to a power supply of the first conductive layer and commonly connects the trains of the first and third MOSFETs and the second conductive layer; a second region connecting the layers in common, and having first and second capacitive elements, the first capacitive element being connected to the third capacitive element;
and the second capacitive element is provided between the channel region of the fourth MOSFET and the first power source.

あるいは該第1及び第2の容量性素子を、該第1の容量
性素子は該第3のMOSFETのトレインと該第1の電
源の間に、また、該第2の容量性素子は該第4のMOS
FETのトレインと該第1の電源の間に設けた特徴を有
する。
Alternatively, the first and second capacitive elements are arranged such that the first capacitive element is between the third MOSFET train and the first power supply, and the second capacitive element is between the third MOSFET train and the first power supply. 4 MOS
A feature is provided between the train of FETs and the first power source.

さらに、第3及び第4の容量性素子を加え、該第1の容
量性素子は該第3のMOSFETのチャンネル領域と該
第1の電源の間に、該第2の容量性素子は該第4のMO
SFETのチャンネル領域と該第1の電源の間に、該第
3の容量性素子は該第3のMOSFETのドレインと該
第1の電源の間に、また、該第4の容量性素子は該第4
のMOSFETのドレインと該第1の電源の間に設けた
特徴を有する。
Further, third and fourth capacitive elements are added, the first capacitive element being between the channel region of the third MOSFET and the first power source, and the second capacitive element being between the third MOSFET channel region and the first power source. MO of 4
The third capacitive element is between the channel region of the SFET and the first power supply, and the fourth capacitive element is between the drain of the third MOSFET and the first power supply. Fourth
It has the feature that it is provided between the drain of the MOSFET and the first power supply.

[実施例コ 次に本発明について実施例を通して説明する。[Example code] Next, the present invention will be explained through examples.

第1a図〜第1b図は本発明の第1実施例を示しており
、第1a図は平面図、第1b図は第1a図のx−x’断
面図である。ここで第1a図は、第3a図に示すMO5
型SRAMの回路図の主要部分子I−T4に対して本発
明を適用したものを示しており、トランスファゲートと
称されるT5゜T6については省略しである。また第1
b図はTI、T3によって構成されるインバータの断面
図である。
1a to 1b show a first embodiment of the present invention, in which FIG. 1a is a plan view and FIG. 1b is a sectional view taken along line xx' in FIG. 1a. Here, FIG. 1a is the MO5 shown in FIG. 3a.
This figure shows the application of the present invention to the main components I-T4 of a circuit diagram of a type SRAM, and T5 and T6, which are called transfer gates, are omitted. Also the first
Figure b is a sectional view of an inverter composed of TI and T3.

第1図においてIA、IBはそれぞれ第1のN型MOS
FETのソース、ドレイン領域で、これらは半導体基板
の主表面に形成されている。2A。
In FIG. 1, IA and IB are first N-type MOS
The source and drain regions of the FET are formed on the main surface of the semiconductor substrate. 2A.

2Bはそれぞれ第1のP型MO9FETのソース。2B is the source of the first P-type MO9FET.

ドレイン領域、また、2はP型MOSFET  T1の
チャンネル領域で、2.2A、2Bは同一のシリコン薄
膜中に形成されている。3は第1のN型MOSFET及
び第1(7)P型MO5FET(7)共通の第1のゲー
ト電極である。4A、4Bはそれぞれ第2のN型MOS
FETのソース、トレイン領域で半導体基板の主表面に
形成されている。5A、5Bは第2のP型MO5FET
のソース、ドレイン領域、5は第2のP型MO3FET
のチャンネル領域であり、5.5A、5Bは第1°のP
型MOSFETとは別の同一シリコン薄膜中に形成され
ている。6は第2のN型MOSFET及び第2のP型M
OSFET共通のゲート電極である。
The drain region, 2 is the channel region of the P-type MOSFET T1, and 2.2A and 2B are formed in the same silicon thin film. 3 is a first gate electrode common to the first N-type MOSFET and the first (7) P-type MOSFET (7). 4A and 4B are each second N-type MOS
The source and train regions of the FET are formed on the main surface of the semiconductor substrate. 5A and 5B are second P-type MO5FETs
source and drain regions, 5 is the second P-type MO3FET
5.5A and 5B are the channel regions of 1st degree P
It is formed in the same silicon thin film separate from the type MOSFET. 6 is a second N-type MOSFET and a second P-type M
This is a common gate electrode for OSFETs.

7は半導体基板上のN型領域とゲート電極の接続領域、
8はゲート電極とシリコン薄膜の接続領域である。9は
N型MOS F ET(1)’/−ス(I A。
7 is a connection region between the N-type region on the semiconductor substrate and the gate electrode;
8 is a connection region between the gate electrode and the silicon thin film. 9 is an N-type MOS FET (1)'/-(IA.

4A)に接地電位を与える導電材による配線で10の領
域で接続され、jた、チャンネル領域2゜5の上部に延
在する。
4A) is connected in 10 regions by wiring made of a conductive material that provides a ground potential, and extends above the channel region 2.5.

第1b図において11は半導体基板を表し、12はN型
MOSFETのゲート絶縁膜、13はP型MOSFET
のゲート絶縁膜である。14は絶縁膜であり、2. 1
4. 9は平行平板型容量を形成する。
In FIG. 1b, 11 represents a semiconductor substrate, 12 represents a gate insulating film of an N-type MOSFET, and 13 represents a P-type MOSFET.
This is the gate insulating film. 14 is an insulating film; 2. 1
4. 9 forms a parallel plate type capacitor.

ここでまず、SOI素子の特性について第2a図〜第2
c図を参照して説明する。第2a図は一般的なSo 1
MO5FET(7)断面図であり、20は絶縁基板、2
1はSo 1MO3FETのチャンネル領域、21A、
21BはSOIMOSFETのソース、ドレイン領域で
ある。22はMOSFETのゲート絶縁膜、23はゲー
ト電極であり、24は絶縁基板裏面に設けられた電極、
25はソ−ス、ドレイン領域に接続された電極で、各々
の電極は図に示す通りの端子と接続されている。第2b
図は第2a図の等価回路でMOSFET  T21、容
量素子C21を有する。
First, we will discuss the characteristics of SOI elements in Figures 2a to 2.
This will be explained with reference to figure c. Figure 2a shows a typical So 1
MO5FET (7) cross-sectional view, 20 is an insulating substrate, 2
1 is the channel area of So 1MO3FET, 21A,
21B is the source and drain region of the SOIMOSFET. 22 is a gate insulating film of the MOSFET, 23 is a gate electrode, 24 is an electrode provided on the back surface of the insulating substrate,
Reference numeral 25 denotes electrodes connected to the source and drain regions, and each electrode is connected to a terminal as shown in the figure. 2nd b
The figure shows the equivalent circuit of FIG. 2a, which includes a MOSFET T21 and a capacitive element C21.

第2b図に示す回路において端子Sを接地し、端子Bを
フローティングにして端子り、  Gに電圧を加えると
、そのドレイン電圧電流特性は第2c図中破線aて示す
様に飽和領域で電流が異常増加するキンク現象を示す。
In the circuit shown in Figure 2b, when terminal S is grounded, terminal B is left floating, and a voltage is applied to G, the drain voltage-current characteristic will be such that the current will rise in the saturation region as shown by the broken line a in Figure 2c. Shows an abnormally increasing kink phenomenon.

これに対して半導体基板上に形成されたMOSFETの
ドレイン電圧電流特性は第20図中実線Cで示したもの
である。
On the other hand, the drain voltage-current characteristics of a MOSFET formed on a semiconductor substrate are shown by the solid line C in FIG.

次に、端子Bに電位、例えば端子Sと同じ接地電位を与
えるとドレイン電圧電流特性は第20図中−点鎖線すに
示す様にキング現象が軽減される。
Next, when a potential, for example, the same ground potential as the terminal S is applied to the terminal B, the king phenomenon is reduced in the drain voltage current characteristics as shown by the dashed line in FIG.

これは端子Bに電位を与えることにより容量素子が働き
、チャンネル内にインパクトイオン化で発生したホット
キャリアを端子B側に引き付はゲート電極G側のチャン
ネル表面を流れるドレ°イン電流への影響を軽減するた
めである。
This is because when a potential is applied to terminal B, the capacitive element works and attracts hot carriers generated by impact ionization in the channel to the terminal B side, which has an effect on the drain current flowing through the channel surface on the gate electrode G side. This is to reduce the risk.

この様にSOIMO9FETのチャンネル領域に直接電
位を与えずとも、容量素子を介して電位を与えることて
キンク現象を抑えることができる。
In this way, the kink phenomenon can be suppressed by applying a potential through the capacitive element without directly applying a potential to the channel region of the SOIMO9FET.

第1b図に示す実施例では2. 14. 9により第2
b図のC21に相当する容量素子が形成されており、2
. 2A、  2B、  3. 13で形成されるP型
MO5FETのキンク現象を抑え素子の劣化を防ぐこと
ができる。また、5. 5A、  5B、  6゜13
で形成されるP型MOSFET上にも容量素子が存在す
る。本実施例の等価回路を第6a図に示す。図中T61
.T62はP型MOSFET、T63.Ta2はN型M
OSFET、C61,C62は容量素子である。
In the embodiment shown in FIG. 1b, 2. 14. 2nd by 9
A capacitive element corresponding to C21 in figure b is formed, and 2
.. 2A, 2B, 3. The kink phenomenon of the P-type MO5FET formed by 13 can be suppressed and the deterioration of the element can be prevented. Also, 5. 5A, 5B, 6゜13
A capacitive element also exists on the P-type MOSFET formed by. An equivalent circuit of this embodiment is shown in FIG. 6a. T61 in the diagram
.. T62 is a P-type MOSFET, T63. Ta2 is N type M
OSFET, C61, and C62 are capacitive elements.

以上に説明した第1a図に示す実施例では、容量素子の
実現に従来例からある絶縁膜と配線を用いており、容量
素子実現のための特別な製造工程を必要としない。
In the embodiment shown in FIG. 1a described above, the conventional insulating film and wiring are used to realize the capacitive element, and no special manufacturing process is required for realizing the capacitive element.

棗λ叉崖l 第4図は本発明の第2実施例を示す平面図であり、第4
図において41〜49は第1a図の1〜9に、第4図中
40は第1a図10にそれぞれ相当する。第4図の特徴
は配線49がP型MO5FETのドレイン42B、45
B上に延在することてあり、42Bと49.45Bと4
9の間にそれぞれ容量性素子が存在する。
Fig. 4 is a plan view showing the second embodiment of the present invention;
In the figure, 41 to 49 correspond to 1 to 9 in FIG. 1a, and 40 in FIG. 4 corresponds to 10 in FIG. 1a, respectively. The feature of FIG. 4 is that the wiring 49 is the drain 42B, 45 of the P-type MO5FET.
42B and 49.45B and 4
A capacitive element is present between each of 9 and 9.

この結果、記憶素子内のそれぞれのインバータの出力容
量が増加し蓄えられる電荷が増加するので、P型MOS
FETを形成するシリコン薄膜に多結晶シリコンなどを
用いてP型MO5FETの電流駆動能力が小さい場合に
も、高電位を出力しているインバータにα線等によるノ
イズが入り込んだときに出力レベルを保持することがで
きる。
As a result, the output capacitance of each inverter in the storage element increases and the stored charge increases, so the P-type MOS
Even if polycrystalline silicon is used for the silicon thin film that forms the FET, and the current drive capacity of the P-type MO5FET is small, the output level can be maintained even when noise from alpha rays etc. enters the inverter that outputs a high potential. can do.

本実施例の等価回路を第6b図に示す。図中T65、T
66はP型MOSFET、Te3、Te3はN型FET
、C63,C64は容量素子である。
An equivalent circuit of this example is shown in FIG. 6b. T65, T in the figure
66 is P type MOSFET, Te3, Te3 are N type FET
, C63, and C64 are capacitive elements.

本実施例において、前述の実施例と同様に特別な製造工
程を用いずに実現できる。
In this embodiment, like the previous embodiment, it can be realized without using any special manufacturing process.

策λχ上豆 第5図は本発明の第3実施例を示す平面図である。第5
図において51〜59は第1a図の1〜9に第5図中5
0は第1a図中の10にそれぞれ相当する。第5図の特
徴は配線59の幅を広くし、52.52B、55.55
Bを同時に覆っていることにある。この結果、52. 
52B、  55. 55Bはそれぞれ59との開に合
計4個の容量性素子を有することになり、第1a図及び
第4図の実施例の複合体を実現している。本実施例の等
価回路を第6c図に示す。図中T69.T70はP型M
O5FET、T71.T72はN型MOSFET、C6
5〜C68は容量素子である。
Figure 5 is a plan view showing a third embodiment of the present invention. Fifth
In the figure, 51 to 59 correspond to 1 to 9 in Figure 1a and 5 in Figure 5.
0 corresponds to 10 in FIG. 1a, respectively. The feature of FIG. 5 is that the width of the wiring 59 is widened, 52.52B, 55.55B.
The reason is that it covers B at the same time. As a result, 52.
52B, 55. 55B will each have a total of four capacitive elements in front of 59, realizing a composite of the embodiments of FIGS. 1a and 4. An equivalent circuit of this embodiment is shown in FIG. 6c. T69 in the figure. T70 is P type M
O5FET, T71. T72 is N-type MOSFET, C6
5 to C68 are capacitive elements.

本実施例も前述の2つの実施例と同様に特別な製造工程
を必要としない。また以上に説明した第1〜第3実施例
は接地配線の配置の変更のみでそれぞれを実施例を実現
できる特徴を有する。
This embodiment also does not require any special manufacturing process like the two embodiments described above. Further, the first to third embodiments described above have the feature that each embodiment can be realized by simply changing the arrangement of the ground wiring.

尚、第6a図〜第6c図中、トランスファゲートは省略
しである。また、各実施例では容量素子を接地電位に接
続したが、これらを電源電位に接続してもよい。
Note that the transfer gate is omitted in FIGS. 6a to 6c. Further, in each embodiment, the capacitive elements are connected to the ground potential, but they may be connected to the power supply potential.

[発明の効果] 以上説明したように本発明は記憶素子内のSOTで形成
されたP型MOSFETのチャンネルまたはドレイン、
あるいは、その双方と接地配線との間に容量素子を設け
ることにより、キング現象の軽減による劣化の防止、ノ
イズに対する記憶保持の強化及びその双方を実現できる
効果がある。
[Effects of the Invention] As explained above, the present invention provides a channel or drain of a P-type MOSFET formed of SOT in a memory element;
Alternatively, by providing a capacitive element between both of them and the ground wiring, it is possible to prevent deterioration by reducing the King phenomenon, strengthen memory retention against noise, and achieve both.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図〜第1b図は本発明の第1実施例を示しており
、第1a図は平面図、第1b図は第1a図のX−X’断
面図。第2a図〜第2c図はSOIMOSFETを示し
ており、第2a図はその構造を示す断面図、第2b図は
等価回路図、第2c図はドレイン電圧・電流特性を示す
グラフである。 第3a図はMOS型SRAMの記憶素子の回路図、第3
b図は第3a図中のTI、T3によるインバータの構造
の従来例を示す断面図。第4図は本発明の第2実施例の
平面図。第5図は本発明の第3実施例の平面図。第6a
図〜第6c図は第1〜第3実施例をそれぞれ示す等価回
路図。 TI、T2.Ta2゜ Te3.Ta2.T66゜ Te3.T2O−−−−−P型MO5FET、T4〜T
6.Te3.Te3.Te3゜Te3.T71.T72
−−−N型MOSFET、C21,C61〜C68・・
・・容量素子、T21−−−−−−−−−SOTMO3
FET。 IA、4A、31A。 41A、44A。 51A、54A−−−N型MOSFET(7)ソース、
IB、4B、31B。 41B、44B。 51B、54B−−−−−−N型MOSFET(7)ド
レイン、 2) 5. 32. 42゜ 45、δ2,55・・・・・P型MOSFETのチャン
ネル、 2A、5A、32A。 42A、4!5A。 52A、55A・・・・・・P型MO5FETのソース
、 2B、  5B、  32B。 42B、  45B。 52B、55B・・・・・P型MO3FETのドレイン
、 3、 6. 23. 33゜ 36、 43. 46゜ 53.56・・・・・・・・ゲート電極、?、47.5
7・・・・ゲート電極とN型領域の接続領域、 8.48.58・・・・ゲート電極とシリコン薄膜の接
続領域、 9.49.59・・・・・・・接地配線、10.40.
  δ0・・・N型領域と接地配線の接続領域、 11.30・・・・・・・・半導体基板、12) 13
,22゜ 34.35・ ・・ ・・・・・ゲート絶縁膜、14.
37・・・・・・絶縁膜、 20−−−−−− So IMOSFET(7)絶縁基
板、21−−−−−SOIMOSFET(7)チャンネ
ル、21A◆・・・So lMOSFETのソース、2
1 B ・−−−So IMOSFET(DFドレイン
24・・・・・絶縁基板の電極、 25・・・・・・・電極、 D、G、S、B・ ・・端子。 代理人 弁理士  桑 井 清 − す 笛2C図 第3a図 V 第4図 42B:P型MO3FETのドレイン 15図 Uノナヤノ不ル 第6θ図
1a to 1b show a first embodiment of the present invention, in which FIG. 1a is a plan view and FIG. 1b is a sectional view taken along line XX' in FIG. 1a. 2a to 2c show a SOIMOSFET, FIG. 2a is a sectional view showing its structure, FIG. 2b is an equivalent circuit diagram, and FIG. 2c is a graph showing drain voltage/current characteristics. Figure 3a is a circuit diagram of a storage element of a MOS type SRAM;
Figure b is a sectional view showing a conventional example of the structure of an inverter using TI and T3 in Figure 3a. FIG. 4 is a plan view of a second embodiment of the invention. FIG. 5 is a plan view of a third embodiment of the present invention. Chapter 6a
6C to 6C are equivalent circuit diagrams showing the first to third embodiments, respectively. TI, T2. Ta2゜Te3. Ta2. T66°Te3. T2O---P type MO5FET, T4~T
6. Te3. Te3. Te3゜Te3. T71. T72
---N type MOSFET, C21, C61~C68...
・Capacitive element, T21---SOTMO3
FET. IA, 4A, 31A. 41A, 44A. 51A, 54A---N type MOSFET (7) source,
IB, 4B, 31B. 41B, 44B. 51B, 54B---N-type MOSFET (7) drain, 2) 5. 32. 42゜45, δ2,55...P-type MOSFET channels, 2A, 5A, 32A. 42A, 4!5A. 52A, 55A...P-type MO5FET source, 2B, 5B, 32B. 42B, 45B. 52B, 55B...Drain of P-type MO3FET, 3, 6. 23. 33°36, 43. 46°53.56...Gate electrode? ,47.5
7... Connection region between gate electrode and N-type region, 8.48.58... Connection region between gate electrode and silicon thin film, 9.49.59... Ground wiring, 10. 40.
δ0... Connection area between N-type region and ground wiring, 11.30... Semiconductor substrate, 12) 13
, 22° 34.35... Gate insulating film, 14.
37...Insulating film, 20-------So IMOSFET (7) Insulating substrate, 21------SOIMOSFET (7) Channel, 21A◆...So IMOSFET source, 2
1 B ・----So IMOSFET (DF drain 24... Electrode of insulated substrate, 25... Electrode, D, G, S, B... Terminal. Agent Patent attorney Kuwai Kiyoshi-Subue 2C Figure 3a Figure V Figure 4 42B: P-type MO3FET drain 15 figure

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板の主表面に形成された第1導電型の第
1及び第2の電界効果トランジスタと、シリコン薄膜中
に形成された第2導電型の第3及び第4の電界効果トラ
ンジスタより成り、前記第3及び第4の電界効果トラン
ジスタはそれぞれ前記第1及び第2の電界効果トランジ
スタの上部に配置され、前記第1及び第3の電界効果ト
ランジスタのゲート電極は第1の導電層で共通に形成さ
れ、前記第2及び第4の電界効果トランジスタのゲート
電極は第2の導電層で共通に形成され、前記第1及び第
2の電界効果トランジスタのソースは第1の電源に、前
記第3及び第4の電界効果トランジスタのソースは第2
の電源に接続され、前記第1及び第3の電界効果トラン
ジスタのドレインと前記第2の導電層とを共通に接続す
る第1の領域と、前記第2及び第4の電界効果トランジ
スタのドレインと前記第1の導電層を共通に接続する第
2の領域とを有する半導体記憶装置において、第1及び
第2の容量性素子を有し、前記第1の容量性素子は前記
第3の電界効果トランジスタのチャンネル領域と前記第
1または第2の電源との間に、前記第2の容量性素子は
前記第4の電界効果トランジスタのチャンネル領域と、
前記第1または第2の電源との間に設けられたことを特
徴とする半導体記憶装置。
(1) First and second field effect transistors of the first conductivity type formed on the main surface of the semiconductor substrate, and third and fourth field effect transistors of the second conductivity type formed in the silicon thin film. The third and fourth field effect transistors are disposed above the first and second field effect transistors, respectively, and gate electrodes of the first and third field effect transistors are formed of a first conductive layer. the gate electrodes of the second and fourth field effect transistors are commonly formed in a second conductive layer, and the sources of the first and second field effect transistors are connected to a first power supply; The sources of the third and fourth field effect transistors are
a first region that is connected to a power source and commonly connects the drains of the first and third field effect transistors and the second conductive layer; and the drains of the second and fourth field effect transistors; and a second region commonly connecting the first conductive layer, the semiconductor memory device having first and second capacitive elements, the first capacitive element being connected to the third field effect. between the channel region of the transistor and the first or second power supply, the second capacitive element is connected to the channel region of the fourth field effect transistor;
A semiconductor memory device, characterized in that it is provided between the first or second power source.
(2)特許請求の範囲第1項記載の半導体記憶装置にお
いて、前記第1及び第2の容量性素子を、前記第1の容
量性素子は前記第3の電界効果トランジスタのドレイン
と前記第1または第2の電源との間に、前記第4の電界
効果トランジスタのドレインと前記第1または第2の電
源との間に設けた半導体記憶装置。
(2) In the semiconductor memory device according to claim 1, the first and second capacitive elements are connected to the drain of the third field effect transistor and the first capacitive element is connected to the drain of the third field effect transistor. Alternatively, a semiconductor memory device provided between the drain of the fourth field effect transistor and the first or second power source.
(3)特許請求の範囲第1項記載の半導体記憶装置は第
3及び第4の容量性素子を更に有し、前記第3の容量性
素子は前記第3の電界効果トランジスタのドレインと前
記第1または第2の電源との間に、前記第4の容量性素
子は前記第4の電界効果トランジスタのドレインと第1
または第2との電源の間に設けられた半導体記憶装置。
(3) The semiconductor memory device according to claim 1 further includes third and fourth capacitive elements, and the third capacitive element connects the drain of the third field effect transistor and the third capacitive element. The fourth capacitive element is connected between the drain of the fourth field effect transistor and the first or second power source.
Or a semiconductor memory device provided between a second power source and a second power source.
JP63131028A 1988-05-26 1988-05-26 Semiconductor storage device Pending JPH01298763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63131028A JPH01298763A (en) 1988-05-26 1988-05-26 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63131028A JPH01298763A (en) 1988-05-26 1988-05-26 Semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH01298763A true JPH01298763A (en) 1989-12-01

Family

ID=15048325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63131028A Pending JPH01298763A (en) 1988-05-26 1988-05-26 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH01298763A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514615A (en) * 1991-03-20 1996-05-07 Fujitsu Limited Method of producing a semiconductor memory device having thin film transistor load
US5521859A (en) * 1991-03-20 1996-05-28 Fujitsu Limited Semiconductor memory device having thin film transistor and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514615A (en) * 1991-03-20 1996-05-07 Fujitsu Limited Method of producing a semiconductor memory device having thin film transistor load
US5521859A (en) * 1991-03-20 1996-05-28 Fujitsu Limited Semiconductor memory device having thin film transistor and method of producing the same

Similar Documents

Publication Publication Date Title
US6084255A (en) Gate array semiconductor device
US5825601A (en) Power supply ESD protection circuit
JP2878587B2 (en) Semiconductor device
JPS6251316A (en) Unidirectional conduction type switching circuit
JPS6043693B2 (en) drive circuit
JPH10125801A (en) Semiconductor integrated circuit device
JPH01298763A (en) Semiconductor storage device
JP3105815B2 (en) Semiconductor integrated circuit device
JPH06318702A (en) Semiconductor device and light valve device
JPH06275826A (en) Semiconductor device
JPH0535927B2 (en)
JP3355651B2 (en) Electrostatic protection circuit and semiconductor device
US5629537A (en) Semiconductor device
JP3503197B2 (en) Semiconductor device
JP3379903B2 (en) Semiconductor device
JPH0735399Y2 (en) Semiconductor memory
JPH09148451A (en) Semiconductor device
JPS6085623A (en) Cmos integrated circuit device
JPH06151716A (en) Semiconductor integrated circuit device
US20100200918A1 (en) Heavy Ion Upset Hardened Floating Body SRAM Cells
JPH02226760A (en) Semiconductor logic circuit
JPS6331106B2 (en)
JPS62195922A (en) Semiconductor integrated circuit device
JPS63150957A (en) Semiconductor device
JPH04260365A (en) Opposed gate type transistor