JPH01296195A - Reactor building - Google Patents

Reactor building

Info

Publication number
JPH01296195A
JPH01296195A JP63125748A JP12574888A JPH01296195A JP H01296195 A JPH01296195 A JP H01296195A JP 63125748 A JP63125748 A JP 63125748A JP 12574888 A JP12574888 A JP 12574888A JP H01296195 A JPH01296195 A JP H01296195A
Authority
JP
Japan
Prior art keywords
building
reactor building
ground
reactor
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63125748A
Other languages
Japanese (ja)
Inventor
Naoki Fukushi
直己 福士
Satoshi Miura
聡 三浦
Hidefumi Kawauchi
川内 英史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP63125748A priority Critical patent/JPH01296195A/en
Publication of JPH01296195A publication Critical patent/JPH01296195A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PURPOSE:To improve the safety of a reactor building at the time of an earthquake and make possible the installation of a small-sized reactor on the weak ground by making recess structure of the shape of a reactor building foundation. CONSTITUTION:The shape of a reactor building foundation 4 of a city and suburb type small-sized reactor building 1 is made recess structure. Because the building 1 is buried on the Quaternary period layer ground 6 deeply, frictional force 11 of side face soil is reversely generated against reactor building maximum overturning moment 10 which is generated by an earthquake between the building 1 and the ground 6 by earthquake force 9 which is generated by earthquake energy. The moment 10 which is generated in the building 1 by the frictional force 11 reduces the influence on the building 1. Ground reaction 12 is uniformly applied thereon by making recess structure of the shape of the building, the foundation 4 can obtain high earthquakeproof in structure strength and its stability can be improved even if there is the nature of the soil which is weak.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子炉建屋に係り、特に、軟弱地盤(第4紀
層)立地に対し、地震時、原子炉建屋の安定性向上に好
適な、高耐震性の原子炉建屋基礎形状に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a nuclear reactor building, and is particularly suitable for improving the stability of a nuclear reactor building in the event of an earthquake in a location on soft ground (Quaternary layer). Regarding the shape of the reactor building foundation with high earthquake resistance.

〔従来の技術〕[Conventional technology]

従来の原子力発電設備における。原子炉建屋基礎形状は
、原子カニ学試験センタPR用パンフレットに記載され
第2図に示すように、平板、あるいは、接地率を向上さ
せるために中央部を突出させた構造となっていた。
In conventional nuclear power generation facilities. The basic shape of the reactor building was either a flat plate or a structure with a protruding central part to improve the ground contact ratio, as described in the Atomic Crab Science Test Center PR pamphlet and shown in Figure 2.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、十分な硬度と拡がりをもつ岩盤(第3
紀層)7上に、重要な原子力発電設備、特に、原子炉建
屋1を設置することを前提としているが、原子炉建屋基
礎4を支持する地盤が、軟弱地盤で、地震時に大きな変
形を伴うような挙動が発生するような地盤立地について
考慮がされておらず、地震時、原子炉建屋1の安定性の
低下の問題があった。第2図中2は格納容器、3は圧力
容器、5は表層地盤、8は使用済燃料プールである。
The above-mentioned conventional technology has a rock mass (third
It is assumed that important nuclear power generation equipment, especially the reactor building 1, will be installed on the 7th layer, but the ground supporting the reactor building foundation 4 is soft and subject to large deformation during earthquakes. No consideration was given to the location of the ground where such behavior would occur, and there was a problem that the stability of the reactor building 1 would be reduced in the event of an earthquake. In Fig. 2, 2 is the containment vessel, 3 is the pressure vessel, 5 is the surface ground, and 8 is the spent fuel pool.

本発明の目的は、十分な硬度と拡がりをもつ岩盤が得ら
れにくい、都市近郊に設置される小型炉において、地震
時の原子炉建屋の安全性を向上させ、高耐震性の原子炉
建屋の基礎形状を提供し、軟弱地盤(第四紀層)に、小
型炉を設置可能とすることにある。
The purpose of the present invention is to improve the safety of reactor buildings in the event of an earthquake, and to construct highly earthquake-resistant reactor buildings in small reactors installed in urban areas where it is difficult to obtain rock with sufficient hardness and spread. The purpose is to provide a basic shape and make it possible to install a small furnace in soft ground (Quaternary layer).

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、原子炉建屋基礎形状を凹構造とし、原子炉
建屋を埋込む(半地下式とする。)ことで、地震時、原
子炉建屋の安定性を確保することにより達成される。
The above objective is achieved by ensuring the stability of the reactor building in the event of an earthquake by making the reactor building foundation a concave structure and burying the reactor building (semi-underground type).

〔作用〕[Effect]

以下に従来例における問題点を解決するための本発明の
作用を具体的に説明する。
The operation of the present invention for solving the problems in the conventional example will be specifically explained below.

本発明が対象としている都市近郊型小型炉の原子炉建屋
は、原子力発電所の諸設備のうち、放射線じゃへいのた
めに、一般の建屋に比較して、極めて剛強は鉄筋コンク
リート造りであり、必然的に重量が大きくなる。従って
、原子炉建屋を支える基礎地盤は、大きい許容耐力が要
求される。
The nuclear reactor building of the small urban reactor that is the subject of this invention is made of reinforced concrete, which is extremely strong compared to general buildings due to radiation interference among the various facilities of a nuclear power plant. The weight will increase accordingly. Therefore, the foundation ground supporting the reactor building is required to have a large allowable strength.

しかし、小型炉を設置する都市近郊において、第三紀層
地盤のような岩盤を求めることは非常に困難であり、第
四紀層地盤のような軟弱な地盤に設置する必要が生じる
However, in the suburbs of cities where small reactors are to be installed, it is extremely difficult to find rock such as Tertiary layered ground, and it is necessary to install the small reactor on soft ground such as Quaternary layered ground.

従来の原子炉建屋の地震時の安定性の検討概念を第4図
及び第5図に示す。従来の原子炉建屋1は第三紀層地盤
7という岩盤上に設置されており、水平地震力を受ける
場合、第5図のように、地震力9によって発生する原子
炉建屋最大転倒モーメントM+10により、第4図のよ
うに、原子炉建屋1に浮上がりが生じ、原子炉建屋1の
安定性がそこなわれる場合があった。この場合、地震時
に発生する原子炉建屋最大転倒モーメントMslOを減
少させるために原子炉建屋1の基礎形状を拡げる手段が
採用され、現状1100MeW級原子力発電設備の原子
炉建屋で約80mX80mの大きさとなっている。
Figures 4 and 5 show the concept of considering the stability of conventional reactor buildings during earthquakes. The conventional reactor building 1 is installed on the rock called the Tertiary layer ground 7, and when it receives a horizontal seismic force, as shown in Fig. 5, the reactor building maximum overturning moment M+10 generated by the seismic force 9 As shown in FIG. 4, there were cases in which the reactor building 1 lifted up and the stability of the reactor building 1 was impaired. In this case, in order to reduce the maximum overturning moment MslO of the reactor building that occurs during an earthquake, a measure was adopted to widen the foundation shape of the reactor building 1, and the reactor building of the current 1100 MeW class nuclear power generation facility has a size of approximately 80 m x 80 m. ing.

次に、従来の原子炉建屋を第四紀層6という軟弱な地盤
に設置した場合の地震時の安定性の検討概念を第6図及
び第7図に示す。水平地震力を受ける場合、第7図のよ
うに、地震力9によって発生する原子炉建屋最大転倒モ
ーメンhM210により、第6図のように、原子炉建屋
1に浮上がりが生じる。この場合、原子炉建屋1を支え
る基礎地盤が軟弱地盤であるため、地盤の許容耐力が低
く、支持地盤が弾性変形をおこし、原子炉建屋1が転倒
しやすくなり、地震時の安定性が、第三紀層立地に比較
して低下するという問題が生じる。
Next, FIGS. 6 and 7 show the concept of studying the stability during an earthquake when a conventional reactor building is installed on soft ground called the Quaternary layer 6. When receiving a horizontal seismic force, the reactor building 1 rises as shown in FIG. 6 due to the reactor building maximum overturning moment hM210 generated by the seismic force 9 as shown in FIG. 7. In this case, since the foundation ground that supports the reactor building 1 is soft ground, the allowable bearing capacity of the ground is low, the supporting ground causes elastic deformation, and the reactor building 1 is prone to overturn, resulting in poor stability during an earthquake. The problem arises that it is lower than in the Tertiary layer location.

このような、第四紀層(軟弱地盤)立地における問題点
を解決するため、本発明では、建屋基礎を凹構造とし、
原子炉建屋1を埋込む(半地下式)ことで、地震時の建
屋の安全性を増加させようとしている。本発明における
、原子炉建屋1の地震時の安定性の検討概念を第3図に
示す。
In order to solve such problems in the location of the Quaternary layer (soft ground), in the present invention, the building foundation has a concave structure,
By burying the reactor building 1 (semi-underground type), we are trying to increase the safety of the building in the event of an earthquake. FIG. 3 shows the concept of studying the stability of the reactor building 1 during an earthquake in the present invention.

本発明における原子炉建屋1は、原子炉建屋基礎形状を
凹構造とし、かつ、埋込んでいるので、地震力が作用し
た場合、原子炉建屋最大転倒モーメントMo1Oが発生
し、建屋が転倒しようとしても、建屋側面に、建屋と地
盤間に発生した摩擦抵抗力11が転倒方向と逆方向に作
用し、転倒力を減少させる。また、建屋形状を凹pt造
とする事により、形状自体が転倒し難い形状であり、建
屋基礎の底面積を拡大する事により、原子炉建屋最大転
倒モーメントMoに対する、必要建屋基礎底面積を小さ
くし、建屋基礎が凹構造であるために、支持地盤が弾性
変形、あるいは、塑性変形したとしても、地反力を凹構
造をもつ建屋基礎で均等に受けることができ地震時、原
子炉建屋の基礎浮上りを抑制する。
In the reactor building 1 according to the present invention, the reactor building foundation has a concave structure and is buried, so when an earthquake force acts, a maximum overturning moment Mo1O of the reactor building occurs, and the building is about to overturn. Also, the frictional resistance force 11 generated between the building and the ground acts on the side of the building in the opposite direction to the overturning direction, reducing the overturning force. In addition, by making the building shape a concave PT structure, the shape itself is difficult to overturn, and by expanding the bottom area of the building foundation, the required building foundation bottom area for the maximum overturning moment Mo of the reactor building is reduced. However, because the building foundation has a concave structure, even if the supporting ground is elastically or plastically deformed, the ground reaction force can be evenly received by the building foundation, which has a concave structure, and the reactor building will be protected during an earthquake. Control foundation uplift.

〔実施例〕〔Example〕

以下に、上記作用原理にもとすく本発明の実施例を図を
用いて説明する。
Below, embodiments of the present invention will be explained based on the above principle of operation with reference to the drawings.

第1図は、本発明による都市近郊型小型炉の原子炉建屋
の設置状況を示す。
FIG. 1 shows the installation situation of a reactor building of a small suburban reactor according to the present invention.

本図において、原子炉建屋1、原子炉格納容器2、原子
炉圧力容器3.及び、使用済燃料プール8は原子炉建屋
基礎4に支持されている。
In this figure, a reactor building 1, a reactor containment vessel 2, a reactor pressure vessel 3. The spent fuel pool 8 is supported by the reactor building foundation 4.

また、原子炉建屋1は、十分な剛性をもつ第三紀層地盤
7上の第四紀層地盤6に半地下方式で埋込まれている状
態で設置されている。都市近郊では、第三紀層地盤が地
表面より深い部分に位置する場合が多く、本図のような
建屋−地盤の構成と  ″なる。
Further, the reactor building 1 is installed semi-underground in the quaternary layered ground 6 on the tertiary layered ground 7 which has sufficient rigidity. In the suburbs of cities, the Tertiary layer ground is often located deeper than the ground surface, resulting in the building-ground configuration shown in this figure.

従って、地震時には、地震のエネルギは第三紀層地盤7
、第四紀層地盤6、及び、表層地盤5に伝播し、原子炉
建屋基礎4、及び、原子炉建屋1の側面から入力され、
原子炉格納容器2及び原子炉圧力容器3に伝えられる。
Therefore, during an earthquake, the energy of the earthquake is transferred to the Tertiary layer ground7.
, propagates to the Quaternary layer ground 6 and the surface ground 5, and is input from the reactor building foundation 4 and the side of the reactor building 1,
It is transmitted to the reactor containment vessel 2 and the reactor pressure vessel 3.

第3図は、第1図の原子炉建屋1及び原子炉建屋基礎4
と表層地盤5、第四紀層地盤6、及び、第三紀層地盤7
に着目し、建屋−地盤の地震時の挙動について、原子炉
建屋最大転倒モーメント10、側面上の摩擦抵抗力11
、及び、地反力12を用いて示している。
Figure 3 shows the reactor building 1 and reactor building foundation 4 in Figure 1.
and surface ground 5, Quaternary layered ground 6, and Tertiary layered ground 7
Focusing on the behavior of the building-ground during an earthquake, the maximum overturning moment of the reactor building is 10, and the frictional resistance force on the side surface is 11.
, and the ground reaction force 12 are used.

地震発生の場合、地震のエネルギは第三紀層地盤7、第
四紀層地盤6、及び、表層地盤5に伝播し、原子炉建屋
基礎4、及び、原子炉建屋1の側面から入力され、原子
炉建屋基礎4上に設置される機器、及び、原子炉建屋1
内の各床に設置される機器に伝播する。
In the event of an earthquake, the energy of the earthquake propagates to the tertiary layer ground 7, the quaternary layer ground 6, and the surface layer 5, and is input from the reactor building foundation 4 and the side of the reactor building 1, Equipment installed on reactor building foundation 4 and reactor building 1
It spreads to equipment installed on each floor of the building.

これら、原子炉建屋1に入力された地震エネルギは、原
子炉建屋1の重心位置に地震力9として作用する。
These seismic energies input into the reactor building 1 act as seismic force 9 on the center of gravity of the reactor building 1 .

このように発生した地震力9によって、原子炉建屋1に
は、原子炉建屋最大転倒モーメント10が発生し、原子
炉建屋1を重み量りに回転させようと働く、この時、原
子炉建屋1の支持地盤である第四紀層地盤6は軟弱地盤
であるため、弾性変形、あるいは、地震エネルギの大き
さによっては、塑性変形を容易に起こす。
The earthquake force 9 generated in this way generates a maximum overturning moment 10 in the reactor building 1, which acts to rotate the reactor building 1 like a weight. Since the Quaternary layer ground 6, which is the supporting ground, is a soft ground, it easily undergoes elastic deformation or plastic deformation depending on the magnitude of seismic energy.

この第四紀層地盤6の変形により原子炉建屋1は転倒し
やすくなるが、原子炉建屋基礎4の形状が凹構造である
ため、 ■形状自体が転倒しにくい構造である。
This deformation of the Quaternary layer ground 6 makes the reactor building 1 more likely to fall over, but since the shape of the reactor building foundation 4 is a concave structure, the shape itself makes it difficult to fall over.

■地反力12が均等に加わる。■Ground reaction force 12 is applied evenly.

■原子炉建屋基礎4を第四紀層地盤6との接触面積を拡
大している。
■The area of contact between the reactor building foundation 4 and the Quaternary layer ground 6 has been expanded.

■接触面積拡大により地震荷重が軽減される。■Earthquake load is reduced by expanding the contact area.

により、原子炉建屋基礎4の地震エネルギに対する抵抗
が増大する効果が得られる。
This provides the effect of increasing the resistance of the reactor building foundation 4 to seismic energy.

また、原子炉建屋1は第四紀層地盤6へ深く埋込まれて
いるので、地震エネルギによって発生した地震力9によ
って、原子炉建屋1と第四紀層地盤6との間には、地震
によって発生した、原子炉建屋最大転倒モーメント10
に対して反対に側面土の摩擦抵抗力11が発生する。こ
の側面上の摩擦抵抗力11によって、原子炉建屋1に発
生する原子炉建屋最大転倒モーメント10が原子炉建屋
1におよぼす影響を低減させることになる。
In addition, since the reactor building 1 is deeply embedded in the Quaternary layer ground 6, the seismic force 9 generated by seismic energy causes an earthquake to occur between the reactor building 1 and the Quaternary layer ground 6. The maximum overturning moment of the reactor building generated by
On the contrary, a frictional resistance force 11 of the side soil is generated. This frictional resistance force 11 on the side surface reduces the influence of the reactor building maximum overturning moment 10 generated in the reactor building 1 on the reactor building 1.

また1M子炉建屋基礎4の形状と凹構造とすることによ
り、地反力12が均等に加わる。地反力12が均等に加
わることにより、原子炉建屋基礎4は構造・強度的に高
耐震性をもつこととなり、原子炉建屋1の重要施設とし
ての地震時の機能を維°持することが、軟弱地盤である
第四紀層地盤6でも可能となる。
Furthermore, due to the shape and concave structure of the 1M sub-reactor building foundation 4, the ground reaction force 12 is evenly applied. By applying the ground reaction force 12 evenly, the reactor building foundation 4 has high earthquake resistance in terms of structure and strength, and the reactor building 1 can maintain its function as an important facility during an earthquake. This is possible even in the soft ground of the Quaternary period layer 6.

このように、都市近郊型小型炉の原子炉建屋1の原子炉
建屋基礎4の形状を凹構造とすることにより、 (1)支持地盤である軟弱地盤の第四紀層地盤6と原子
炉建屋基礎4との地反力を均等にすることにより、地震
時に原子炉建屋1の安定性を増化させると共に、構造・
強度的に高耐震性をもつ。
In this way, by making the shape of the reactor building foundation 4 of the reactor building 1 of a small urban reactor into a concave structure, (1) the quaternary layer ground 6 of the soft ground that is the supporting ground and the reactor building By equalizing the ground reaction force with the foundation 4, the stability of the reactor building 1 in the event of an earthquake is increased, and the structural
It has high earthquake resistance in terms of strength.

(2)原子炉建屋基礎4の地震時原子炉建屋最大転倒モ
ーメント10に対する抵抗を増大させ、原子炉建屋最大
転倒モーメント10に対して逆向きに作用する側面土の
摩擦抵抗力11により、地震時の原子炉建屋1の安定性
が向上する。
(2) By increasing the resistance of the reactor building foundation 4 against the reactor building maximum overturning moment 10 during an earthquake, and by the frictional resistance force 11 of the side soil acting in the opposite direction to the reactor building maximum overturning moment 10, during an earthquake The stability of the reactor building 1 is improved.

次に、本発明による基礎形状の原子炉建屋と、従来型基
礎形状の原子炉建屋の地震時の建屋安定性の検討を示す
Next, a study will be presented of the building stability during an earthquake of a reactor building with a foundation shape according to the present invention and a reactor building with a conventional foundation shape.

第8図は本発明による基礎形状の原子炉建屋1が地震力
によって原子炉建屋最大転倒モーメント10が発生して
いることを示している。原子炉建屋1の基礎は原子炉建
屋基礎4上径13であり、曲率半径15をもち第三紀層
地盤7上に設置されている。
FIG. 8 shows that the reactor building 1 having the basic shape according to the present invention is subjected to a maximum overturning moment 10 due to an earthquake force. The foundation of the reactor building 1 has an upper diameter of 13, a radius of curvature of 15, and is installed on the Tertiary layer ground 7.

第9図は従来型基礎形状の原子炉建屋1が地震力によっ
て原子炉建屋最大転倒モーメント1oが発生しているこ
とを示している。原子炉建屋1の基礎は原子炉建屋基礎
11直径13であり、平面構造で第三紀層地盤7上に設
置されている。
FIG. 9 shows that the reactor building 1 with the conventional foundation shape is experiencing a maximum overturning moment 1o due to the earthquake force. The foundation of the reactor building 1 has a diameter of 13, and is installed on the Tertiary layer ground 7 with a planar structure.

図中14は建屋基礎[1]球面部(直径)である。In the figure, 14 is the spherical part (diameter) of the building foundation [1].

ここで、地震時の建屋安定性の検討比較のために、原子
炉建屋基礎+11直径13、第三紀層地盤7、及び、原
子炉建屋最大転倒モーメント10は同一条件として検討
する。
Here, in order to study and compare the building stability during an earthquake, the reactor building foundation + 11 diameter 13, Tertiary layer ground 7, and reactor building maximum overturning moment 10 are considered as the same conditions.

接地率の算定式(建築基礎構造設計規準・同解説PP、
187〜188より抜粋)は次のようにa)長方形基礎 j)中立軸が底面の外にあるとき 図19.4.(b)において であるから、(19,3)式から が得られるoXn≧LなるためにはeiL<1/6で、
また(19.4)式から となり、αは偏心率eiLとともに直線的に増大するこ
とがわかる。
Calculation formula for grounding ratio (Architectural foundation structure design standards/Explanation PP,
187-188) is as follows: a) Rectangular foundation j) When the neutral axis is outside the base Figure 19.4. In (b), in order for oXn≧L obtained from equation (19, 3), eiL<1/6,
Also, from equation (19.4), it can be seen that α increases linearly with the eccentricity eiL.

ii)中立軸が底面の内にあるとき すなわちeiL>1/6の場合は、図19.4(c)か
ら明らかなように、荷重Pは圧縮縁端からx0/3の点
に作用するから となり、G、=B xnl/2.A=BLからが得られ
る。
ii) When the neutral axis is within the bottom surface, that is, when eiL>1/6, as is clear from Figure 19.4(c), the load P acts at a point x0/3 from the compression edge. So, G,=B xnl/2. It is obtained from A=BL.

ここで、建屋の地震時安定性を示す接地率は、(19,
5)式より 接地率η= x n / Q xn:中立軸距離(m) Q :地盤接地長さ(m) として求められる。
Here, the grounding ratio, which indicates the stability of the building during an earthquake, is (19,
From formula 5), the ground contact ratio η = x n / Q xn: Neutral axis distance (m) Q: Ground contact length (m).

ここで、地盤接地長さQが求められると。Here, if the ground contact length Q is found.

転倒モーメントMc= −NQ N:鉛直力(fon) 偏心量e = M c / N 中立軸距離Xnは、 中立軸が底面外にある時 中立軸が底面内にある時 従って、接地率ηは 中立軸が底面外の時 MC 中立軸が底面内の時 N 従って、中立軸が底面外及び底面内にずれる場合も、接
地率を高くするには、地盤接地長さQを大きくとる。
Overturning moment Mc = -NQ N: Vertical force (fon) Eccentricity e = Mc / N Neutral axis distance Xn is: When the neutral axis is outside the bottom surface When the neutral axis is inside the bottom surface MC when the vertical axis is outside the bottom surface N when the neutral axis is inside the bottom surface Therefore, in order to increase the ground contact ratio even when the neutral axis is shifted outside the bottom surface or inside the bottom surface, the ground contact length Q should be set large.

ここで、第8図及び第9図に示した、原子炉建屋の底面
積を求め、これによる等価長Q′を比較すると次のよう
になる。
Here, when the bottom areas of the reactor buildings shown in FIGS. 8 and 9 are determined and the resulting equivalent lengths Q' are compared, the results are as follows.

第9図より、従来型原子炉建屋の底面積はS o = 
−Lφ工 となる。
From Figure 9, the floor area of the conventional reactor building is S o =
-Lφ work.

第8図より、本発明の基礎形状の原子炉建屋の底面積は
、 S+=ニー(L911−L912) 十SMSM二二面
面部面 積Nは第10図に示す記号によって示すと、SM=2π
rhとなる。
From FIG. 8, the bottom area of the reactor building with the basic shape of the present invention is: S+=knee (L911-L912) 10 The area N of the SMSM 2 dihedral surface is indicated by the symbol shown in FIG. 10, SM=2π
It becomes rh.

をすべて曲率半径Rを用いて表現すると、φこ ρo””−R となり、Qo’<Ql’ となり、本発明による基礎形
状を採用することにより、接地率が向上する原子炉建屋
を提供することができる。
If all are expressed using the radius of curvature R, φ ρo""-R, and Qo'<Ql'. By adopting the basic shape according to the present invention, it is possible to provide a nuclear reactor building with improved ground contact ratio. I can do it.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、軟弱地盤サイトにおいて、地震時建屋
の最大転倒モーメントを低減ができる都市近郊型小型炉
を提供できる。
According to the present invention, it is possible to provide a small urban reactor that can reduce the maximum overturning moment of a building during an earthquake in a site with soft ground.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の原子炉のtsm−地盤を
示す断面図、第2図は、従来型原子炉の建屋−地盤を示
す縦断面図、第3図は、本発明の原子炉建屋−地盤の地
震時の原子炉建屋の挙動を示す説明図、第4図ないし第
7図は、従来型原子炉建屋の基礎の挙動を示す説明図、
第8図、第9図は従来型と本発明の詳細説明図、第10
図は、本発明採用時の球面部の面積を求めるための説明
図である。 1・・・原子炉建屋、2・・・原子炉格納容器、3・・
・原子炉圧力容器、4・・・原子炉建屋基礎、5・・表
層地盤、6・・・第四紀層地盤、7・・第三紀層地盤。 第 1 図 第2図 第3図 第4凹         第5国 第6図     第7図 第8図     第9図 第10図
FIG. 1 is a cross-sectional view showing the TSM-ground of a nuclear reactor according to an embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view showing the building-ground of a conventional nuclear reactor, and FIG. Reactor Building - An explanatory diagram showing the behavior of the reactor building during a ground earthquake; Figures 4 to 7 are explanatory diagrams showing the behavior of the foundation of a conventional reactor building;
Figures 8 and 9 are detailed explanatory diagrams of the conventional type and the present invention, and Figure 10
The figure is an explanatory diagram for determining the area of the spherical portion when the present invention is adopted. 1... Reactor building, 2... Reactor containment vessel, 3...
・Reactor pressure vessel, 4... Reactor building foundation, 5... Surface ground, 6... Quaternary layered ground, 7... Tertiary layered ground. Figure 1 Figure 2 Figure 3 Figure 4 Concave Country 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】 1、原子炉圧力容器と原子炉格納容器及び使用済燃料プ
ールを内包する原子力発電設備の原子炉建屋において、 凹構造の原子炉建屋基礎を設けたことを特徴とする原子
炉の建屋。
[Scope of Claims] 1. A reactor building of a nuclear power generation facility containing a reactor pressure vessel, a reactor containment vessel, and a spent fuel pool, characterized in that a reactor building foundation with a concave structure is provided. Furnace building.
JP63125748A 1988-05-25 1988-05-25 Reactor building Pending JPH01296195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63125748A JPH01296195A (en) 1988-05-25 1988-05-25 Reactor building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63125748A JPH01296195A (en) 1988-05-25 1988-05-25 Reactor building

Publications (1)

Publication Number Publication Date
JPH01296195A true JPH01296195A (en) 1989-11-29

Family

ID=14917829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63125748A Pending JPH01296195A (en) 1988-05-25 1988-05-25 Reactor building

Country Status (1)

Country Link
JP (1) JPH01296195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10666287B2 (en) 2007-04-29 2020-05-26 Huawei Technologies Co., Ltd. Coding method, decoding method, coder, and decoder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10666287B2 (en) 2007-04-29 2020-05-26 Huawei Technologies Co., Ltd. Coding method, decoding method, coder, and decoder

Similar Documents

Publication Publication Date Title
Javidan et al. Seismic retrofit of soft-first-story structures using rotational friction dampers
Skinner et al. A practical system for isolating structures from earthquake attack
Munoz et al. Dynamic stability of geosynthetic-reinforced soil integral bridge
Peng et al. Cyclic behavior of an adaptive seismic isolation system combining a double friction pendulum bearing and shape memory alloy cables
KR20090005840A (en) An earth quake-proof apparatus of composition friction pendulum type
Tajirian et al. Seismic isolation for advanced nuclear power stations
Micheli et al. Investigation upon the dynamic structural response of a nuclear plant on aseismic isolating devices
Lo Frano Benefits of seismic isolation for nuclear structures subjected to severe earthquake
JPH01296195A (en) Reactor building
Melkumyan New approach in design of seismic isolated buildings applying clusters of rubber bearings in isolation systems
Girgin Simplified formulations for the determination of rotational spring constants in rigid spread footings resting on tensionless soil
Amin et al. Design of base isolated reinforced concrete building subjected to seismic excitation using EC 8
Darshale et al. Seismic response control of vertically irregular RCC Structure using base isolation
Qin et al. Response of structure with controlled uplift using footing weight
Sayed-Ahmed Building with base isolation techniques
JPH10292669A (en) Base isolating device of building and base isolating structure of building using the same
Simon et al. Orientation and location of shear walls in RC buildings to control deflection and drifts
Sonawane et al. Effect of base isolation in multistoried RC regular and irregular building using time history analysis
JPS63304194A (en) Construction of nuclear reactor building
Melkumyan Original and Innovative Structural Concepts for Design, Non-Linear Analysis, and Construction of Multi-Story Base Isolated Buildings
Labbé EDF experience on design and construction of nuclear power plants on seismic isolation systems
Palsanawala et al. Seismic Fragility of RC Wall-Frame Buildings Using the DDBD Approach for Vulnerability Assessment
Ye et al. Analysis of Deformation and Stress Characteristics of Anchored‐Frame Structures for Slope Stabilization
Tallapalem et al. Analysis of Multi-Storey Building in Different Seismic Zones of India
Agrawal et al. ANALYSIS AND DESIGN OF G+ 3 BUILDING IN DIFFERENT SEISMIC ZONES USING E-TABS