JPH01296148A - Total reflection type expanded x-ray absorption fine structure measuring apparatus - Google Patents

Total reflection type expanded x-ray absorption fine structure measuring apparatus

Info

Publication number
JPH01296148A
JPH01296148A JP63127261A JP12726188A JPH01296148A JP H01296148 A JPH01296148 A JP H01296148A JP 63127261 A JP63127261 A JP 63127261A JP 12726188 A JP12726188 A JP 12726188A JP H01296148 A JPH01296148 A JP H01296148A
Authority
JP
Japan
Prior art keywords
ray
rays
sample
incident
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63127261A
Other languages
Japanese (ja)
Inventor
Eriko Chiba
恵里子 千葉
Katsuhiko Tani
克彦 谷
Tadao Katsuragawa
忠雄 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP63127261A priority Critical patent/JPH01296148A/en
Publication of JPH01296148A publication Critical patent/JPH01296148A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • G01N23/085X-ray absorption fine structure [XAFS], e.g. extended XAFS [EXAFS]

Abstract

PURPOSE:To enable measurement of a thin film or even a highly concn. sample on a substrate, by monitoring a dose of X rays incident into parallel monochromatic fine X-ray luminous fluxes after a shaping to detect totally reflected X rays from the surface of the sample with a set angle of incidence. CONSTITUTION:X rays radiated from an X-ray source 1 are black reflected with a monochrometer 2 wherein a specified crystal face is inclined by a specified angle theta to an X-ray radiation axis to make a monochromatic X-ray luminous flux. The X rays are further turned to a fine X-ray luminous flux with a higher monochromatic property and a greater parallelism with the passage through a second slit S2. The luminous flux shaped by these X-ray shaping means is monitored 7 in incident X-ray dose and incident into a sample 4 whose angle of incidence is set below a total reflection critical angle on the short wavelength side in a measuring wavelength range. The totally reflected X rays from the sample 4 pass through a third slit S3 to detect intensity thereof with an X-ray detector 9. Thus, an absorption of the totally reflected X rays is judged from the results and the incident X-ray dose.

Description

【発明の詳細な説明】 技術分野 本発明は、物質の表面局所構造解析を行うための全反射
型拡張X線吸収微細構造測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a total internal reflection type extended X-ray absorption fine structure measuring device for analyzing the surface local structure of a substance.

従来技術 一般に、物質の局所構造を解析する手法として、拡張X
線吸収微細構造(Extended X−ray Ab
s。
Conventional technology In general, the extended X
Linear absorption fine structure (Extended X-ray Ab
s.

rption F ine S tructure、以
下、”EXAFS”と略す)法は重要である。これは、
試料に単色化されたX線を入射し、その波長を連続的に
変えることにより、注目する原子の吸収端、例えばに吸
収端から高エネルギー側に現われるX線吸収の微細構造
スペクトルを測定し、その振動スペクトルのフーリエ変
換から、注目する原子の周りの最近接、第2近接原子の
種類、数、配位距離等を求めるという構造解析法である
rption fine structure (hereinafter abbreviated as "EXAFS") is important. this is,
By injecting monochromatic X-rays into a sample and continuously changing the wavelength, we measure the absorption edge of the atom of interest, for example, the fine structure spectrum of X-ray absorption that appears on the high energy side from the absorption edge. This is a structural analysis method in which the type, number, coordination distance, etc. of the nearest neighbor and second neighbor atoms around the atom of interest are determined from the Fourier transform of the vibrational spectrum.

ここに、従来は、試料を透過したxlを測定する透過型
EXAFS法と、入射X線を試料表面で全反射させ、こ
の時に放出される蛍光X線を測定する全反射型蛍光EX
AFS法との何れかの手法に限られている。しかし、前
者の透過型EXAFSの場合には、基板の影響を受ける
ため、基板上の薄膜のEXAFSを測定することは不可
能である。一方、後者の全反射型蛍光EXAFS法は、
例えば特開昭62−214335号公報等により知られ
ており、基板上の薄膜を測定することはできるものの、
高濃度では蛍光X線強度が吸収係数に比例しなくなるた
め、高濃度での測定に際して細心の注意を要するもので
ある。
Conventionally, two methods have been used: a transmission type EXAFS method that measures xl transmitted through a sample, and a total reflection type fluorescence EX method that completely reflects incident X-rays on the sample surface and measures the fluorescent X-rays emitted at this time.
This method is limited to either the AFS method or the AFS method. However, in the case of the former transmission type EXAFS, it is not possible to measure EXAFS of a thin film on a substrate because it is affected by the substrate. On the other hand, the latter total reflection fluorescence EXAFS method
For example, it is known from Japanese Patent Application Laid-Open No. 62-214335, and although it is possible to measure thin films on a substrate,
At high concentrations, the fluorescent X-ray intensity is no longer proportional to the absorption coefficient, so careful attention is required when measuring at high concentrations.

目的 本発明は、このような点に鑑みなされたもので、基板上
の薄膜はもちろん、高濃度試料であっても容易に測定が
可能な全反射型拡張X線吸収微細構造測定装置を得るこ
とを目的とする。
Purpose The present invention was made in view of the above points, and it is an object of the present invention to provide a total internal reflection type extended X-ray absorption fine structure measuring device that can easily measure not only thin films on a substrate but also highly concentrated samples. With the goal.

構成 本発明は、上記目的を達成するため、X線を発するX#
I源を設け、このX線源によるX線を単色平行の微細X
線光束に整形するX線整形手段を設け、X線整形手段に
よる整形後の入射X線量をモニターするモニター手段を
設け、測定すべき試料に対する入射X線の入射角を測定
波長範囲の短波長側での臨界角以下に設定し、この試料
表面からの全反射X線を検出するX&!検出器を設け、
前記試料に対向し前記X線検出器に対する直接X線の影
響を除去する除去部材を設けたことを特徴とする。
Structure In order to achieve the above object, the present invention provides an X# that emits X-rays.
An I source is installed, and the X-rays from this X-ray source are converted into monochromatic parallel fine X-rays.
An X-ray shaping means for shaping the beam into a linear beam is provided, a monitoring means is provided for monitoring the incident X-ray dose after shaping by the X-ray shaping means, and the angle of incidence of the incident X-ray on the sample to be measured is determined on the short wavelength side of the measurement wavelength range. X&! is set below the critical angle of X&! A detector is installed,
The present invention is characterized in that a removal member is provided that faces the sample and removes the influence of direct X-rays on the X-ray detector.

以下、本発明の一実施例を図面に基づいて説明する。ま
ず、X線源1から放射された白色X線は、第1のスリッ
トS1を通過した後、所定の結晶面を所定の方位にセッ
ト(即ち、X線放射軸に対し角度θ傾けた状態)してな
るモノクロメータ2によりブラッグ反射されて、単色X
線となる。なお、モノクロメータ2はSiウェハなどの
完全単結晶のシングル又はダブルモノクロメータを用い
る。
Hereinafter, one embodiment of the present invention will be described based on the drawings. First, white X-rays emitted from the X-ray source 1 pass through the first slit S1, and then set a predetermined crystal plane in a predetermined direction (that is, tilted at an angle θ with respect to the X-ray emission axis). The monochrome X is reflected by the monochromator 2
It becomes a line. Note that the monochromator 2 uses a single or double monochromator made of a complete single crystal such as a Si wafer.

のような単色X線は、さらに、第2のスリットS2を通
過することにより、単色性、平行性のよい微細なX線光
束となる。即ち、前記モノクロメータ2と第2スリツト
S2とが、X線整形手段3を構成する。
The monochromatic X-rays further pass through the second slit S2 to become a fine X-ray beam with good monochromaticity and parallelism. That is, the monochromator 2 and the second slit S2 constitute the X-ray shaping means 3.

そして、X線整形手段3により整形された微細なX線光
束は、測定すべき試料4表面、ここでは試料基板S上に
形成された薄膜6表面に入射される。この時、薄膜6表
面に対する入射X線の入射角が、測定波長範囲(測定エ
ネルギー範囲)の短波長側(通常は、注目する吸収端か
ら高エネルギー側へ約IKeVなるエネルギーの位置)
での全反射臨界角θC以下となるように、試料4は設定
配置されている。
Then, the fine X-ray beam shaped by the X-ray shaping means 3 is incident on the surface of the sample 4 to be measured, here the surface of the thin film 6 formed on the sample substrate S. At this time, the incident angle of the incident X-ray with respect to the surface of the thin film 6 is on the short wavelength side of the measurement wavelength range (measurement energy range) (usually an energy position of about IKeV from the absorption edge of interest to the high energy side)
The sample 4 is arranged so that the total reflection critical angle θC is less than or equal to the total reflection critical angle θC.

しかして、前記第2スリツトS2を通過し、前記試料4
表面に対して入射X線を入射する前に、その入射xl量
I。をモニター手段7を通過させることによりモニター
する。例えば、この入射X線をステンレス等のチャンバ
内にHe等のガスを封入し高電圧をかけることにより通
過X7線強度を測定するというモニター手段構成でよい
。即ち、イオンチャンバによる入射X線量1゜のモニタ
ー方式の場合、入射強度の約10%が検出に用いられる
Then, the sample 4 passes through the second slit S2.
Before the incident X-rays are incident on the surface, the amount of incident xl I. is monitored by passing it through the monitoring means 7. For example, the monitoring means may be configured to measure the intensity of the incident X7 rays by filling a chamber made of stainless steel or the like with a gas such as He and applying a high voltage. That is, in the case of a monitoring method using an ion chamber with an incident X-ray dose of 1°, about 10% of the incident intensity is used for detection.

また、前記試料4表面上のX線の入射点には、直接X線
の影響を除去するための除去部材としてナイフェツジ8
が、試料4表面に対し垂直に立てられて設けられている
。このナイフェツジ8はX線の吸収性のよい材料、例え
ばPbとMOとの合金等により作製したものが用いられ
る。よって、試料4表面に入射したX線は、薄膜6表面
とナイフェツジ8先端との間の隙間を通り、薄膜6表面
で全反射された後、第3スリツトS3を通り、X線検出
器9により計測される。なお、直接X線をカットするビ
ームストッパ10も設けられている。
Additionally, a knife 8 is installed at the point of incidence of the X-rays on the surface of the sample 4 as a removal member for directly removing the influence of the X-rays.
is provided perpendicularly to the surface of the sample 4. The knife 8 is made of a material with good X-ray absorption properties, such as an alloy of Pb and MO. Therefore, the X-rays incident on the surface of the sample 4 pass through the gap between the surface of the thin film 6 and the tip of the knife 8, are totally reflected on the surface of the thin film 6, pass through the third slit S3, and are detected by the X-ray detector 9. be measured. Note that a beam stopper 10 that directly cuts X-rays is also provided.

前記このX線検出器9は例えばエネルギー分散形の半導
体検出器であり、薄膜6かもの全反射X線の強度1を検
出するものである。ここに、入射X線量10はモニター
手段3によりモニターされているので、X線検出器9に
より全反射X線の強度工を検出することにより、全反射
したX線吸収量が判る。
The X-ray detector 9 is, for example, an energy dispersive type semiconductor detector, and detects the intensity 1 of the total reflection of the X-rays from the thin film 6. Here, since the incident X-ray dose 10 is monitored by the monitor means 3, by detecting the intensity of the totally reflected X-rays with the X-ray detector 9, the amount of totally reflected X-rays absorbed can be determined.

このような構成において、全反射臨界角θCは、−Sに
数10分と小さい(例えば、入射X線の波長がλ=1.
5405人で、試料4がAuの場合、臨界角0c=34
’)が、このような臨界角θCより小さい入射角でX線
が試料4表面に入射するので、表面で全反射する。従っ
て、小さな臨界角θCよりもさらに小さい入射角による
X線入射であるため、薄膜6に対するX線の進入深さが
数10人と小さいため、試料表面に敏感な測定が可能と
なる。この際、上記のように臨界角θCが小さいため、
X線検出器9により薄膜6からの全反射XNAを検出す
る際に直接X線の影響を受けてS/N比の悪いものとな
りやすいが、本実施例ではナイフェツジ8を備えてこの
直接X線による影響を極力抑えるようにしているので、
S/N比のよいものとなる。さらに、従来の全反射型E
XAFS方式のように2次X線(蛍光X線)でなく、全
反射X線を検出することにより、直接入射光線の吸収量
を測定するため、高濃度の薄膜試料の場合であっても測
定可能である。
In such a configuration, the total reflection critical angle θC is as small as -S by several tens of minutes (for example, when the wavelength of the incident X-ray is λ=1.
If there are 5405 people and sample 4 is Au, the critical angle 0c = 34
'), since the X-rays are incident on the surface of the sample 4 at an incident angle smaller than the critical angle θC, the X-rays are totally reflected on the surface. Therefore, since the X-rays are incident at an incident angle smaller than the small critical angle θC, the penetration depth of the X-rays into the thin film 6 is as small as several tens of people, making it possible to perform measurements sensitive to the sample surface. At this time, since the critical angle θC is small as mentioned above,
When the X-ray detector 9 detects the total reflection XNA from the thin film 6, it is likely to be affected by the direct X-rays, resulting in a poor S/N ratio. We are trying to minimize the impact of
This results in a good S/N ratio. Furthermore, the conventional total reflection type E
The amount of absorption of directly incident light is measured by detecting total internal reflection X-rays rather than secondary X-rays (fluorescent X-rays) as in the XAFS method, making it possible to measure even in the case of highly concentrated thin film samples. It is possible.

ついで、試料4がセレンSeの場合を例にとり、EXA
FSを測定する場合の設定角度の算出方法を説明する。
Next, taking the case where sample 4 is selenium Se as an example, EXA
A method of calculating the set angle when measuring FS will be explained.

まず、薄膜の巨視的な誘電率を1とすると、i(ω)=
1−4 xe”N/mω” で表わされる。
First, if the macroscopic permittivity of the thin film is 1, then i(ω)=
It is expressed as 1-4 xe"N/mω".

但し、N(cm−’)は電子密度、e(cgs)は電荷
製量であってe=4.803X10−目、 mug)は
電子質量であってm=9.ll0XIO”””である。
However, N (cm-') is the electron density, e (cgs) is the charge production, e=4.803×10-th, and mug) is the electron mass, m=9. ll0XIO”””.

ここに、X線に対する物質の屈折率n(ω)は、n(ω
)=J17Ty■ であるので、n(ω)く1となり、X線が真空中より物
質に臨界角θC〔ラジアン〕以下で入射すると全反射が
起こることになる。ここに、g(ω)=1−26とおく
と、δ= 2 yt e”FJ/mω”((1であるの
で、X線に対する物質の屈折率は、n(ω)=J(1−
2δ〕#1−δ となる。
Here, the refractive index n(ω) of the substance for X-rays is n(ω
)=J17Ty■, so n(ω) is 1, and when X-rays enter a substance from a vacuum at a critical angle of θC (radian) or less, total reflection occurs. Here, if we set g(ω) = 1-26, δ = 2 yt e"FJ/mω" ((1, so the refractive index of the material for X-rays is n(ω) = J(1-
2δ] #1−δ.

一方、臨界角θCは、スネルの法則により、1cosθ
c=ncos○ から求められる。全反射の臨界角はθ
c井Oであるので、COSθCを展開することにより、 e cmJ28= (eλ/c)V/Nフ弓【1= (
e h/E)JpA、z/rcmM但し、ブランク定数
h=6,626X10−27、アボガドロ数A0=6.
022X102′であり、三方晶Seに対し、密度、ρ
 〔g−釧−”)=4゜808、電子数Z=34、質量
M=78.96である。
On the other hand, the critical angle θC is 1cosθ according to Snell's law.
It is determined from c=ncos○. The critical angle of total reflection is θ
c well O, so by expanding COSθC, e cmJ28= (eλ/c)V/N bow [1= (
e h/E) JpA, z/rcmM However, blank constant h=6,626X10-27, Avogadro's number A0=6.
022X102', and for trigonal Se, the density, ρ
[g−釧−”)=4°808, number of electrons Z=34, and mass M=78.96.

ここに、セレンSeのに吸収端の波長λab=0゜97
98−”[cn)よりEab= 12.653 (Ke
V)となる。EXAFS測定範囲は、Eabに対し±I
KeV程度上下の範囲で充分である。よって、この測定
領域の高エネルギ一端は、13,653(KeV)とな
る。
Here, the absorption edge wavelength λab of selenium Se is 0°97
From 98-” [cn], Eab= 12.653 (Ke
V). EXAFS measurement range is ±I for Eab.
A range above and below about KeV is sufficient. Therefore, the high energy end of this measurement region is 13,653 (KeV).

また、上式の演算により、臨界角0c=3,036X1
0−’(ラジアン)=10.4’ を得る。
Also, by calculating the above formula, the critical angle 0c=3,036X1
We get 0-'(radian)=10.4'.

従って、この臨界角θC以下の入射角でSe薄膜表面に
入射する入射X線に対しては、そのエネルギーが13.
653 (KeV)以下の領域に対してEXAFSの測
定を行うことができる。このようにして、基板5上に蒸
着形成したSe薄膜6における局所構造の評価を行うこ
とができる。
Therefore, for incident X-rays that enter the Se thin film surface at an incident angle less than this critical angle θC, the energy thereof is 13.
EXAFS measurements can be performed in the region below 653 (KeV). In this way, the local structure of the Se thin film 6 deposited on the substrate 5 can be evaluated.

効果 本発明は、上述したように試料表面で全反射したX線の
吸収を測定する構成としたので、試料表面に敏感な測定
ができることにより基板上の薄膜を測定でき、この際、
除去部材により直接X線の影響を除去しているので、S
/N比のよい測定が可能となり、さらには、2次X線で
はなく、全反射X線を検出することにより、高濃度な試
料であっても測定可能となる。
Effects As described above, the present invention is configured to measure the absorption of X-rays that are totally reflected on the sample surface, so that measurement that is sensitive to the sample surface is possible, and thin films on the substrate can be measured.
Since the removal member directly removes the effects of X-rays, S
It becomes possible to measure with a good /N ratio, and furthermore, by detecting totally reflected X-rays instead of secondary X-rays, even highly concentrated samples can be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示す概略正面図である。 1・・・X線源、3・・・X線整形手段、4・・・試料
、8・・・除去部材、9・・・X線検出器 1(ビ側J
The drawing is a schematic front view showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...X-ray source, 3...X-ray shaping means, 4...sample, 8...removal member, 9...X-ray detector 1 (bi side J

Claims (1)

【特許請求の範囲】[Claims] X線を発するX線源と、前記X線を単色平行の微細X線
光束に整形するX線整形手段と、整形後の入射X線量を
モニターするモニター手段と、モニター手段通過後の入
射X線の入射角が測定波長範囲の短波長側での臨界角以
下に設定された試料と、この試料表面からの全反射X線
を検出するX線検出器と、前記試料に対向し前記X線検
出器に対する直接X線の影響を除去する除去部材とから
なることを特徴とする全反射型拡張X線吸収微細構造測
定装置。
an X-ray source that emits X-rays; an X-ray shaping means that shapes the X-rays into a monochromatic parallel fine X-ray beam; a monitor means that monitors the amount of incident X-rays after shaping; a sample whose incident angle is set to be less than or equal to the critical angle on the short wavelength side of the measurement wavelength range; an X-ray detector that detects total internal reflection from the surface of the sample; and an X-ray detector that faces the sample and detects the X-rays. 1. A total internal reflection type extended X-ray absorption fine structure measurement device, comprising a removal member that removes the influence of direct X-rays on the instrument.
JP63127261A 1988-05-25 1988-05-25 Total reflection type expanded x-ray absorption fine structure measuring apparatus Pending JPH01296148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63127261A JPH01296148A (en) 1988-05-25 1988-05-25 Total reflection type expanded x-ray absorption fine structure measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63127261A JPH01296148A (en) 1988-05-25 1988-05-25 Total reflection type expanded x-ray absorption fine structure measuring apparatus

Publications (1)

Publication Number Publication Date
JPH01296148A true JPH01296148A (en) 1989-11-29

Family

ID=14955661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63127261A Pending JPH01296148A (en) 1988-05-25 1988-05-25 Total reflection type expanded x-ray absorption fine structure measuring apparatus

Country Status (1)

Country Link
JP (1) JPH01296148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915660A (en) * 2010-08-10 2010-12-15 杭州科汀光学技术有限公司 Vertical incidence thin-film reflectometer with symmetry and self-alignment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915660A (en) * 2010-08-10 2010-12-15 杭州科汀光学技术有限公司 Vertical incidence thin-film reflectometer with symmetry and self-alignment

Similar Documents

Publication Publication Date Title
US7929667B1 (en) High brightness X-ray metrology
US4169228A (en) X-ray analyzer for testing layered structures
US20030137664A1 (en) Combination thermal wave and optical spectroscopy measurement systems
US7751527B2 (en) Measurement method of layer thickness for thin film stacks
JP3968350B2 (en) X-ray diffraction apparatus and method
JPH01296148A (en) Total reflection type expanded x-ray absorption fine structure measuring apparatus
US20080219409A1 (en) Inspection method for thin film stack
JPH05240809A (en) Method and device for fluorescent x-ray analysis
JP2592931B2 (en) X-ray fluorescence analyzer
JPS6353457A (en) 2-d scan type state analyzer
JPH01244344A (en) Apparatus for measuring x-ray absorbing spectrum
JPH1183766A (en) X-ray reflectivity measurement device
JP2880381B2 (en) X-ray fluorescence analyzer
USH922H (en) Method for analyzing materials using x-ray fluorescence
JPH0682400A (en) Total reflection x-ray fluorescence analyser
JPH0933451A (en) Total reflection x-ray spectrometric apparatus of energy angle dispersion type
JPH04127044A (en) Analysis of surface structure
JPH04198745A (en) X-ray diffracting method
JPH0980000A (en) X-ray evaluation device
JPH03188362A (en) Microstructure evaluating apparatus
JP3195046B2 (en) Total reflection state detection method and trace element measuring device
JP2002093594A (en) X-ray tube and x-ray analyzer
JPH09304308A (en) Analytical method for thin-film structure and its device
SU881592A2 (en) X-ray spectrometer
JPS62293733A (en) Measuring method for solid state property of semiconductor