JPH01294594A - Molecular beam epitaxial growing unit - Google Patents

Molecular beam epitaxial growing unit

Info

Publication number
JPH01294594A
JPH01294594A JP12390488A JP12390488A JPH01294594A JP H01294594 A JPH01294594 A JP H01294594A JP 12390488 A JP12390488 A JP 12390488A JP 12390488 A JP12390488 A JP 12390488A JP H01294594 A JPH01294594 A JP H01294594A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
molecular beam
electron
substrate
substrate holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12390488A
Other languages
Japanese (ja)
Inventor
Mitsuro Kawano
川野 充郎
Shinji Yamazaki
真嗣 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12390488A priority Critical patent/JPH01294594A/en
Publication of JPH01294594A publication Critical patent/JPH01294594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To provide the title unit so designed that a semiconductor substrate is irradiated with electron beams through a shielding plate intermittently shielding electron beams synchronously with substrate rotation and by detecting the reflectively diffracted electron beams using a detector, thereby observing the growth rate of a crystal during its growth in high accuracy. CONSTITUTION:A semiconductor substrate 110 is supported by a rotatable substrate holder 109 equipped with in a vacuum container 101, and molecular beams are emitted from beam sources 102, 103 while rotating the holder to grow an epitaxial growth layer on the substrate 110. At the same time, electron beams are emitted through an electron gun 111 and irradiated on the substrate 110 via a shielding plate 113 intermittently shielding electron beams synchronously with the rotation of the substrate 110, and the electron beams reflectively diffracted from the substrate 110 are detected using a detector 115; thereby enabling the intensity vibration of RHEED diffraction images to be observed during crystal growth without the need for stopping the rotation of the substrate 110 and the crystal growth rate to be determined on real time.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は例えば半導体多層薄膜構造の結晶等を成長す
る分子線エピタキシャル装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a molecular beam epitaxial apparatus for growing, for example, crystals of a semiconductor multilayer thin film structure.

(従来の技術) 分子線エピタキシャル成長法(以下MBE法と略記する
)は、真空容器内で分子線源から射出した分子線を半導
体基板に照射して半導体単結晶膜を成長する技術である
(Prior Art) Molecular beam epitaxial growth (hereinafter abbreviated as MBE) is a technique for growing a semiconductor single crystal film by irradiating a semiconductor substrate with a molecular beam emitted from a molecular beam source in a vacuum chamber.

MBE法で成長した多層薄膜構造の結晶(−層あたりの
膜厚は数人から数百A)を用いて優れた特性の半導体素
子を製作することができる。このような半導体結晶を製
作するためには結晶の成長速度を精密に測定し、所定の
膜厚にする必要がある。
A semiconductor element with excellent characteristics can be manufactured using a crystal with a multilayer thin film structure grown by the MBE method (thickness per layer ranges from several to several hundred amps). In order to manufacture such a semiconductor crystal, it is necessary to accurately measure the growth rate of the crystal and achieve a predetermined film thickness.

従来の分子線エピタキシャル成長装置(以下MBE装置
と略記する。)の−例を第6図に示された断面図で説明
する。真空容器(11)内には複数個の分子線源(12
)、(13)が設置され、その各々には分子線を開閉す
るシャッタ(14) 、 (15)が設けられている。
An example of a conventional molecular beam epitaxial growth apparatus (hereinafter abbreviated as MBE apparatus) will be explained with reference to the cross-sectional view shown in FIG. A plurality of molecular beam sources (12) are installed in the vacuum container (11).
), (13) are installed, and each of them is provided with shutters (14), (15) for opening and closing the molecular beam.

分子線?R(12) 、 <13)に対向する位置には
半導体基板(20)を保持した半導体基板ホルダ(19
)が設けられている。半導体基板や成長した結晶に電子
線を照射するための電子銃(21)と、結晶表面からの
反射電子線の回折像を映し出す蛍光スクリーン(24)
が配置されている。
Molecular beam? A semiconductor substrate holder (19) holding a semiconductor substrate (20) is located at a position facing R(12), <13).
) is provided. An electron gun (21) for irradiating semiconductor substrates and grown crystals with electron beams, and a fluorescent screen (24) that projects the diffraction image of the electron beam reflected from the crystal surface.
is located.

前記電子銃(21)より放射される電子線の回折像を前
記蛍光スクリーン(24)に映し出すことにより、半導
体基板や成長した結晶の表面状態、結晶性を調べること
ができるようにしている。
By projecting the diffraction image of the electron beam emitted from the electron gun (21) on the fluorescent screen (24), it is possible to examine the surface condition and crystallinity of the semiconductor substrate and the grown crystal.

従来、上記のMBE装置で成長した結晶の成長速度を求
めるには次の手順によっていた。結晶成長終了後、結晶
をヘキ開し、その断面をスティンエッチして成長層境界
線を見易くした後、走査型電子顕微鏡(SEM)を用い
て膜厚を測定し、その膜厚と成長時間から成長速度を計
算する。しかし、この方法では全部の層の成長が終了し
た後でないと成長速度を知ることができない。また、多
層膜の成長ではその中の一つの層の膜厚が規格外であっ
ても、多層膜全体が規格外不良になるという欠点があっ
た。また、極めて薄い膜の場合は測定精度が悪くなるか
、又は測定不可能であった。
Conventionally, the following procedure has been used to determine the growth rate of a crystal grown using the above-mentioned MBE apparatus. After the crystal growth is completed, the crystal is cleaved and its cross section is etched to make it easier to see the boundary between the grown layers.The film thickness is measured using a scanning electron microscope (SEM), and the film thickness and growth time are Calculate growth rate. However, with this method, the growth rate cannot be determined until after all layers have been grown. Furthermore, the growth of a multilayer film has the disadvantage that even if the thickness of one of the layers is out of specification, the entire multilayer film becomes defective. Furthermore, in the case of extremely thin films, the measurement accuracy was poor or measurement was impossible.

MBEに関する最近の研究により、結晶成長中に10k
eV程度の高エネルギーで加速した電子線を結晶表面に
ほぼ平行な角度で入射させ、その反射電子線回折像(R
HEED回折像)を観測すると次のことが明らかになっ
た。RHEED回折像の回折強度が時間と共に周期的に
変動し、その変動は、結晶の成長過程に対応している。
Recent research on MBE has shown that 10k during crystal growth.
An electron beam accelerated with a high energy of about eV is incident on the crystal surface at an angle almost parallel to the crystal surface, and its reflected electron beam diffraction image (R
Observation of the HEED diffraction image revealed the following. The diffraction intensity of the RHEED diffraction image varies periodically with time, and the variation corresponds to the crystal growth process.

−例として第7図にGaAs (砒化ガリウム) (0
01)面の<110>方向入射による反射電子回折パタ
ーン強度の時間変化の様子を示す。この振動の一周期が
GaAsの一原子層の成長に相当することが知られてい
る。
- As an example, Fig. 7 shows GaAs (gallium arsenide) (0
01) shows how the reflected electron diffraction pattern intensity changes over time due to incidence in the <110> direction. It is known that one period of this oscillation corresponds to the growth of one atomic layer of GaAs.

上記の知見に基き、このRHEED回折像の回折強度の
周期を観測することにより、リアルタイムで原子尺度の
成長速度を知り、成長の制御が可能になる。しかし、こ
のRHEED回折像の振動を観測するためには、電子線
の結晶への入射方向が一定の結晶方位となる必要がある
。そこで通常の成長では成長層の均一性を保つために不
可欠な基板回転を行うことができない。従って、従来は
基板の回転を止めて、RHEED回折像の強度を観測し
て成長の精密制御を行う必要があった。しかし、この方
法では基板の回転を止めるため成長層の面内均一性の低
下を招き、所望する半導体結晶の精密な膜厚制御を行う
ことができない。
Based on the above knowledge, by observing the period of the diffraction intensity of this RHEED diffraction image, it becomes possible to know the growth rate on an atomic scale in real time and control the growth. However, in order to observe the vibration of this RHEED diffraction image, the direction of incidence of the electron beam on the crystal needs to be in a constant crystal orientation. Therefore, in normal growth, it is not possible to rotate the substrate, which is essential for maintaining the uniformity of the grown layer. Therefore, in the past, it was necessary to precisely control growth by stopping the rotation of the substrate and observing the intensity of the RHEED diffraction image. However, in this method, since the rotation of the substrate is stopped, the in-plane uniformity of the grown layer deteriorates, and the desired precise film thickness control of the semiconductor crystal cannot be performed.

(発明が解決しようとする課題) 以上述べたように、結晶成長終了後、試料をヘキ関し断
面をスティンエツチングして結晶層厚を観測する方法で
は、成長終了後でないと成長層の膜厚、もしくは成長速
度がわからない。一方、RHEED回折像の回折強度の
振動を観測して成長速度を知る方法は、基板を回転させ
ることができないため、成長層の面内均一性が低下した
。そこで本発明では、結晶成長中に精度よく結晶の成長
速度を観測し、原子層尺度での成長厚の制御を可能とす
る成長装置を提供することを目的とする。
(Problems to be Solved by the Invention) As described above, in the method of observing the crystal layer thickness by cutting the sample and stain-etching the cross section after the completion of crystal growth, the thickness of the grown layer cannot be measured until after the completion of growth. Or you don't know the growth rate. On the other hand, in the method of determining the growth rate by observing vibrations in the diffraction intensity of a RHEED diffraction image, the in-plane uniformity of the grown layer deteriorates because the substrate cannot be rotated. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a growth apparatus that can accurately observe the growth rate of a crystal during crystal growth and control the growth thickness on an atomic layer scale.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために、本発明ではMBE装置にお
いて、半導体基板の回転と同期してこの半導体基板に入
射する電子線を断続的に遮断する機構、又は反射回折し
た電子線を基板回転と同期して観測、信号処理する機構
を設け、基板上に成長する結晶の成長中に結晶表面に電
子線を照射し、結晶表面からのRHEED回折像を観測
し、結晶層の成長と原子層尺度での成長速度のモニタを
同時に達成することができるようにしたものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, in the present invention, in an MBE apparatus, an electron beam incident on a semiconductor substrate is intermittently blocked in synchronization with the rotation of the semiconductor substrate. A mechanism for observing and signal-processing the reflected and diffracted electron beam in synchronization with the rotation of the substrate is provided, and the crystal surface is irradiated with the electron beam while the crystal is growing on the substrate, resulting in RHEED diffraction from the crystal surface. By observing images, it is possible to simultaneously monitor the growth of crystal layers and the growth rate on an atomic layer scale.

(作 用) 半導体基板回転と同期して半導体基板に入射する電子線
を断続的に遮断する機構、又は反射回折した電子線を基
板回転と同期して観測、信号処理する機構を設けたこと
により、回転する基板に対しても常に一定の結晶方位か
らのRHEED回折像のみを観#lPIできる。
(Function) By providing a mechanism for intermittently blocking the electron beam incident on the semiconductor substrate in synchronization with the rotation of the semiconductor substrate, or a mechanism for observing and signal processing the reflected and diffracted electron beam in synchronization with the rotation of the substrate. Even for a rotating substrate, only RHEED diffraction images from a constant crystal orientation can be viewed.

これにより、結晶成長中に一定の結晶方位からのRHE
ED回折像の強度振動を観測して、結晶の成長速度を精
度よくリアルタイムで知ることができる。
This allows RHE from a certain crystal orientation during crystal growth.
By observing the intensity oscillation of the ED diffraction image, the growth rate of the crystal can be determined in real time with high precision.

(実施例) 第1図に■−V族化合物半導体、例えばGaAsの分子
線エピタキシャル成長に本発明を適用した実施例を示す
(Embodiment) FIG. 1 shows an embodiment in which the present invention is applied to molecular beam epitaxial growth of a ■-V group compound semiconductor, for example, GaAs.

真空容器(101)内にGaおよびAsの分子線源(1
02) 。
A Ga and As molecular beam source (1) is placed in a vacuum container (101).
02).

(103)とシャッタ(104) 、 (105)が設
置され、前記分子線源(102) 、 (103)と対
向する位置にGaAs基板(110)を取付けた半導体
基板ホルダ(109)が設置され、この半導体基板ホル
ダ(109)はその面の中心で面に垂直な軸を中心とし
て回転させることができる。
(103) and shutters (104) and (105) are installed, and a semiconductor substrate holder (109) with a GaAs substrate (110) attached is installed at a position facing the molecular beam sources (102) and (103), This semiconductor substrate holder (109) can be rotated at the center of its plane about an axis perpendicular to the plane.

(111)は電子銃でRHEED回折像は蛍光スクリー
ン(114)に映出され、蛍光スクリーン(114)の
外側には、光ファイバーと光電子増倍管とから成る検出
器(115)が取付けられており、回折像強度の変化を
観察できる。
(111) is an electron gun, and the RHEED diffraction image is projected onto a fluorescent screen (114), and a detector (115) consisting of an optical fiber and a photomultiplier tube is attached to the outside of the fluorescent screen (114). , changes in the diffraction image intensity can be observed.

電子銃(lit)の直前には例えば第2図に示すような
スリット付回転板(113)があり、これに幅数百μm
程度のスリット(121)が開孔している。回転板(1
13)の回転によってスリット(121)の存在で電子
線が断続的に遮断される。スリットが回転して電子線が
GaAs基板(110)に入射するタイミングと基板回
転とは、GaAs基板の常に定まった結晶方位のR)I
EED回折像を蛍光スクリーン(114)上で観測でき
るように同期されている。
Immediately before the electron gun (lit), there is a rotary plate (113) with slits as shown in Figure 2, for example, and a rotary plate (113) with a width of several hundred μm.
A slit (121) of about 100 mm is opened. Rotating plate (1
13), the electron beam is intermittently blocked by the presence of the slit (121). The timing at which the slit rotates and the electron beam enters the GaAs substrate (110) and the substrate rotation are determined by the R) I of the always fixed crystal orientation of the GaAs substrate.
They are synchronized so that the EED diffraction image can be observed on the fluorescent screen (114).

次に、上述した分子線エピタキシャル成長装置の動作に
ついて説明する。
Next, the operation of the above-described molecular beam epitaxial growth apparatus will be explained.

加熱したGaAs基板(110)に対し、As分子線源
(103)よりAs分子線をシャッタ(105)を介し
て照射しながら基板表面のクリーニングを行う。その後
、Ga分子線源(102)のシャッタ(104)を介し
て、回転状態にあるGaAs基板(110)に対し、G
aAsの成長を行う。成長中にスリット付回転板(11
3)を回転させながら、電子銃(1,11)より電子線
を照射し、例えばGaAs(001)面の<110>方
向から入射する電子線のRHEED回折像を蛍光スクリ
ーン(114)上に映出し、あらかじめ観測しやすいよ
うに選んでおいた輝点の強度振動を検出器(115)に
より検出し、これを適宜表示装置により表示する。スリ
ットの回転は前記(001)面の前記<110>方向の
回折像のみが観測できるように基板回転と同期するよう
にあらかじめ調整されている。
The surface of the heated GaAs substrate (110) is cleaned while being irradiated with an As molecular beam from an As molecular beam source (103) through a shutter (105). After that, G is applied to the rotating GaAs substrate (110) through the shutter (104) of the Ga molecular beam source (102).
Perform aAs growth. Rotating plate with slits (11
3) while rotating, irradiate an electron beam from the electron gun (1, 11), and project the RHEED diffraction image of the electron beam incident from the <110> direction of the GaAs (001) surface on the fluorescent screen (114), for example. A detector (115) detects intensity oscillations of a bright spot selected in advance for ease of observation, and this is appropriately displayed on a display device. The rotation of the slit is adjusted in advance to be synchronized with the rotation of the substrate so that only the diffraction image of the (001) plane in the <110> direction can be observed.

通常、MBE法における結晶の成長速度は0.5 μm
/h 〜1 μm/hであり、このときRHEED回街
像の強度振動の周期は1秒程度である。
Normally, the crystal growth rate in MBE method is 0.5 μm
/h to 1 μm/h, and at this time, the period of intensity oscillation of the RHEED rotating image is about 1 second.

そこで成長を行う時、基板回転を6〜8回/秒とし、第
2図に示されるスリット付回転板(113)を回転数3
〜4回/秒として、基板を回転しながら、基板より反射
し回折した電子線の振動を観測することができるもので
ある。
When performing growth, the substrate is rotated 6 to 8 times/second, and the rotating plate with slits (113) shown in FIG.
It is possible to observe the vibrations of the electron beam reflected and diffracted from the substrate while rotating the substrate at ~4 times/second.

GaAsの成長が始まると、例えば第3図に示されるよ
うなRIIEED振動を観測することができ、この振動
周期は単原子層の成長過程が思案に反映されるものであ
る。
When the growth of GaAs begins, RIIEED oscillations as shown in FIG. 3, for example, can be observed, and this oscillation period is a reflection of the growth process of the monoatomic layer.

なお、上記によれば、スリット付回転板(+13)を電
子銃(111)と半導体基板ホルダ(109)の間に設
けたが、これを前記半導体基板ホルダ(109)と検出
器(115)との間に設けるようにしても差し支えない
Note that, according to the above, the rotary plate with slits (+13) was provided between the electron gun (111) and the semiconductor substrate holder (109), but this was also installed between the semiconductor substrate holder (109) and the detector (115). There is no problem even if it is provided in between.

次に第4図に他の実施例の要部を示す。以下説明すると
、真空容器(201)内にある電子銃(203)の直前
に2個1組の周知の平行平板電極(202) 。
Next, FIG. 4 shows the main part of another embodiment. To explain below, a set of two well-known parallel plate electrodes (202) are placed immediately before an electron gun (203) in a vacuum container (201).

(202)を置く。この平行平板電極(202) 、 
(202)間の印加電圧を変化させることにより、電極
間で電子線を任意の方向に偏向させることができる。
(202) is placed. This parallel plate electrode (202),
(202) By changing the applied voltage between the electrodes, the electron beam can be deflected in any direction between the electrodes.

したがって、印加電圧を適切に変化させれば、電子線を
半導体基板に入射させたり、入射させなかったりと断続
さiることができる。さらに、基板回転と同期して印加
電圧を変化して、基板回転と同期した周期で極めて短時
間、基板に電子線が入射するようにすると、半導体基板
の常に定まった結晶方位のR)IEED回折像のみを観
測できるようになる。上記の実施例と同様の条件下でG
aAsの成長を行ったところ、成長中に数10回のRH
EED振動を観測することができた。
Therefore, by appropriately changing the applied voltage, the electron beam can be made to be incident on the semiconductor substrate or not made to be incident on the semiconductor substrate intermittently. Furthermore, by changing the applied voltage in synchronization with the rotation of the substrate so that the electron beam is incident on the substrate for an extremely short period of time in synchronization with the rotation of the substrate, R)IEED diffraction of the always fixed crystal orientation of the semiconductor substrate can be observed. Only the image can be observed. G under the same conditions as in the above example.
When aAs was grown, RH occurred several dozen times during the growth.
We were able to observe EED vibrations.

更に、上述の各実施例におけるスリット゛付回転板や平
行平板電極で電子線を断続する代りに、蛍光スクリーン
上に映出されたRHEED回折像の強度を検出し、その
強度信号をサンプリングする方法でもよい。この方法に
よれば、サンプリングを基板回転と同期して行い、特定
の結晶方位のRIIEED回折像だけを観測できる。す
なわち、この方法について、第5図により説明する。
Furthermore, instead of intermittent electron beams using the rotary plate with slits or the parallel plate electrodes in each of the above-mentioned embodiments, it is also possible to detect the intensity of the RHEED diffraction image projected on the fluorescent screen and sample the intensity signal. good. According to this method, sampling is performed in synchronization with substrate rotation, and only RIIEED diffraction images of specific crystal orientations can be observed. That is, this method will be explained with reference to FIG.

なお、第1図と同一の部分には同一の番号を付し、詳細
な説明は省略する。蛍光スクリーン(114)の外側に
は光ファイバーと光電子増倍管とから成る検出器(l1
5a)及び信号処理系回路を含む検出装置が設けられて
おり、回折像強度の変化を観測できるものである。すな
わち、検出器(115a)からの出力信号はバンドパス
フィルタ(115b)により不要な周波数成分が取除か
れる。次いでサンプルホールド装置(l15c)により
サンプルホールドされ、直流微少電圧計(l15d)で
検出され、記録器(115e)に入力される。サンプル
ホールド装置(l15a)へ入力されるサンプリングパ
ルスは基板回転を基準とした同期信号からサンプリング
パルス発生器(115「)により発生される。
Note that the same parts as in FIG. 1 are given the same numbers, and detailed explanations are omitted. Outside the fluorescent screen (114) is a detector (l1) consisting of an optical fiber and a photomultiplier tube.
A detection device including 5a) and a signal processing circuit is provided, and is capable of observing changes in diffraction image intensity. That is, unnecessary frequency components are removed from the output signal from the detector (115a) by the bandpass filter (115b). Next, it is sampled and held by a sample and hold device (115c), detected by a DC minute voltmeter (115d), and inputted to a recorder (115e). The sampling pulse input to the sample hold device (l15a) is generated by a sampling pulse generator (115'') from a synchronization signal based on the rotation of the substrate.

以上の各実施例の何れにおいても成長したGaAsの表
面は良好で通常の成長と比べて成長層に異常は見られな
かった。観測された振動により、結晶成長中のGaAs
の成長速度を成長層の均一性を保ちながら知ることがで
き、単原子層尺度での成長制御が可能となった。
In all of the above examples, the surface of the grown GaAs was good, and no abnormality was observed in the grown layer compared to normal growth. The observed oscillations indicate that GaAs during crystal growth
The growth rate can be determined while maintaining the uniformity of the grown layer, making it possible to control growth on a monoatomic layer scale.

本実施例ではGaAsの成長について述べたがAlGa
As等の他の結晶成長についても適用できる。
In this example, growth of GaAs was described, but AlGa
It can also be applied to the growth of other crystals such as As.

この発明は上記実施例に限ることなく、その他この発明
の要旨を逸脱しない範囲で種々の変形を実施し得ること
は勿論である。
It goes without saying that the present invention is not limited to the above-described embodiments, and that various modifications can be made without departing from the gist of the present invention.

[発明の効果コ 以上述べたように本発明によれば成長中に基板を回転し
ながら、RHEED回折像の強度振動を観測することが
でき、成長層の均一性を保ちながら成長中に精密にかつ
リアルタイムで結晶の成長速度を知ることができる分子
線エピタキシャル成長装置を提供できる。
[Effects of the Invention] As described above, according to the present invention, it is possible to observe the intensity oscillation of the RHEED diffraction image while rotating the substrate during growth, and it is possible to observe the intensity fluctuation of the RHEED diffraction image precisely during growth while maintaining the uniformity of the growth layer. Furthermore, it is possible to provide a molecular beam epitaxial growth apparatus that allows the crystal growth rate to be known in real time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明する分子線エピタキシ
ャル装置の断面図、第2図は本発明の第1図におけるス
リット付回転板を示す斜視図、第3図は第1図に示され
る実施例において観測されたRHEED回折像の強度振
動の一例を示す図、第4図は本発明の他の実施例を示す
分子線エピタキシャル成長装置の要部の断面図、第5図
は本発明の更に他の実施例の分子線エピタキシャル成長
装置を示す図、第6図は従来のエピタキシャル成長装置
の断面図、第7図は第6図の例における従来のRHEE
D回折像の強度振動の一例を示す図である。 11.101,201・・・・・・・・・真空容器10
2.103,12.13・・・分子線源104.105
,14.15・・・分子線源のシャッタ109.19・
・・・・・・・・・・・・・・半導体基板ホルダ20・
・・・・・・・・・・・・・・・・・・・・半導体基板
110・・・・・・・・・・・・・・・・・・CaAs
基板113・・・・・・・・・・・・・・・・・・スリ
ット付円板121・・・・・・・・・・・・・・・・・
・スリット111.203.21・・・・・・・・・電
子銃114.24・・・・・・・・・・・・・・・蛍光
スクリーン202・・・・・・・・・・・・・・・・・
・平行平板電極115.115a、25・・・・・・検
出器116・・・・・・・・・・・・・・・・・・検出
装置115b・・・・・・・・・・・・・・・・・・バ
ンドパスフィルタ115C・・・・・・・・・・・・・
・・・・・サンプルホールド装置115d・・・・・・
・・・・・・・・・・・・直流微少電圧計115e・・
・・・・・・・・・・・・・・・・記録器115r・・
・・・・・・・・・・・・・・・・サンプリングパルス
発生器出願人代理人 弁理士 側近 憲佑 同  山王  − 101奥墾容憑 115   検出6 第2図 第3図 第4図 L       −−−−J
FIG. 1 is a cross-sectional view of a molecular beam epitaxial apparatus illustrating an embodiment of the present invention, FIG. 2 is a perspective view showing a rotary plate with slits in FIG. 1 of the present invention, and FIG. FIG. 4 is a cross-sectional view of a main part of a molecular beam epitaxial growth apparatus showing another embodiment of the present invention, and FIG. A diagram showing a molecular beam epitaxial growth apparatus according to another embodiment, FIG. 6 is a sectional view of a conventional epitaxial growth apparatus, and FIG. 7 is a conventional RHEE in the example of FIG. 6.
It is a figure which shows an example of the intensity vibration of a D diffraction image. 11.101,201...Vacuum container 10
2.103,12.13...Molecular beam source 104.105
, 14.15... Molecular beam source shutter 109.19.
...... Semiconductor substrate holder 20.
・・・・・・・・・・・・・・・・・・ Semiconductor substrate 110 ・・・・・・・・・・・・・・・・・・CaAs
Substrate 113......Disc plate with slit 121......
・Slit 111.203.21... Electron gun 114.24... Fluorescent screen 202...・・・・・・
・Parallel plate electrodes 115.115a, 25...Detector 116...Detection device 115b...・・・・・・Band pass filter 115C・・・・・・・・・・・・・
...Sample hold device 115d...
・・・・・・・・・DC minute voltmeter 115e...
・・・・・・・・・・・・・・・Recorder 115r...
・・・・・・・・・・・・・・・・Sampling pulse generator applicant's agent Patent attorney Close aide Kensuke Sanno - 101 Okuken Yutsu 115 Detection 6 Figure 2 Figure 3 Figure 4 L -----J

Claims (3)

【特許請求の範囲】[Claims] (1)分子線を放出する分子線源と、前記分子線源に対
向配置し、一つの軸を中心として回転する半導体基板ホ
ルダと、前記半導体基板ホルダに保持される半導体基板
に電子線を放射する電子銃と、前記電子銃より放射され
る電子線を前記半導体基板ホルダの回転と同期して断続
的に遮断する遮蔽板と、これら分子線源、半導体基板ホ
ルダ、電子銃および遮蔽板を収納する真空容器と、前記
電子銃より前記半導体基板に対して照射され、前記半導
体基板より反射回折した電子線を検出する検出器を具備
した分子線エピタキシャル成長装置。
(1) A molecular beam source that emits a molecular beam, a semiconductor substrate holder that is arranged opposite to the molecular beam source and rotates about one axis, and emits an electron beam to the semiconductor substrate held by the semiconductor substrate holder. a shielding plate that intermittently blocks the electron beam emitted from the electron gun in synchronization with the rotation of the semiconductor substrate holder, and housing the molecular beam source, the semiconductor substrate holder, the electron gun, and the shielding plate. A molecular beam epitaxial growth apparatus, comprising: a vacuum vessel for carrying out the electron beam; and a detector for detecting electron beams that are irradiated onto the semiconductor substrate by the electron gun and reflected and diffracted from the semiconductor substrate.
(2)分子線を放出する分子線源と、前記分子線源に対
向配置し、一つの軸を中心として回転する半導体基板ホ
ルダと、前記半導体基板ホルダに保持される半導体基板
に電子線を放射する電子銃と、前記電子銃より放射され
る電子線を前記半導体基板ホルダの回転と同期して断続
的に電界により偏向する電子線断続偏向装置と、これら
分子線源、半導体基板ホルダ、電子銃および電子線断続
偏向装置を収納する真空容器と、前記電子銃より前記半
導体基板に対して照射され前記半導体基板より反射回折
した電子線を検出する検出器とを具備した分子線エピタ
キシャル成長装置。
(2) A molecular beam source that emits a molecular beam, a semiconductor substrate holder that is arranged opposite to the molecular beam source and rotates about one axis, and emits an electron beam to the semiconductor substrate held by the semiconductor substrate holder. an electron beam intermittent deflection device that intermittently deflects an electron beam emitted from the electron gun by an electric field in synchronization with the rotation of the semiconductor substrate holder, and these molecular beam sources, the semiconductor substrate holder, and the electron gun. and a molecular beam epitaxial growth apparatus comprising: a vacuum container housing an electron beam intermittent deflection device; and a detector configured to detect an electron beam irradiated onto the semiconductor substrate from the electron gun and reflected and diffracted from the semiconductor substrate.
(3)分子線を放出する分子線源と、前記分子線源に対
向配置し、一つの軸を中心として回転する半導体基板ホ
ルダと、前記半導体基板ホルダに保持される半導体基板
に電子線を放出する電子銃と、これら分子線源、半導体
基板ホルダ、および電子銃を収納する真空容器と、前記
電子銃より前記半導体基板に対して照射され、前記半導
体基板より反射回折した電子線の回折強度信号を検出す
る検出器とこの回折強度信号を前記半導体基板ホルダの
回転と同期してサンプリングする信号処理系回路を有す
る検出装置を具備した分子線エピタキシャル成長装置。
(3) A molecular beam source that emits a molecular beam, a semiconductor substrate holder that is arranged opposite to the molecular beam source and rotates about one axis, and that emits an electron beam to the semiconductor substrate held by the semiconductor substrate holder. an electron gun, a molecular beam source, a semiconductor substrate holder, a vacuum container housing the electron gun, and a diffraction intensity signal of an electron beam irradiated from the electron gun to the semiconductor substrate and reflected and diffracted from the semiconductor substrate. A molecular beam epitaxial growth apparatus comprising a detection device having a detector for detecting the diffraction intensity signal and a signal processing circuit for sampling the diffraction intensity signal in synchronization with the rotation of the semiconductor substrate holder.
JP12390488A 1988-05-23 1988-05-23 Molecular beam epitaxial growing unit Pending JPH01294594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12390488A JPH01294594A (en) 1988-05-23 1988-05-23 Molecular beam epitaxial growing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12390488A JPH01294594A (en) 1988-05-23 1988-05-23 Molecular beam epitaxial growing unit

Publications (1)

Publication Number Publication Date
JPH01294594A true JPH01294594A (en) 1989-11-28

Family

ID=14872219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12390488A Pending JPH01294594A (en) 1988-05-23 1988-05-23 Molecular beam epitaxial growing unit

Country Status (1)

Country Link
JP (1) JPH01294594A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012826A3 (en) * 2001-07-25 2003-09-25 Motorola Inc Monitoring and controlling perovskite oxide film growth
WO2003012831A3 (en) * 2001-07-25 2004-03-18 Motorola Inc Structure including a monocrystalline perovskite oxide layer
US6806202B2 (en) 2002-12-03 2004-10-19 Motorola, Inc. Method of removing silicon oxide from a surface of a substrate
CN108362721A (en) * 2018-01-16 2018-08-03 长春理工大学 A kind of device and method of in-situ monitoring ALD deposition thin-film material quality

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012826A3 (en) * 2001-07-25 2003-09-25 Motorola Inc Monitoring and controlling perovskite oxide film growth
WO2003012831A3 (en) * 2001-07-25 2004-03-18 Motorola Inc Structure including a monocrystalline perovskite oxide layer
US6806202B2 (en) 2002-12-03 2004-10-19 Motorola, Inc. Method of removing silicon oxide from a surface of a substrate
CN108362721A (en) * 2018-01-16 2018-08-03 长春理工大学 A kind of device and method of in-situ monitoring ALD deposition thin-film material quality

Similar Documents

Publication Publication Date Title
US5588995A (en) System for monitoring the growth of crystalline films on stationary substrates
RU2012872C1 (en) Method for obtaining image of object internal structure
JPS63124942A (en) Method and device for particularly measuring property of surface of semiconductor slice
JPH04337236A (en) Three-dimensional atomic arrangement observing device and method
JP4495631B2 (en) X-ray single crystal evaluation system
JPH01294594A (en) Molecular beam epitaxial growing unit
JP3519203B2 (en) X-ray equipment
JP2000314708A (en) X-ray topography device
JP2905659B2 (en) X-ray apparatus and evaluation analysis method using the apparatus
Wallace et al. X-ray diffraction techniques for the analysis of epitaxic thin films
Nestler et al. Novel use of a commercial goniometer for sorting round quartz blanks
JPS61186284A (en) Apparatus for molecular beam epitaxy
JPH02266249A (en) Method for measuring x-ray diffraction of crystal plane
JPS63215591A (en) Crystal surface evaluating device by electron beam diffraction in molecular beam epitaxial device
JP2999272B2 (en) Parallel beam X-ray diffractometer
SU584234A1 (en) Method and apparatus for measuring monocrystal lattice constants
JP2001093952A (en) Method of detecting crystal defect and method of observing crystal defect
JP2732311B2 (en) X-ray topography equipment
SU1622803A1 (en) Method of determining the degree of disturbance of surface of volume of monocrystalline plates
JPH11248652A (en) X-ray diffraction measuring method and x-ray differactometer
JPH04301800A (en) X-ray diffraction microscopic device
JPH0572149A (en) X-ray measuring device
JPH06258262A (en) Azimuth determining method and device for monocrystal ingot
JPH05296946A (en) X-ray diffraction device
JPH02218946A (en) Reflecting high speed electron beam diffraction apparatus