JPH0129012B2 - - Google Patents

Info

Publication number
JPH0129012B2
JPH0129012B2 JP10805882A JP10805882A JPH0129012B2 JP H0129012 B2 JPH0129012 B2 JP H0129012B2 JP 10805882 A JP10805882 A JP 10805882A JP 10805882 A JP10805882 A JP 10805882A JP H0129012 B2 JPH0129012 B2 JP H0129012B2
Authority
JP
Japan
Prior art keywords
photocathode
aluminum
tube
aluminum layer
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10805882A
Other languages
Japanese (ja)
Other versions
JPS58225548A (en
Inventor
Takuji Yanagisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10805882A priority Critical patent/JPS58225548A/en
Publication of JPS58225548A publication Critical patent/JPS58225548A/en
Publication of JPH0129012B2 publication Critical patent/JPH0129012B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] この発明は近接形イメージ管に関する。[Detailed description of the invention] [Technical field of invention] This invention relates to a proximity image tube.

[発明の技術的背景] 一般に近接形イメージ管は第1図に示すように
構成され、内面に光電面1を有する光電面板3と
内面にターゲツト面2を有するターゲツト面板4
とが対向配設され、環状絶縁体5により所定間隔
で封着されている。
[Technical Background of the Invention] In general, a proximity image tube is constructed as shown in FIG.
are arranged facing each other and sealed at a predetermined interval by an annular insulator 5.

この場合、各面板3,4はガラス板もしくは繊
維光学板で作られており、上記間隔は通常1〜2
mmである。又、ターゲツト面2は通常は電子衝撃
によつて発光する蛍光面であるが、信号を取り出
せるものであれば他の構体(例えば固体撮像板あ
るいは撮像管のSECターゲツト)でもよく、ここ
では蛍光面を用いたイメージ管について説明す
る。
In this case, each face plate 3, 4 is made of a glass plate or a fiber optic plate, and the above-mentioned interval is usually 1 to 2.
mm. Further, the target surface 2 is usually a fluorescent screen that emits light by electron bombardment, but it may be any other structure (for example, a solid-state image pickup plate or an SEC target of an image pickup tube) as long as it can extract signals; here, a fluorescent screen is used. An image tube using an image tube will be explained.

光電面リード6に対してターゲツト面リード7
に高電圧(通常は10kV内外)を印加して動作さ
せる。そして、入力光は矢印8方向から照射さ
れ、光電面1に光像が結像されると光電子が放出
され、この光電子は、強い電界により光電面1に
垂直な方向に加速されてターゲツト面2である蛍
光面に達し、蛍光面を発光させる。光電子は強い
電界により蛍光面に平行な方向への広がりが制限
されるため、蛍光面で入射光像がより明るく再生
される。
Target surface lead 7 with respect to photocathode surface lead 6
It is operated by applying a high voltage (usually around 10kV) to the Then, the input light is irradiated from the direction of arrow 8, and when a light image is formed on the photocathode 1, photoelectrons are emitted, and these photoelectrons are accelerated in a direction perpendicular to the photocathode 1 by a strong electric field and hit the target surface 2. reaches a certain phosphor screen and causes the phosphor screen to emit light. Since the spread of photoelectrons in a direction parallel to the phosphor screen is restricted by the strong electric field, the incident light image is reproduced brighter on the phosphor screen.

[背景技術の問題点] 上記従来の近接形イメージ管において、蛍光面
から発する光が光電面1に洩れると、この光によ
る光電子が放出されるため、再生像の鮮鋭度が損
なわれるので、これを防止するために1000オング
ストローム内外のアルミニウム薄膜が蛍光面の全
面に設けられる。これは通常の所謂メタルバツク
と同一の手法により製作される。
[Problems in the Background Art] In the conventional proximity image tube described above, when light emitted from the phosphor screen leaks to the photocathode 1, photoelectrons are emitted due to this light, which impairs the sharpness of the reproduced image. To prevent this, a thin aluminum film of 1000 angstroms is provided over the entire surface of the phosphor screen. This is manufactured using the same method as a normal so-called metal bag.

しかし、入射光の一部は光電面1を通過するた
め、上記アルミニウム薄膜の表面の光反射度が高
いと、この反射光が再び光電面1を照射し、上記
と同様の理由により再生像の鮮鋭度が損われる。
However, since a part of the incident light passes through the photocathode 1, if the surface of the aluminum thin film has a high degree of light reflection, this reflected light will irradiate the photocathode 1 again, and for the same reason as above, the reconstructed image will be Sharpness is lost.

[発明の目的] この発明の目的は、再生像の鮮鋭度が損なわれ
ず、且つ、安定した近接形イメージ管を提供する
ことである。
[Object of the Invention] An object of the present invention is to provide a stable proximity image tube in which the sharpness of reproduced images is not impaired.

[発明の概要] この発明は、内面に光電面を有する光電面板と
内面にターゲツト面を有するターゲツト面板とを
対向配設し、環状絶縁体により所定間隔で封着し
てなる近接形イメージ管において、光電面側に向
つてターゲツト面板上に蛍光面、第1のアルミニ
ウム緻密層、アルミニウムの多孔質層、上記第1
のアルミニウム緻密層より薄い第2のアルミニウ
ム緻密層が順次形成されてなることを特徴とする
近接形イメージ管である。
[Summary of the Invention] The present invention provides a proximity image tube in which a photocathode plate having a photocathode on its inner surface and a target face plate having a target surface on its inner surface are disposed facing each other and sealed at predetermined intervals with an annular insulator. , a phosphor screen, a first dense aluminum layer, a porous aluminum layer on the target face plate toward the photocathode side, the first
This is a proximity type image tube characterized in that a second dense aluminum layer thinner than the dense aluminum layer is successively formed.

[発明の実施例] この発明の近接形イメージ管は第2図及び第3
図に示すように構成され、第3図は第2図の要部
を示したものである。
[Embodiments of the Invention] The proximity image tube of the present invention is shown in FIGS. 2 and 3.
It is constructed as shown in the figure, and FIG. 3 shows the main part of FIG. 2.

即ち、従来例(第1図)と同一箇所は同一符号
を付することにする。内面に光電面1を有する光
電面板3と、内面にターゲツト面2を有するター
ゲツト面板4とが対向配設され、環状絶縁体10
により所定間隔(例えば1〜2mm)で封着されて
いる。上記ターゲツト面2は第3図に示すように
例えば蛍光面11と第1のアルミニウム膜(緻密
層)12aとからなり、更にこの発明ではターゲ
ツト面2の表面にアルミニウムの多孔質層13及
び第2のアルミニウムの薄膜(緻密層)12bが
形成されている。
That is, the same parts as in the conventional example (FIG. 1) are given the same reference numerals. A photocathode plate 3 having a photocathode 1 on its inner surface and a target face plate 4 having a target surface 2 on its inner surface are disposed facing each other, and a ring-shaped insulator 10
They are sealed at predetermined intervals (for example, 1 to 2 mm). As shown in FIG. 3, the target surface 2 is made up of, for example, a fluorescent screen 11 and a first aluminum film (dense layer) 12a. A thin aluminum film (dense layer) 12b is formed.

この多孔質層13の形成は先ず不活性ガス雰囲
気中でアルミニウムを蒸着(第1の工程)した後
にガスを除去して形成し、次に高真空度中でアル
ミニウムを蒸着(第2の工程)することによつ
て、アルミニウムの薄膜(緻密層)12bが形成
される。
The porous layer 13 is formed by first vapor depositing aluminum in an inert gas atmosphere (first step), then removing the gas, and then vapor depositing aluminum in a high vacuum (second step). By doing so, a thin aluminum film (dense layer) 12b is formed.

そして、高真空度中で蒸着するアルミニウム量
は多孔質層13の黒さを実質上保ち、且つ電子透
過性を余り損なわない範囲に選択される。経験的
には平面換算で200オングストローム内外が適当
であつたが、これは厳密に規制されなくても、或
る程度は目的が達せられる。
The amount of aluminum deposited in high vacuum is selected within a range that substantially maintains the blackness of the porous layer 13 and does not significantly impair electron transparency. Experience has shown that a range of around 200 angstroms in terms of a plane is appropriate, but even if this is not strictly regulated, the objective can be achieved to a certain extent.

又、上記環状絶縁体10には内周面に環状突起
10aが形成され、外周面にも環状突起10bが
形成されている。
Further, the annular insulator 10 has an annular projection 10a formed on its inner peripheral surface, and an annular projection 10b also formed on its outer peripheral surface.

この場合、管内部に突起10aが突出してくる
ため、表面電荷がたまり易くなり、当初予想に反
して絶縁性が悪くなる場合が生じた。問題は表面
電荷を逃がすことが必要であるが、絶縁体自体を
わずかに導電性を有する材料で作ることが有効な
手段であることが判明した。
In this case, since the protrusion 10a protruded into the tube, surface charges tended to accumulate, and the insulation properties sometimes deteriorated contrary to initial expectations. The problem was that it was necessary to dissipate the surface charge, but it turned out that an effective solution was to make the insulator itself out of a slightly conductive material.

材料としては高抵抗の電子伝導性ガラス、或い
は不純物混入によりわずかに導電性を付加したセ
ラミツクなどが選ばれる。
The material selected is high-resistance, electronically conductive glass, or ceramic with slightly added conductivity by adding impurities.

又、体積比抵抗は管の許容される暗電流から割
り出される値以上で、且つ、一律厳密に決められ
るものではない。
Further, the volume resistivity is greater than the value determined from the allowable dark current of the tube, and is not uniformly and strictly determined.

一例を述べると、印加電圧10kV、暗電流を
10nAに設定し、真空気密封着部分14,15の
面積を同一に2cm2とし、絶縁体10の厚みを2mm
とした場合、所望の体積比抵抗10Ω・cmとなる。
当管の使用状態での光電流は高々1nA程度である
ので、上記の設定で表面電荷を逃がす効果は十分
得られる。
To give an example, the applied voltage is 10kV, the dark current is
The vacuum sealing parts 14 and 15 have the same area of 2 cm 2 and the thickness of the insulator 10 is 2 mm.
In this case, the desired volume specific resistance is 10Ω·cm.
Since the photocurrent when this tube is in use is about 1 nA at most, the above settings are sufficient to release the surface charge.

又、この実施例では環状絶縁体10の内外周面
に環状突起10a,10bを一体に設けているの
で、表面経路が長くなり、この結果、表面絶縁性
も著しく向上し、管自体も従来より小形(薄型)
にできる。
In addition, in this embodiment, the annular projections 10a and 10b are integrally provided on the inner and outer peripheral surfaces of the annular insulator 10, so the surface path becomes longer, and as a result, the surface insulation is significantly improved, and the tube itself is also more durable than before. Small (thin)
Can be done.

[発明の効果] この発明によれば、ターゲツト面板上に蛍光体
と、蛍光体の発光を反射して輝度発光を高めるア
ルミバツクの機能を有する第1のアルミニウム緻
密層と、光電面で電子に変換されない光を透過す
る第2のアルミニウム緻密層と、この光を吸収す
るアルミニウム多孔質層を有しているので、再生
像の鮮鋭度が損なわれない利点を有する。
[Effects of the Invention] According to the present invention, there is a phosphor on the target face plate, a first dense aluminum layer having the function of an aluminum bag that reflects the luminescence of the phosphor and increases luminance, and a phosphor that is converted into electrons at the photocathode. Since it has a second dense aluminum layer that transmits light that is not transmitted, and a porous aluminum layer that absorbs this light, it has the advantage that the sharpness of the reproduced image is not impaired.

又、高真空度中でアルミニウム蒸着を実施して
いるので、煤状のアルミニウムは、基体のアルミ
ニウム薄膜と強固に結び付き、又、粒子相互の連
結強度も増大して容易に剥離しなくなる。
In addition, since the aluminum vapor deposition is carried out in a high vacuum, the soot-like aluminum is firmly bonded to the thin aluminum film of the substrate, and the bonding strength between the particles is increased, so that they are not easily peeled off.

又、通常、不活性ガス雰囲気で形成された多孔
質アルミニウム蒸着層は不活性ガスを吸蔵してお
り、これが管の動作中徐々に真空中に放出して管
の特性劣化をきたしたが、第2のアルミニウム緻
密層の形成によりガス放出が抑制され、好ましい
結果を生んでいる。
In addition, the porous aluminum vapor deposited layer formed in an inert gas atmosphere normally occludes inert gas, which is gradually released into the vacuum during operation of the tube, causing deterioration of the characteristics of the tube. The formation of the dense aluminum layer in No. 2 suppresses gas release, producing favorable results.

尚、この発明は、ターゲツト面が蛍光面で形成
されている通常のイメージ管に適用できるだけに
止まらず、ターゲツト面がSECターゲツトからな
る近接形イメージ管付の高感度撮像管、或いは
又、ターゲツト面がCCDなどの固体撮像板から
なる特殊の近接形イメージ管にも適用できる。
The present invention is applicable not only to ordinary image tubes whose target surfaces are formed of fluorescent screens, but also to high-sensitivity image pickup tubes with close-up image tubes whose target surfaces are SEC targets, or to high-sensitivity image pickup tubes with close-up image tubes whose target surfaces are SEC targets. However, it can also be applied to special close-range image tubes made of solid-state image pickup plates such as CCDs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の近接形イメージ管を示す断面
図、第2図はこの発明の一実施例に係る近接形イ
メージ管を示す断面図、第3図は第2図の要部を
拡大して示す断面図である。 1…光電面、2…ターゲツト面、3…光電面
板、4…ターゲツト面板、6…光電面リード、7
…ターゲツト面リード、10…絶縁体、10a…
突起、10b…突起、11…蛍光面、12a…第
1のアルミニウム緻密層、12b…第2のアルミ
ニウム緻密層、13…アルミニウム多孔質層。
FIG. 1 is a sectional view showing a conventional proximity image tube, FIG. 2 is a sectional view showing a proximity image tube according to an embodiment of the present invention, and FIG. 3 is an enlarged view of the main parts of FIG. 2. FIG. DESCRIPTION OF SYMBOLS 1...Photocathode, 2...Target surface, 3...Photocathode plate, 4...Target face plate, 6...Photocathode lead, 7
...Target surface lead, 10...Insulator, 10a...
Protrusion, 10b... Protrusion, 11... Fluorescent screen, 12a... First aluminum dense layer, 12b... Second aluminum dense layer, 13... Aluminum porous layer.

Claims (1)

【特許請求の範囲】[Claims] 1 内面に光電面を有する光電面板と内面にター
ゲツト面を有するターゲツト面板とを対向配設
し、環状絶縁体により所定間隔で封着してなる近
接形イメージ管において、光電面側に向つてター
ゲツト面板上に蛍光面、第1のアルミニウム緻密
層、アルミニウムの多孔質層、上記第1のアルミ
ニウム緻密層より薄い第2のアルミニウム緻密層
が順次形成されてなることを特徴とする近接形イ
メージ管。
1. In a proximity image tube, a photocathode plate having a photocathode on its inner surface and a target plate having a target surface on its inner surface are disposed facing each other and sealed at predetermined intervals with an annular insulator. A proximity type image tube, characterized in that a phosphor screen, a first dense aluminum layer, a porous aluminum layer, and a second dense aluminum layer thinner than the first dense aluminum layer are successively formed on a face plate.
JP10805882A 1982-06-23 1982-06-23 Approach type image tube and its manufacturing method Granted JPS58225548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10805882A JPS58225548A (en) 1982-06-23 1982-06-23 Approach type image tube and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10805882A JPS58225548A (en) 1982-06-23 1982-06-23 Approach type image tube and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS58225548A JPS58225548A (en) 1983-12-27
JPH0129012B2 true JPH0129012B2 (en) 1989-06-07

Family

ID=14474837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10805882A Granted JPS58225548A (en) 1982-06-23 1982-06-23 Approach type image tube and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS58225548A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199552A (en) * 1983-04-22 1984-11-12 Hamamatsu Photonics Kk Fluorescent face and its manufacture
DE3804516A1 (en) * 1988-02-13 1989-08-24 Proxitronic Funk Gmbh & Co Kg IMAGE AMPLIFIER

Also Published As

Publication number Publication date
JPS58225548A (en) 1983-12-27

Similar Documents

Publication Publication Date Title
US3838273A (en) X-ray image intensifier input
US2254617A (en) Electron discharge device
US3628080A (en) Fiber optic output faceplate assembly system
US3657596A (en) Electron image device having target comprising porous region adjacent conductive layer and outer, denser region
US3742224A (en) Light amplifier device having an ion and low energy electron trapping means
US6833663B2 (en) Fluorescent material layer with metal back, method of forming the fluorescent material layer, and image display device
US3777201A (en) Light amplifier tube having an ion and low energy electron trapping means
US3213308A (en) Ultraviolet radiation detector
US3706885A (en) Photocathode-phosphor imaging system for x-ray camera tubes
US2698912A (en) X-ray image amplifier
JPH0129012B2 (en)
US3148297A (en) Electron device with storage capabilities
US2960416A (en) Method of manufacturing screens for electron-discharge devices
US3852133A (en) Method of manufacturing x-ray image intensifier input phosphor screen
US3026437A (en) Electron discharge device
JP2996711B2 (en) X-ray image tube and method of manufacturing the same
JPH023262B2 (en)
US2198327A (en) Mosaic electrode structure
US4847482A (en) X-ray image intensifier with columnar crystal phosphor layer
US2843774A (en) Light absorbent surfaces
US2900555A (en) Bombardment conducting target
US3048502A (en) Method of making a photoconductive target
JPH0831308B2 (en) Image tube with built-in microchannel plate
EP0399378B1 (en) X-ray image intensifier
US5493174A (en) Imaging tube having improved fluorescent surface structure on fiber optic plate