JPH01288802A - Light guide and its production - Google Patents

Light guide and its production

Info

Publication number
JPH01288802A
JPH01288802A JP63118073A JP11807388A JPH01288802A JP H01288802 A JPH01288802 A JP H01288802A JP 63118073 A JP63118073 A JP 63118073A JP 11807388 A JP11807388 A JP 11807388A JP H01288802 A JPH01288802 A JP H01288802A
Authority
JP
Japan
Prior art keywords
optical
mode field
optical waveguide
light guide
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63118073A
Other languages
Japanese (ja)
Inventor
Shiro Nakamura
史朗 中村
Kazuki Watanabe
万記 渡辺
Hisaharu Yanagawa
柳川 久治
Hidehisa Miyazawa
宮澤 秀久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63118073A priority Critical patent/JPH01288802A/en
Publication of JPH01288802A publication Critical patent/JPH01288802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To connect two optical parts at a low loss by continuously changing the mode field on the inside surface of a light guide so that the shape of both end faces coincide with the shape of the mode field of the parts at both ends to be connected. CONSTITUTION:The quartz light guide 2 is disposed between an optical fiber 1 which is the passive optical part and a light emitting diode 3 as the active optical part. Both end faces of the light guide 2 have the end faces coincident with the shape of the mode field of the two parts to be connected and are so constituted that the mode field changes continuously on the inside surface of the light guide. In addition, the deposition patterns of fine particles of SiO2 are so changed as to eliminate the mismatch of the mode field between the optical fiber 1 and the light guide 2 and between the guide 2 and the light emitting diode 3 to gradually change the concn. and quantity so that the core diameter and the refractive indices coincide.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光源、受光素子等の能動的光部品と光ファイ
バ等の受動的光部品を接続する光導波路の結合方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for coupling an optical waveguide between an active optical component such as a light source or a light receiving element and a passive optical component such as an optical fiber.

(従来の技術) 一般に、光通信システムは、光を導波する光ファイバ、
光導波路等の受動的光部品と、光源、受光素子、光スィ
ッチ等の能動的光部品とから構成されている。従って、
受動的光部品と能動的光部品を接続する技術は、光通信
システムを構成する上で必要不可欠である。ここで、能
動的光部品は一般的に半導体デバイスが用いられ、電気
的信号と光信号との相互の変換能力を持たせている。受
動的光部品は石英ガラス、プラスチック、多成分ガラス
等が用いられており、低損失で光を導波させることが重
要である。
(Prior Art) Generally, an optical communication system uses an optical fiber that guides light.
It consists of passive optical components such as optical waveguides and active optical components such as light sources, light receiving elements, and optical switches. Therefore,
Technology for connecting passive optical components and active optical components is essential for constructing optical communication systems. Here, a semiconductor device is generally used as the active optical component, and has the ability to mutually convert electrical signals and optical signals. Passive optical components are made of quartz glass, plastic, multi-component glass, etc., and it is important to guide light with low loss.

また、これら能動的光部品と受動的光部品を接続する技
術は現在のところ以下に述べるように3つある。つまり
、光源と光ファイバの接続例で説明すると、第9図に示
すように、光ファイバ20と光源21をそのまま形状等
を変えずに突き合わせる直接結合方法、第10図に示す
ように、光ファイバ20と光源21との間にセルフォッ
クレンズ22を挿入し、これにより光源21からの光を
集束させて光ファイバ20に入射させる個別レンズ結合
方法、及び、第11図に示すように、光ファイバの端面
の形状を加工し、レンズのような集束能力を持たせた先
球光ファイバ23として光源21と接続するファイバー
レンズ結合方法である。
Furthermore, there are currently three techniques for connecting these active optical components and passive optical components, as described below. That is, to explain an example of connection between a light source and an optical fiber, as shown in FIG. 9, there is a direct coupling method in which the optical fiber 20 and the light source 21 are butted together without changing their shape, etc., and as shown in FIG. As shown in FIG. This is a fiber-lens coupling method in which the shape of the end face of the fiber is processed to connect it to the light source 21 as a tipped optical fiber 23 that has a lens-like focusing ability.

(発明が解決しようとする課題) しかしながら、従来の光導波路の結合方法において、従
来の直接結合方法は以下の理由により接続ロスが約10
dBと大きいという問題点がある。
(Problem to be Solved by the Invention) However, in the conventional optical waveguide coupling method, the conventional direct coupling method has a connection loss of about 10% due to the following reasons.
There is a problem that it is as large as dB.

つまり、光ファイバ、光導波路等の受動的光部品は伝搬
する光パワーの分布がガウス型でモードフィールド径が
約10II11の円である。一方、能動的光部品は半導
体の製造上及び駆動回路の性質上の理由により第12図
に示すようにモードフィールドは楕円形であり、短径が
約1μm、長径が約5μmとなる0両光部品のモードフ
ィールドの違い(形状、大きさ)により両者の接続ロス
は10dB程度となってしまう。また、レンズを介した
個別レンズ結合方法は、光学系が複雑となるために、組
立作業性、コストの点で問題点があり、更に、ファイバ
ーレンズ結合方法ではファイバ端面のレンズ加工はレン
ズ径がファイバ外径によって制限され自由に選べない上
に、楕円形のモードフィールドには対応出来ないという
問題点があった。
That is, in passive optical components such as optical fibers and optical waveguides, the distribution of propagating optical power is Gaussian, and the mode field diameter is a circle with a diameter of about 10II11. On the other hand, active optical components have an elliptical mode field with a short axis of about 1 μm and a long axis of about 5 μm, as shown in Figure 12, due to semiconductor manufacturing and the properties of the drive circuit. Due to the difference in mode field (shape, size) of the parts, the connection loss between the two ends up being about 10 dB. In addition, the method of combining individual lenses via lenses has problems in terms of assembly workability and cost because the optical system becomes complicated.Furthermore, in the fiber lens combining method, the lens diameter is limited when processing the lens on the end face of the fiber. There are problems in that it cannot be freely selected because it is limited by the outer diameter of the fiber, and it cannot support an elliptical mode field.

本発明は、上記事情に鑑みてなされたものであり、受動
的光部品と能動的光部品の接続を低接続損失で行う光導
波路及びその製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an optical waveguide that connects a passive optical component and an active optical component with low connection loss, and a method for manufacturing the same.

(課題を解決するための手段) 上記目的を達成するために、本発明によれば、その両端
面に結合される光部品のモードフィールド形状と一致し
たモードフィールド形状を夫々の端面に有し、その内部
でモードフィールドが連続的に変化して両端面のモード
フィールドが連続している光導波路が提供され、また、
光を導波する受動的光部品と、光電変換能力を有する能
動的光部品との間に、夫々のコアが一致するように光導
波路を介挿し密着して、前記受動的光部品と前記能動的
光部品とを結合して成る光導波路結合体が提供され、更
に、光導波路を石英により形成し、そのコア径、コア形
状及び屈折率の変化を火炎堆積中の堆積パターン、ドー
パント種類、濃度を変えて構成する光導波路の製造方法
が提供される。
(Means for Solving the Problems) In order to achieve the above object, according to the present invention, each end face has a mode field shape that matches the mode field shape of an optical component coupled to both end faces thereof, An optical waveguide is provided in which the mode field changes continuously within the optical waveguide so that the mode fields at both end faces are continuous, and
An optical waveguide is inserted between a passive optical component that guides light and an active optical component that has a photoelectric conversion ability so that their respective cores match, and the optical waveguide is brought into close contact with the passive optical component and the active optical component. An optical waveguide assembly is provided in which the optical waveguide is formed of quartz, and the core diameter, core shape, and refractive index changes are determined by the deposition pattern, dopant type, and concentration during flame deposition. A method of manufacturing an optical waveguide configured by changing the structure is provided.

(作用) モードフィールド形状が異なる光部品の結合を、両端の
モードフィールドが接続しようとする各光部品のモード
フィールドと一致している光導波路を両者の間に介挿し
て行い、低接続損失で光部品を結合する。
(Function) Optical components with different mode field shapes are coupled by inserting an optical waveguide between them whose mode fields at both ends match the mode field of each optical component to be connected, resulting in low connection loss. Combine optical components.

(実施例) 以下、本発明の実施例を添付図面に基づいて詳細に説明
する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the accompanying drawings.

第1図は本発明の光導波路の一実施例を示す断面図であ
り、第2図は第1図の光導波路の上面図である0本発明
では、受動的光部品と能動的光部品との間に両光部品の
モードフィールド形状に一致したモードフィールド形状
を両端面に持ち、かつこの両端面のモードフィールド形
状を連続的に変化させた光導波路2を挿入することで、
受動的光部品と能動的光部品との接続を低損失で行うこ
とができる光導波路を提供するものである。第1図は受
動的光部品1が光ファイバであり、能動的光部品3が発
光ダイオ−・ドであり、そして光導波路2が石英系光導
波路とした実施例である。光ファイバ1と発光ダイオー
ド3の間に光導波路2が介挿され、夫々の光が導波する
コア部分が位置的に一致するように配置されている。ま
た、これらの接続部及び発光ダイオード素子3の温度変
化を極力避けるために、光ファイバ1、光導波路2及び
発光ダイオード3をヒートシンク7上にセットしている
FIG. 1 is a sectional view showing an embodiment of the optical waveguide of the present invention, and FIG. 2 is a top view of the optical waveguide of FIG. By inserting an optical waveguide 2 between which has a mode field shape on both end faces that matches the mode field shape of both optical components, and whose mode field shape on both end faces is continuously changed,
The present invention provides an optical waveguide that can connect passive optical components and active optical components with low loss. FIG. 1 shows an embodiment in which the passive optical component 1 is an optical fiber, the active optical component 3 is a light emitting diode, and the optical waveguide 2 is a quartz optical waveguide. An optical waveguide 2 is interposed between the optical fiber 1 and the light emitting diode 3, and is arranged so that the core portions through which the respective lights are guided are coincident in position. In addition, the optical fiber 1, the optical waveguide 2, and the light emitting diode 3 are set on a heat sink 7 in order to avoid temperature changes in these connecting parts and the light emitting diode element 3 as much as possible.

尚、光ファイバ1は円形であるのでヒートシンク7上に
適当な固定治具8を用意して光ファイバ1を固定してお
り、光導波路2及び発光ダイオード3は接着剤等でヒー
トシンク7上に固定している。ここで、光ファイバ1及
び発光ダイオード3は夫々通常用いられている光ファイ
バ及び光源素子である。光導波路2は光ファイバ1と光
導波路2との間及び光導波路2と発光ダイオード3との
間でモードフィールドのミスマツチがないようにコア径
、屈折率値を一致させ、これを光導波路2内で連続的に
変化させている。
Since the optical fiber 1 is circular, a suitable fixing jig 8 is prepared on the heat sink 7 to fix the optical fiber 1, and the optical waveguide 2 and the light emitting diode 3 are fixed on the heat sink 7 with adhesive or the like. are doing. Here, the optical fiber 1 and the light emitting diode 3 are a commonly used optical fiber and a light source element, respectively. The optical waveguide 2 has the same core diameter and refractive index value so that there is no mode field mismatch between the optical fiber 1 and the optical waveguide 2 and between the optical waveguide 2 and the light emitting diode 3. is continuously changed.

次に、本発明の光導波路の製造方法について説明する。Next, a method for manufacturing an optical waveguide according to the present invention will be explained.

火炎堆積法の概略は第7図のように例えばシリコンSt
等の基板4上に、Hz、Ozによるフレームに例えば、
3 iCI 4 、 T iCI aなど等の原料を導
入して形成されるガラス微粒子を堆積するものであり、
バーナー10の移動径路を変えることでつまり移動ピッ
チを疎密にすることにより堆積量を変化させ任意の厚さ
とし、また原料の温度、量を変えることで任意の屈折率
を有する光導波路が作成可能である。具体的な製造方法
の手順は以下のようである。
The outline of the flame deposition method is shown in Fig. 7, for example, using silicon St.
For example, on the board 4 of
3. Glass fine particles formed by introducing raw materials such as iCI 4 and TiCI a are deposited,
By changing the moving path of the burner 10, that is, by making the moving pitch more or less dense, the amount of deposition can be changed to achieve an arbitrary thickness, and by changing the temperature and amount of raw materials, it is possible to create an optical waveguide with an arbitrary refractive index. be. The specific steps of the manufacturing method are as follows.

(1)  基板4上に、第8図のような堆積パターンで
SiO□微粒子を堆積させる。第8図の上部が第1図の
左側となる。これにより、クラッド12bが形成される
(1) SiO□ fine particles are deposited on the substrate 4 in a deposition pattern as shown in FIG. The upper part of FIG. 8 is the left side of FIG. This forms the cladding 12b.

(2)その上にSiO□とこのSiO□より屈折率が高
くなる材料例えばT i Ozを添加した層を、第8図
の堆積パターンと上下が逆のパターンつまり上が密、下
が粗で堆積させる。また、この堆積中、StO□に添加
する材料の濃度、量を徐々に高めてゆき、光ファイバ1
と光導波路2との間及び光導波路2と発光ダイオード3
との間でモードフィールドのミスマツチが起こらない屈
折率、コア幅を形成する。これにより、コア層2aが形
成される。
(2) On top of that, a layer doped with SiO□ and a material with a higher refractive index than SiO□, for example, TiOz, is deposited in a pattern that is upside down from the deposition pattern in Figure 8, that is, the top is dense and the bottom is coarse. deposit Also, during this deposition, the concentration and amount of the material added to StO□ are gradually increased, and the optical fiber 1
and the optical waveguide 2 and between the optical waveguide 2 and the light emitting diode 3
The refractive index and core width are determined such that mode field mismatch does not occur between the two. Thereby, the core layer 2a is formed.

(3)以上の手順により形成されたものを適当な温度で
加熱し、透明ガラス化する。
(3) The material formed by the above procedure is heated at an appropriate temperature to make it transparent vitrified.

(4)コア層2aを半導体素子の作成などで使用されて
いるエツチング技術を用いてエツチング処理し、第2図
の光導波路2のようなコア径を有するコア2aを作成す
る。
(4) The core layer 2a is etched using an etching technique used in the production of semiconductor devices to produce a core 2a having a core diameter similar to that of the optical waveguide 2 shown in FIG.

(5)その上に手順(1)と同様の堆積パターンでSt
O□を堆積させてクラッド層2b’ を形成する。
(5) On top of that, apply St.
A cladding layer 2b' is formed by depositing O□.

(6)  このようにして形成されたものを再度ガラス
化する。
(6) The material thus formed is vitrified again.

本発明では、光ファイバ1、光導波路2及び発光ダイオ
ード3を固定する固定方法は、第1図の方法に限られる
ものではなく、ヒートシンク7上に光ファイバ1、光導
波路2、発光ダイオード3の固定治具をつけてもよい、
また、光導波路2に光ファイバl及び発光ダイオード3
を挿入しであるいは光ファイバ1及び発光ダイオード3
に光導波路2を挿入して固定してもよい、ヒートシンク
7は必要がなければ除いてもよい、能動的光部品と受動
的光部品を突き合わせる際に、光ファイバlと光導波路
2との接続面及び先導波器2と発光ダイオード3との接
続面は必要に応じて屈折率が路間等なマツチングオイル
等を浸してもよい、先導波器2の形状は光ファイバ1と
発光ダイオード3のモードフィールド形状が一致し、光
導波路2内でこのモードフィールドが連続的に変化する
ものであれば任意の形状でよい。
In the present invention, the method of fixing the optical fiber 1, the optical waveguide 2, and the light emitting diode 3 is not limited to the method shown in FIG. A fixing jig may be attached.
In addition, an optical fiber l and a light emitting diode 3 are connected to the optical waveguide 2.
or by inserting optical fiber 1 and light emitting diode 3
The optical waveguide 2 may be inserted and fixed in the heat sink 7. The heat sink 7 may be removed if it is not necessary. The connection surface and the connection surface between the waveguide device 2 and the light emitting diode 3 may be soaked with matching oil or the like having a refractive index between the optical fibers 1 and the light emitting diode 3, if necessary. Any shape may be used as long as the mode field shapes of the optical waveguides 3 and 3 match and this mode field changes continuously within the optical waveguide 2.

また、光導波路2の製造方法において、コア幅つまりコ
アの高さ方向の厚さを変える方法は、必ずしも第8図の
堆積パターンに限られず、使用する装置の性能に応じて
任意のパターンとすることができる。必要であれば複数
回堆積させることもできる。同様に、コア屈折率を変え
る方法は必ずしも1種類のドーパントの濃度、量を変え
る方法に限られず、例えば、屈折率を下げる場合には屈
折率を下げるBz O,、F等の材料を更に添加しても
よく、逆に屈折率を上げる場合には屈折率を上げるPよ
Os、Ge0t等の材料を添加してもよい。
In addition, in the method of manufacturing the optical waveguide 2, the method of changing the core width, that is, the thickness of the core in the height direction is not necessarily limited to the deposition pattern shown in FIG. 8, but any pattern may be used depending on the performance of the equipment used. be able to. Multiple depositions can be performed if necessary. Similarly, the method of changing the core refractive index is not necessarily limited to changing the concentration or amount of one type of dopant; for example, when lowering the refractive index, it is possible to further add materials such as Bz O, F, etc. that lower the refractive index. On the other hand, in order to increase the refractive index, materials such as P, Os, Ge0t, etc. that increase the refractive index may be added.

(発明の効果) 以上説明したように、本発明によれば、その両端面に結
合される光部品のモードフィールド形状と一致したモー
ドフィールド形状を夫々の端面に有しその内部でモード
フィールドが連続的に変化して両端面のモードフィール
ドが連続していることにより、また、光を導波する受動
的光部品と、光電変換能力を有する能動的部品との間に
、夫々のコアが一致するように光導波路を介挿し密着し
て、前記受動的光部品と前記能動的光部品とを結合して
成ることにより、更に、光導波路を石英により形成し、
そのコア径、コア形状及び屈折率の変化を火炎堆積中の
堆積パターン、ドーパント種類、濃度を変えて構成する
ことにより、従来の受動的光部品と能動的光部品の接続
損失の主な原因であったモードフィールドのミスマツチ
がなくせるために、能動的光部品と受動的光部品とを低
接続損失で接続できるという効果が得られる。
(Effects of the Invention) As explained above, according to the present invention, each end face has a mode field shape that matches the mode field shape of the optical component coupled to both end faces, and the mode field is continuous inside the end face. The continuous mode fields on both end faces change the optical density, and the cores of the passive optical components that guide light and the active components that have photoelectric conversion ability match. Further, the optical waveguide is formed of quartz by interposing an optical waveguide and bringing the passive optical component and the active optical component into close contact with each other.
By configuring the core diameter, core shape, and refractive index by changing the deposition pattern, dopant type, and concentration during flame deposition, it is possible to eliminate the main cause of connection loss between conventional passive and active optical components. Since mismatches in mode fields can be eliminated, it is possible to connect active optical components and passive optical components with low connection loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光導波路の一実施例を示す断面図、第
2図は第1図の光導波路の上面図、第3図、第4図、第
5図及び第6図は夫々第2図の断面III −III 
、 IV−TV、、V−V及びVl−νIの断面図、第
7図は火炎堆積法の概略説明図、第8図は堆積パターン
を示す図、第9図、第10図及び第11図は夫々従来の
発光ダイオードと光ファイバの結合方法を例示する図、
第12図は発光ダイオードのフィールドパターンを説明
する斜視図である。 1・・・光ファイバ、2・・・光導波路、3・・・発光
ダイオード、4・・・基板、7・・・ヒートシンク、8
・・・光フアイバ固定用治具、10・・・バーナ、11
・・・ダクト。
FIG. 1 is a sectional view showing an embodiment of the optical waveguide of the present invention, FIG. 2 is a top view of the optical waveguide shown in FIG. 1, and FIGS. Cross section III-III in Figure 2
, IV-TV, , V-V and Vl-νI cross-sectional diagrams, FIG. 7 is a schematic explanatory diagram of the flame deposition method, FIG. 8 is a diagram showing the deposition pattern, FIGS. 9, 10, and 11. are diagrams illustrating a conventional method of coupling a light emitting diode and an optical fiber, respectively.
FIG. 12 is a perspective view illustrating a field pattern of a light emitting diode. DESCRIPTION OF SYMBOLS 1... Optical fiber, 2... Optical waveguide, 3... Light emitting diode, 4... Substrate, 7... Heat sink, 8
... Optical fiber fixing jig, 10... Burner, 11
···duct.

Claims (3)

【特許請求の範囲】[Claims] (1)その両端面に結合される光部品のモードフィール
ド形状と一致したモードフィールド形状を夫々の端面に
有し、その内部でモードフィールドが連続的に変化して
両端面のモードフィールドが連続していることを特徴と
する光導波路。
(1) Each end face has a mode field shape that matches the mode field shape of the optical component coupled to both end faces, and the mode field changes continuously within the end face, so that the mode field on both end faces is continuous. An optical waveguide characterized by:
(2)光を導波する受動的光部品と、光電変換能力を有
する能動的部品との間に、夫々のコアが一致するように
光導波路を介挿し密着して、前記受動的光部品と前記能
動的光部品とを結合して成ることを特徴とする光導波路
結合体。
(2) An optical waveguide is inserted between a passive optical component that guides light and an active component that has a photoelectric conversion ability so that their respective cores are aligned, and the optical waveguide is brought into close contact with the passive optical component. An optical waveguide combination body, characterized in that it is formed by combining the above-mentioned active optical component.
(3)光導波路を石英により形成し、そのコア径、コア
形状及び屈折率の変化を火炎堆積中の堆積パターン、ド
ーパント種類、濃度を変えて構成することを特徴とする
光導波路の製造方法。
(3) A method for manufacturing an optical waveguide, characterized in that the optical waveguide is formed of quartz, and its core diameter, core shape, and refractive index are changed by changing the deposition pattern, dopant type, and concentration during flame deposition.
JP63118073A 1988-05-17 1988-05-17 Light guide and its production Pending JPH01288802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63118073A JPH01288802A (en) 1988-05-17 1988-05-17 Light guide and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63118073A JPH01288802A (en) 1988-05-17 1988-05-17 Light guide and its production

Publications (1)

Publication Number Publication Date
JPH01288802A true JPH01288802A (en) 1989-11-21

Family

ID=14727333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63118073A Pending JPH01288802A (en) 1988-05-17 1988-05-17 Light guide and its production

Country Status (1)

Country Link
JP (1) JPH01288802A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05134151A (en) * 1991-11-15 1993-05-28 Sharp Corp Optically coupled optical device
JPH05323139A (en) * 1992-05-20 1993-12-07 Nippon Telegr & Teleph Corp <Ntt> Optical coupling device
WO1997047998A1 (en) * 1996-06-14 1997-12-18 Hitachi, Ltd. Optical waveguide and optical device
JP2005331967A (en) * 2005-06-24 2005-12-02 Fujitsu Ltd Optical coupling apparatus
JP2007079225A (en) * 2005-09-15 2007-03-29 Nippon Telegr & Teleph Corp <Ntt> Connecting method of wavelength conversion element and connecting member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179350U (en) * 1982-05-24 1983-11-30 松下電器産業株式会社 Ceiling inspection device in bus unit
JPS60175662A (en) * 1984-02-23 1985-09-09 松下電器産業株式会社 Equipment unit such as bath unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179350U (en) * 1982-05-24 1983-11-30 松下電器産業株式会社 Ceiling inspection device in bus unit
JPS60175662A (en) * 1984-02-23 1985-09-09 松下電器産業株式会社 Equipment unit such as bath unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05134151A (en) * 1991-11-15 1993-05-28 Sharp Corp Optically coupled optical device
JPH05323139A (en) * 1992-05-20 1993-12-07 Nippon Telegr & Teleph Corp <Ntt> Optical coupling device
WO1997047998A1 (en) * 1996-06-14 1997-12-18 Hitachi, Ltd. Optical waveguide and optical device
JP2005331967A (en) * 2005-06-24 2005-12-02 Fujitsu Ltd Optical coupling apparatus
JP2007079225A (en) * 2005-09-15 2007-03-29 Nippon Telegr & Teleph Corp <Ntt> Connecting method of wavelength conversion element and connecting member

Similar Documents

Publication Publication Date Title
US4765702A (en) Glass integrated optical component
US5612171A (en) Planar optical waveguides with planar optical elements
US8538213B2 (en) SSC chip, fiber array attached with SSC, PLC module attached with SSC and method for manufacturing SSC
JPH09189817A (en) Optical waveguide for optical branching unit
US5076654A (en) Packaging of silicon optical components
JP2000180646A (en) Optical circuit device
JPH053748B2 (en)
JPH01288802A (en) Light guide and its production
JPH04238305A (en) Polymer-coated glass core optical waveguide
JP2000214340A (en) Optical waveguide, light beam spot converter and optical transmission module
JPS5749288A (en) Photo hybrid integrated circuit
JPH095549A (en) Optical circuit and method for manufacturing the same
JPH05107428A (en) End structure of optic fiber and manufacture thereof
JP3100698B2 (en) Manufacturing method of waveguide type optical device
JPH0627334A (en) Optical waveguide
JPS5834408A (en) Manufacture of optical plain surface circuit
JP2005140822A (en) Optical waveguide and manufacturing method therefor
JP2004151689A (en) Spot size converting element and waveguide embedded type optical circuit using the same
JPH0511130A (en) Y-branch optical waveguide path
JP2005017761A (en) Optical waveguide and method for manufacturing optical waveguide
JPH11264912A (en) Optical wiring
JPH0720336A (en) Structure of optical waveguide and its production
JPH04179905A (en) Waveguide type optical branching element
JP2001033642A (en) Optical waveguide structure
JP3681439B2 (en) Connection method between optical waveguide and optical fiber