JPH01282514A - Endoscope objective optical system - Google Patents

Endoscope objective optical system

Info

Publication number
JPH01282514A
JPH01282514A JP63112775A JP11277588A JPH01282514A JP H01282514 A JPH01282514 A JP H01282514A JP 63112775 A JP63112775 A JP 63112775A JP 11277588 A JP11277588 A JP 11277588A JP H01282514 A JPH01282514 A JP H01282514A
Authority
JP
Japan
Prior art keywords
lens
image
negative lens
gradient index
image guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63112775A
Other languages
Japanese (ja)
Other versions
JP2826319B2 (en
Inventor
Naoki Hasegawa
直樹 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP63112775A priority Critical patent/JP2826319B2/en
Publication of JPH01282514A publication Critical patent/JPH01282514A/en
Application granted granted Critical
Publication of JP2826319B2 publication Critical patent/JP2826319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the assembly to a thin diameter and a wide angle by representing the refractive index N(r) at a position of radial distance (r) from the center as N(r)=N0(1-1/2Ar<2>), and satisfying specific conditions. CONSTITUTION:This optical system is formed by joining a negative lens 11 which has a concave surface on its object side and a plane surface on its image side and a distributed index lens 12 whose surfaces are both plane in order from the object side, providing a stop 13 between the both, and joining them with an image guide 14 in one body. In this case, the length Z of the distributed index lens 12 needs to satisfy a conditional expression I of the angle of projection to the image guide 14. Further, the length Z satisfies conditional expressions II, III, and IV so as to form an image on the incidence surface of the image guide 14. Consequently, the thin diameter, wide angle, and easy assembly are realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、屈折率分布型レンズを用いた内視鏡対物光学
系に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an endoscope objective optical system using a gradient index lens.

〔従来の技術〕[Conventional technology]

内視鏡対物光学系については、近年袋々細径化。 Endoscope objective optical systems have become increasingly thinner in recent years.

広角化が要望されている。A wider angle is required.

そして、内視鏡対物光学系としては例えば特開昭49−
121547号公報に記載の如きレトロフォーカスタイ
プのものが広く知られている。又、特開昭58−594
20号公報に記載の如く、イメージガイドに屈折率分布
型レンズを接合したものも提案されている。
For example, as an endoscope objective optical system,
A retrofocus type lens as described in Japanese Patent No. 121547 is widely known. Also, JP-A-58-594
As described in Japanese Patent No. 20, an image guide in which a gradient index lens is bonded to an image guide has also been proposed.

〔発明が解゛決しょうぶする課題〕[Problems that the invention solves]

ところが、上記レトロフォーカスタイプのものは、レン
ズ間隔管を必要としているので、その構造上外径の小さ
なレンズ(直径1.5 mm以下)を実装することは非
常に困難であった。
However, since the above-mentioned retrofocus type requires a lens spacing tube, it is extremely difficult to mount a lens with a small outer diameter (1.5 mm or less in diameter) due to its structure.

又、イメージガイドに屈折率分布型レンズを接合したも
のは、屈折率分布型レンズの視野角がその屈折率分布で
決まってしまうため、広角化が非常に困難であった。
Furthermore, in the case where a gradient index lens is cemented to an image guide, the viewing angle of the gradient index lens is determined by its refractive index distribution, so it is very difficult to widen the viewing angle.

本発明は、上記問題点に鑑み、細径且つ広角で組立て容
易な内視鏡対物光学系を提供することを目的としている
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide an endoscope objective optical system that has a small diameter, a wide angle, and is easy to assemble.

〔課題を解決するための手段及び作用〕本発明の内視鏡
対物光学系は、第1図に示す構成を有している。即ち、
物体側が凹面で像側か平面である負レンズ1と中心の屈
折率をNo1光軸からの径方向の距離を「とし且つ屈折
率分布の2次の係数をAとした時に屈折率N (r)が
N  (r)  =No  (1−−Ar”  )で表
わされ且つ両端面が平面に研磨された外径の非常に小さ
な屈折率分布型レンズ2とを物体側から順に接合し且つ
両者の間に絞り3を設けたものを、イメージガイド4又
はリレーレンズ又は固体逼像素子に接合して成ると共に
、次に述べる条件を満足するようにしたものである。
[Means and effects for solving the problems] The endoscope objective optical system of the present invention has the configuration shown in FIG. That is,
Negative lens 1 has a concave surface on the object side and a flat surface on the image side, and the refractive index of the center is No. 1. When the radial distance from the optical axis is ``, and the second-order coefficient of the refractive index distribution is A, the refractive index N (r ) is represented by N (r) = No (1--Ar"), and a gradient index lens 2 having a very small outer diameter and having both end surfaces polished to a flat surface is cemented in order from the object side, and both A diaphragm 3 is provided between the diaphragm 3 and an image guide 4, a relay lens, or a solid-state imaging element, and the diaphragm 3 is bonded to the image guide 4, a relay lens, or a solid-state imaging element, and the following conditions are satisfied.

7・π n−3−f+ N o L、J¥ Cog (g Z)  +sin 
(J”r Z)  = 0・−一−−−−−・・(iv
 ) ファイバーフコープ又は硬性鏡では、主光線を結像面に
対して垂直となるようにする必要がある。
7・π n-3-f+ N o L, J¥ Cog (g Z) +sin
(J”r Z) = 0・−1−−−−−・(iv
) In a fiber optic or rigid scope, the chief ray must be perpendicular to the image plane.

それは、主光線の結像面に対する角度が大きくなると、
イメージガイド4又はリレーレンズの内部において光量
が減衰し視野の周辺が暗くなるといった問題が生じる為
であ゛る。従って、周辺が暗くならないための主光線の
角度は、レンズ媒質中でおよそ7° くらい、空気中で
10’<らいが限界である。この条件を満たす為に、屈
折率分布型レンズ2の長さZは次式を満たさなければな
らない。
That is, as the angle of the chief ray to the image plane increases,
This is because a problem arises in that the amount of light is attenuated inside the image guide 4 or the relay lens, and the periphery of the field of vision becomes dark. Therefore, the angle of the chief ray to prevent the periphery from becoming dark is approximately 7° in a lens medium, and 10' in air. In order to satisfy this condition, the length Z of the gradient index lens 2 must satisfy the following equation.

・−・・・・・−(1) 但し、Mは自然数、hは像高である。・-・・・・・・-(1) However, M is a natural number and h is the image height.

一方、屈折率分布型レンズ2の前面に接合された均質な
凹平負レンズlを通った光を結像させるために、屈折率
分布型レンズ2の長さ2は〃ピッチ以上であることが必
要となる為、 でなければならない、従って、式(11,(21より7
π 一一−−−−−−−− (i) が導かれる。
On the other hand, in order to form an image of the light that has passed through the homogeneous concave plano negative lens l cemented to the front surface of the gradient index lens 2, the length 2 of the gradient index lens 2 must be equal to or larger than the pitch. Therefore, from formula (11, (21) 7
π 11−−−−−−−− (i) is derived.

又、イメージガイドやリレーレンズの代わりに固体1像
素子を用いた場合には、周辺光量が不足するといった心
配はないが、入射側に色フィルタ書争−尋光束の一部が
隣接する異なる色のフィルタを通ることにより色のクロ
ストークが起こる。
In addition, if a solid-state single-image element is used instead of an image guide or relay lens, there is no need to worry about the amount of peripheral light being insufficient. Color crosstalk occurs when the light passes through a filter.

又、主光線の射出角が大きいと、光線高が高くなってし
まうので、細径化が困難となる。それ故、上記条件式―
痴−噌を満たせば、周辺が明るく且つ光線高も低くなっ
て細径化できる。又、レトロフォーカスタイプにしたこ
とにより、単体の屈折率分布型レンズを用いた時よりも
広角な光学系を得ることができる。
Furthermore, if the exit angle of the principal ray is large, the height of the ray becomes high, making it difficult to reduce the diameter. Therefore, the above conditional expression -
If the requirements are met, the surrounding area will be bright and the height of the light beam will be low, allowing for a smaller diameter. Furthermore, by using a retrofocus type lens, it is possible to obtain a wider-angle optical system than when using a single gradient index lens.

次に、負レンズlのパワーと屈折率分布型レンズ2の長
さについて説明する。
Next, the power of the negative lens l and the length of the gradient index lens 2 will be explained.

第2図において、Rは負レンズlの第1面の曲争半径、
nは負レンズ1の屈折率、dは負レンズ1の軸上肉厚、
f、(<Q)は負レンズ1の焦点距離、S(<O)は負
レンズ1の第1面から物体までの距離、Llは負レンズ
1による結像点から屈折率分布型レンズ2の入射面まで
の空気換算光路長、L2は屈折率分布型レンズ2の射出
面から結像面までの空気換算光路長である。そして、1
’+ 、 I−+ 、Lx は他の構成因子を用いて次
のように表わすことができる。
In FIG. 2, R is the radius of curvature of the first surface of the negative lens l;
n is the refractive index of the negative lens 1, d is the axial thickness of the negative lens 1,
f, (<Q) is the focal length of the negative lens 1, S (<O) is the distance from the first surface of the negative lens 1 to the object, and Ll is the distance from the image formation point of the negative lens 1 to the gradient index lens 2. The air-equivalent optical path length to the incident surface, L2, is the air-equivalent optical path length from the exit surface of the gradient index lens 2 to the imaging surface. And 1
'+, I-+, and Lx can be expressed as follows using other constituent factors.

f 、 ” −(f 、 < O)    −−−−(
ii)d         f+! S    f+ N o L+J’Tcos (J’X Z)  +  
sin (に’:’ Z)N o L、J7k  si
n (J”r Z)  −cos (、IT Z)−−
−−−−I力 ここで、屈折率分布型レンズ2とイメージガイド4が接
合されているので、弐0)においてLx =0となるこ
とが必要である。従って、次式を満たすことが必要であ
る。
f, ” −(f, < O) −−−−(
ii) d f+! S f+ N o L+J'Tcos (J'X Z) +
sin (ni':' Z)N o L, J7k si
n (J”r Z) −cos (,IT Z)−−
----I force Here, since the gradient index lens 2 and the image guide 4 are joined, it is necessary that Lx = 0 at 20). Therefore, it is necessary to satisfy the following formula.

NoL+  Acos(AZ)+ 5in(AZ)−0
−−−−−−−−−(iv ) 即ち、式(ii) 、  (iii) 、  (iv)
を同時に満たすように屈折率分布型レンズ2の長さZを
選べば、イメージガイド4の端面に結像させることがで
きる。
NoL+ Acos(AZ)+ 5in(AZ)-0
−−−−−−−−−(iv) That is, formulas (ii), (iii), (iv)
If the length Z of the gradient index lens 2 is selected so as to simultaneously satisfy the following conditions, an image can be formed on the end surface of the image guide 4.

尚、実用上は収差の影響などがあるので、L2=0では
なくて多少間隔を空けた方が良い場合もある。
Note that in practice, due to the influence of aberrations, etc., it may be better to leave a certain distance rather than L2=0.

このようにすれば、対物光学系とイメージガイドは全て
接合することができるので、間隔管が不要となり、その
結果組立ても著しく容易なものとなる。
In this way, the objective optical system and the image guide can all be joined together, eliminating the need for a spacing tube, and as a result, assembly becomes significantly easier.

以上のように、条件式(i ) 、  (ii ) 、
  (iii ) 。
As mentioned above, conditional expressions (i), (ii),
(iii).

(iv)を全て満たす時、細径且つ広角で周辺が明るく
組立て容易な内視鏡対物光学系を得ることができる。
When all conditions (iv) are satisfied, it is possible to obtain an endoscope objective optical system that has a small diameter, a wide angle, a bright peripheral area, and is easy to assemble.

〔実施例〕〔Example〕

以下図示した各実施例に基づき本発明の詳細な説明する
The present invention will be described in detail below based on the illustrated embodiments.

第3図は第1実施例を示しており、これtよ物体側が凹
面で像側か平面である負レンズ11と両面が平面である
屈折率分布型レンズ12とを物体側より順に接合し且つ
両者の間に絞り13を設けて成るものを、イメージガイ
ド14に接合して一体としたものである。この場合、屈
折率分布型レンズ12の長さZは、イメージガイド14
への射出角の条件式(i)を満たす必要がある。又、イ
メージガイド14の入射面に結像させるために長さZは
条件式(ii ) 、  (iii ) 、  (iv
 )を満足することが必要である。
FIG. 3 shows a first embodiment, in which a negative lens 11 having a concave surface on the object side and a flat surface on the image side and a gradient index lens 12 having flat surfaces on both surfaces are joined in order from the object side. A diaphragm 13 is provided between the two, which is joined to an image guide 14 to form an integral body. In this case, the length Z of the gradient index lens 12 is the same as that of the image guide 14.
It is necessary to satisfy conditional expression (i) of the exit angle to In addition, in order to form an image on the incident surface of the image guide 14, the length Z is determined by conditional expressions (ii), (iii), (iv
) must be satisfied.

第1実施例のデータを以下に示す。The data of the first example is shown below.

r+ =−4,1037 d、  =2.6738  0+  −1,883y、
 =40.78j、=OO(絞り) d 2 = 4.7059   N ’o = 2.0
r コ  eo。
r+ =-4,1037 d, =2.6738 0+ -1,883y,
=40.78j, =OO (aperture) d2 = 4.7059 N'o = 2.0
r ko eo.

f−1、F/3.0 、 物点=−26,738。f-1, F/3.0, object point = -26,738.

Z =4.7059−0.28P  、  5′″−0
,374。
Z = 4.7059-0.28P, 5'''-0
, 374.

h −0,5348 但し、’l 、’!、’コは各面の曲率半径、dl、d
!は各面の間隔、nは均質レンズの屈折率、Noは屈折
率分布型レンズの軸上屈折率、νは均質レンズのアツベ
数、fは全系の焦点距離、FはFナンバー、Zは屈折率
分布型レンズの長さ、Aは屈折率分布の2次の係数、P
は屈折率分布型レンズのピッチ(2回結像する長さ)、
hは像高である。
h −0,5348 However, 'l,'! ,' is the radius of curvature of each surface, dl, d
! is the distance between each surface, n is the refractive index of the homogeneous lens, No is the axial refractive index of the gradient index lens, ν is the Abbe number of the homogeneous lens, f is the focal length of the entire system, F is the F number, and Z is The length of the gradient index lens, A is the second-order coefficient of the gradient index, P
is the pitch of the gradient index lens (length to form images twice),
h is the image height.

第1実施例の収差曲線は第4図に示した通りである。The aberration curve of the first embodiment is as shown in FIG.

ここで、上記データが各条件式を満足するか確かめてみ
る。
Now, let's check whether the above data satisfies each conditional expression.

式(i)より π M=0のとき −4,993 、−、4,20< Z < 4.993本実施例のZ 
−4,7059はこれを満たしている。
From formula (i), when π M=0, -4,993, -, 4,20< Z < 4.993 Z in this example
-4,7059 satisfies this.

武(11)より 弐(iii )より 1.883   26.73797+4.647式(i
v )より N o L r B cos (仄Z) + sin 
(JT Z) = 0左辺−2X5.379 Xo、3
74cos(1,76)+5in(1,76)=0.2
254 =0 従って、第1実施例のデータは式(i)’、(ii)。
From Take (11) to Ni (iii) 1.883 26.73797 + 4.647 formula (i
v ) from N o L r B cos (仄Z) + sin
(JT Z) = 0 left side - 2X5.379 Xo, 3
74cos(1,76)+5in(1,76)=0.2
254 =0 Therefore, the data of the first embodiment are expressed by formulas (i)' and (ii).

(iii ) 、  (iv )を満たしている。(iii) and (iv) are satisfied.

第5図は第2実施例を示しており、これは物体側が凹面
で像側か平面である負レンズ21と、両端面が平面であ
る屈折率分布型レンズ22とを物体側より順に接合し且
つ両者の間に絞り23を設けて成るものを、平行平面板
24を介してイメージガイド25に接合して一体とした
ものである。
FIG. 5 shows a second embodiment, in which a negative lens 21 having a concave surface on the object side and a flat surface on the image side, and a gradient index lens 22 having flat end surfaces on both sides are joined in order from the object side. A diaphragm 23 is provided between the two, and the image guide 25 is joined to the image guide 25 via a parallel plane plate 24 to form an integrated structure.

この例のように屈折率分布型レンズとイメージガイドと
の間に平行平面板を挾む場合には、条件(i)、(iv
)の代わりに次の条件(i゛)。
When a parallel plane plate is sandwiched between the gradient index lens and the image guide as in this example, conditions (i) and (iv
) instead of the following condition (i゛).

(iv ’ )を満足する必要がある。(iv) must be satisfied.

−・・・・・・・・ (i゛) 1□   l Nx   Noσ N Ot、νsin (Jr Z)  −cos (J
’r Z)、j              ・・・・
・・・・・ (iv勺条件式(iv勺はLx Nt−j
!sより導かれるものである。
−・・・・・・・・・ (i゛) 1□ l Nx Noσ N Ot, νsin (Jr Z) −cos (J
'r Z), j...
・・・・・・ (iv conditional expression (iv is Lx Nt-j
! This is derived from s.

但し、N8は平行平面板24の屈折率、l、は平行平面
[24の厚さである。
However, N8 is the refractive index of the parallel plane plate 24, and l is the thickness of the parallel plane [24].

第2実施例のデータを以下に示す。The data of the second example is shown below.

rI =へ1.50 dr =2.25    nl  −1,883v+ 
=40.78「、=oo(絞り) d t = 4.8    N o −1,644r 
’j、x  o。
rI = 1.50 dr = 2.25 nl -1,883v+
=40.78'', =oo (aperture) d t = 4.8 No -1,644r
'j, x o.

ds ”1.4439   ng −1,51633V
z =64.15r  4  ”  ψ f=1  、  F/4.3  、  物点=−25,
0。
ds ”1.4439 ng -1,51633V
z = 64.15r 4 ” ψ f = 1, F/4.3, object point = -25,
0.

Z−4,8=0.262  p  、  σ−0,34
28。
Z-4,8=0.262 p, σ-0,34
28.

h ’ =0.505 但し、h′は屈折率分布型レンズ22の射出端面での光
線高である。
h' = 0.505 where h' is the height of the light beam at the exit end surface of the gradient index lens 22.

第2実施例の収差曲線は第6図に示した通りである。The aberration curve of the second embodiment is as shown in FIG.

ここで上記データが各条件式を満足する。か確かめてみ
る。
Here, the above data satisfies each conditional expression. I'll try to find out.

式に′)より M=Oのとき 左辺−□・ 0.3428 7π −3,399 右辺=□・ 0.3428 一7π =5.765 ゛、 3.399 < Z < 5.765本実施例の
Z −4,8はこれを満たしている。
From the formula '), when M=O, the left side -□・0.3428 7π -3,399 The right side=□・0.3428 -7π =5.765 ゛, 3.399 < Z < 5.765 of this example. Z-4,8 satisfies this requirement.

式(ii )より 式(iii )より −3−f。From formula (ii) From formula (iii) -3-f.

、 2.786 式(iv)より  o5 ■ 左辺−□・ 0、564 0.564 X 2.786 X 5in1.645−
cosl、645・0.952 右辺−1,4439/1.51633−0.952、・
、左辺−右辺 従って、第2実施例のデータは式(1′)。
, 2.786 From formula (iv) o5 ■ Left side -□・0,564 0.564 X 2.786 X 5in1.645-
cosl, 645・0.952 Right side -1,4439/1.51633-0.952,・
, left side - right side Therefore, the data of the second example is equation (1').

(ii ) 、  (iii ) 、  (iv ’ 
)を満たしている。
(ii), (iii), (iv'
).

第7図は第3実施例を示しており、これは物体側が凹面
で像側か平面である負レンズ31と両端面が平面で中に
絞り33を設けた屈折率分布型レンズ32とを物体側よ
り順に接合して成るものを、イメージガイド34に接合
して一体としたものである。ここで、絞りは図示の位置
に設けても良いが、これと光学的に共役な位置に設けて
図示の位置にその像が形成される(いわゆる仮想絞り)
ようにしても良い、この場合、屈折率分布型レンズ32
の像側端面から絞り33までの長さをY、屈折率分布型
レンズ32の両端面間の長さをZとすると、長さYはイ
メージガイド34への射出角の条件式として条件(1)
の代りに次式(i″)を満たす必要がある。
FIG. 7 shows a third embodiment, in which a negative lens 31 having a concave surface on the object side and a flat surface on the image side, and a gradient index lens 32 having flat end surfaces and an aperture 33 inside are used as an object. These parts are joined in order from the sides, and then joined to the image guide 34 to form an integrated structure. Here, the diaphragm may be provided at the position shown in the figure, but it is provided at a position optically conjugate to this, and its image is formed at the position shown (so-called virtual diaphragm).
In this case, the gradient index lens 32
Let Y be the length from the image side end surface to the diaphragm 33, and Z be the length between both end surfaces of the gradient index lens 32.The length Y is determined by the condition (1 )
Instead, it is necessary to satisfy the following formula (i'').

−・−・・・・−(i’) 又、イメージガイド24の入射面に結像させるために長
さ2は条件式(ii) 、  (iii) 、  (i
v)を満たす必要がある。
−・−・・・−(i') In addition, in order to form an image on the incident surface of the image guide 24, the length 2 is determined by conditional expressions (ii), (iii), (i
v) must be satisfied.

第3実施例のデータを以下に示す。The data of the third example is shown below.

r + = −1,8(103 d、  =2.1443   n、  −1,883v
、  −40,78「 2 2 (至) d ! = 1.2772   N o −1,644
j、lICl0(仮想絞り) d s −4,8899N o = 1.644r、 
  =  (至) f=1  、  F/4.4  、  物点−−−25
,1256。
r + = -1,8 (103 d, =2.1443 n, -1,883v
, -40,78 "2 2 (to) d! = 1.2772 No -1,644
j, lICl0 (virtual aperture) d s -4,8899N o = 1.644r,
= (to) f=1, F/4.4, object point---25
, 1256.

2−6.1671−0.335 P  、  σ”−0
,341゜h  −0,5025 第3実施例の収差曲線は第6図に示した通りである。こ
こで上記データが各条件式を満足するか確かめてみる。
2-6.1671-0.335 P, σ"-0
, 341°h -0,5025 The aberration curve of the third embodiment is as shown in FIG. Let's check whether the above data satisfies each conditional expression.

式(1“)より M−0のとき −3,406 −5,805 、’、 3.406 < Y < 5.805本実施例
のY −4,8899はこれを満たしている。
From equation (1''), when M-0, -3,406 -5,805,', 3.406 < Y < 5.805 Y -4,8899 of this example satisfies this.

式(11)より 式(ilのより ・ 3.025 式(6)より N o L+Acos (JX Z)  +  sin
 (J’r Z)  −0左辺−1.644 X3.Q
25 xO,34109Xcos(2,1035)+5
in(2,1035)  =4.013  Xl0−’
=  0従って・第3実施例のデータは式(i′″)。
From equation (11), equation (from il) 3.025 From equation (6), N o L + Acos (JX Z) + sin
(J'r Z) -0 left side -1.644 X3. Q
25 xO, 34109Xcos(2,1035)+5
in(2,1035) =4.013Xl0-'
= 0 Therefore, the data of the third embodiment is the formula (i''').

(ii) 、  (iii) 、  (iv)を満たし
ている。
(ii), (iii), and (iv) are satisfied.

第9図は第4実施例を示しており、これは凹平負レンズ
41と平凹屈折率分布型レンズ42と凸平正レンズ43
とを物体側から順に接合し且つ凹平負レンズ41と平凹
屈折率分布型レンズ42との間に絞り44を設けて成る
ものをイメージガイド45に接合して一体としたもので
ある。
FIG. 9 shows a fourth embodiment, which includes a concave-plano negative lens 41, a plano-concave gradient index lens 42, and a convex-plano positive lens 43.
are joined in order from the object side, and a diaphragm 44 is provided between a concave-plano negative lens 41 and a plano-concave gradient index lens 42, which is joined to an image guide 45 and integrated.

第10図は第5実施例を示しており、これは凹平負レン
ズ51と平凸屈折率分布型レンズ52と凹平負レンズ5
3とを物体側から順に接合し且つ平凹負レンズ51と平
凸屈折率分布型レンズ52との間に絞り54を設けて成
るものをイメージガイド55に接合して一体としたもの
である。
FIG. 10 shows a fifth embodiment, which includes a concave plano negative lens 51, a planoconvex gradient index lens 52, and a concave plano negative lens 5.
3 are joined in order from the object side, and a diaphragm 54 is provided between a plano-concave negative lens 51 and a plano-convex gradient index lens 52, which is joined to an image guide 55 and integrated.

第11図は第6実施例を示しており、これは両凹負レン
ズ61と両凸屈折率分布型レンズ62と凹平負レンズ6
3とを物体側から順に接合し且つ両凹負レンズ61と両
凸屈折率分布型レンズ62との間に絞り64を設けて成
るものをイメージガイド65に接合して一体としたもの
である。
FIG. 11 shows a sixth embodiment, which includes a biconcave negative lens 61, a biconvex gradient index lens 62, and a concave plano negative lens 6.
3 are bonded in order from the object side, and a diaphragm 64 is provided between a biconcave negative lens 61 and a biconvex gradient index lens 62, which are bonded to an image guide 65 and integrated.

上記第4乃至第6実施例は曲面の数が増えた分だけ収差
補正上有利である。
The fourth to sixth embodiments described above are advantageous in correcting aberrations due to the increased number of curved surfaces.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明による内視鏡対物光学系は、細径且
つ広角で周辺が明るく組立て容易であるという実用上重
要な利点ををしている。
As described above, the endoscope objective optical system according to the present invention has important practical advantages in that it is small in diameter, has a wide angle, has a bright peripheral area, and is easy to assemble.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による内視鏡対物光学系の基本的構成を
示す図、第2図は上記光学系の構成因子を示す図、第3
図は第1実施例を示す図、第4図は第1実施例の収差曲
線図、第5図は第2実施例を示す図、第6図は第2実施
例の収差曲線図、第7図は第3実施例を示す図、第8図
は第3実施例の収差曲線図、第9図乃至第11図は夫々
第4乃至第6実施例を示す図である。 1.11,21.31・・・・負レンズ、2.12゜2
2.32・・・・屈折率分布型レンズ、3,13゜23
.33.44,54.64・・・・絞り、4.14.2
5,34.45,55.65・・・・イメージガイド、
24・・・・平行平面板、41,51.53゜63・・
・・凹平負レンズ、42・・・・平凹屈折率分布型レン
ズ、43・・・・凸平正レンズ、52・・・・平凸屈折
率分布型レンズ、61・・・・両凹負レンズ、62・・
・・両凸屈折率分布型レンズ。 第1図 第2図 才4図 オ8図 手続補正書(自発) 昭和63年 8月IO日 1、事件の表示 特願昭63−112775号2、発 
明 の 名 称   内視鏡対物光学系4、代   理
   人   〒105東京都港区新橋5の196、補
正の内容 (11明細書筒8頁9行目の NoL+A cos (A Z) +sin  (A 
Z) = 0を N0t、+/r  Co5(/X Z)  +sin 
 (4Z)  −0と訂正する。 (2)  明細書第12頁9行目及び第21頁2行目の
「=0」を夫々「′40jと訂正する。 (3)  明細書筒16頁7行目の「式(iv)Jを1
式(iv’)」と訂正する。 (4)  明細書第20頁13行目の「式(6)」を1
式(iv)」と訂正する。
FIG. 1 is a diagram showing the basic configuration of an endoscope objective optical system according to the present invention, FIG. 2 is a diagram showing the constituent factors of the optical system, and FIG.
The figures show the first embodiment, FIG. 4 shows the aberration curve of the first embodiment, FIG. 5 shows the second embodiment, FIG. 6 shows the aberration curve of the second embodiment, and FIG. 7 shows the aberration curve of the second embodiment. The figure shows the third embodiment, FIG. 8 is an aberration curve diagram of the third embodiment, and FIGS. 9 to 11 show the fourth to sixth embodiments, respectively. 1.11, 21.31... Negative lens, 2.12゜2
2.32...gradient index lens, 3,13°23
.. 33.44, 54.64...Aperture, 4.14.2
5, 34.45, 55.65... image guide,
24...Parallel plane plate, 41,51.53゜63...
...Plano-concave negative lens, 42...Plano-concave gradient index lens, 43...Convex-plano positive lens, 52...Plano-convex gradient index lens, 61...Bi-concave negative Lens, 62...
...Biconvex gradient index lens. Figure 1 Figure 2 Figure 4 Figure O 8 Procedural amendment (voluntary) August IO day 1, 1988, indication of the case Patent application No. 112775-1988 2, issued
Name: Endoscope Objective Optical System 4, Agent: 196-5, Shinbashi, Minato-ku, Tokyo 105, Contents of Correction (No. 11, Specification Tube, page 8, line 9, NoL + A cos (A Z) + sin (A
Z) = 0 as N0t, +/r Co5(/X Z) +sin
(4Z) Correct it to -0. (2) "=0" on page 12, line 9 of the specification and page 21, line 2 are corrected to "'40j." (3) "Formula (iv) J on page 16, line 7 of the specification 1
Formula (iv')" is corrected. (4) “Formula (6)” on page 20, line 13 of the specification is 1
Formula (iv)" is corrected.

Claims (1)

【特許請求の範囲】 物体側が凹面で像側が平面である負レンズと中心の屈折
率をN_oとした時該中心から径方向の距離がrの位置
の屈折率N(r)がN(r)=N_o(1−1/2Ar
^2)で表わされ且つ両端面が平面である屈折率分布型
レンズとを物体側より順に接合し且つ両者の間に絞りを
設けて成ると共に、次の条件(i)乃至(iv)を満足
する内視鏡対物光学系。 (i)▲数式、化学式、表等があります▼ (ii)f_1=R/n−1(f_1<0) (iii)L_1=d/n−([f_1^2/−S−f
_1]+f_1) (iv)N_oL_1√Acos(√AZ)+sin(
√AZ)=0 但し、Aは屈折率分布の2次の係数、f_1は負レンズ
の焦点距離、Rは負レンズの第1面の曲率半径、nは負
レンズの屈折率、Sは負レンズの第1面から物体までの
距離、L_1は負レンズによる結像点から屈折率分布型
レンズの入射面までの空気換算光路長、Mは自然数、h
は像高である。
[Claims] When a negative lens has a concave surface on the object side and a flat surface on the image side, and the refractive index at the center is N_o, the refractive index N(r) at a position at a radial distance r from the center is N(r). =N_o(1-1/2Ar
A gradient index lens represented by ^2) whose both end surfaces are flat are joined in order from the object side, and an aperture is provided between the two, and the following conditions (i) to (iv) are met. Satisfied endoscope objective optical system. (i) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (ii) f_1=R/n-1 (f_1<0) (iii) L_1=d/n-([f_1^2/-S-f
_1]+f_1) (iv)N_oL_1√Acos(√AZ)+sin(
√AZ)=0 However, A is the second-order coefficient of the refractive index distribution, f_1 is the focal length of the negative lens, R is the radius of curvature of the first surface of the negative lens, n is the refractive index of the negative lens, and S is the negative lens The distance from the first surface of
is the image height.
JP63112775A 1988-05-10 1988-05-10 Endoscope objective optical system Expired - Fee Related JP2826319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63112775A JP2826319B2 (en) 1988-05-10 1988-05-10 Endoscope objective optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63112775A JP2826319B2 (en) 1988-05-10 1988-05-10 Endoscope objective optical system

Publications (2)

Publication Number Publication Date
JPH01282514A true JPH01282514A (en) 1989-11-14
JP2826319B2 JP2826319B2 (en) 1998-11-18

Family

ID=14595190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63112775A Expired - Fee Related JP2826319B2 (en) 1988-05-10 1988-05-10 Endoscope objective optical system

Country Status (1)

Country Link
JP (1) JP2826319B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510338A (en) * 2008-01-11 2011-03-31 スターリング・エルシー Gradient index lens (GRINLENS) microscope system
US9259142B2 (en) 2008-07-30 2016-02-16 Sarcos Lc Method and device for incremental wavelength variation to analyze tissue
US9521946B2 (en) 2008-06-18 2016-12-20 Sarcos Lc Transparent endoscope head defining a focal length
US9661996B2 (en) 2009-10-01 2017-05-30 Sarcos Lc Needle delivered imaging device
US9717418B2 (en) 2008-11-04 2017-08-01 Sarcos Lc Method and device for wavelength shifted imaging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4728061A (en) * 1970-12-28 1972-10-31 Western Electric Co Methods of treating elongated material
JPS57122413A (en) * 1981-01-22 1982-07-30 Canon Inc Zoom lens
JPS58184113A (en) * 1982-03-24 1983-10-27 ダイオニツクス・インコ−ポレ−テツド Optical system
JPS59195611A (en) * 1983-04-21 1984-11-06 Mitsubishi Electric Corp Lens system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4728061A (en) * 1970-12-28 1972-10-31 Western Electric Co Methods of treating elongated material
JPS57122413A (en) * 1981-01-22 1982-07-30 Canon Inc Zoom lens
JPS58184113A (en) * 1982-03-24 1983-10-27 ダイオニツクス・インコ−ポレ−テツド Optical system
JPS59195611A (en) * 1983-04-21 1984-11-06 Mitsubishi Electric Corp Lens system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510338A (en) * 2008-01-11 2011-03-31 スターリング・エルシー Gradient index lens (GRINLENS) microscope system
US9521946B2 (en) 2008-06-18 2016-12-20 Sarcos Lc Transparent endoscope head defining a focal length
US9259142B2 (en) 2008-07-30 2016-02-16 Sarcos Lc Method and device for incremental wavelength variation to analyze tissue
US9717418B2 (en) 2008-11-04 2017-08-01 Sarcos Lc Method and device for wavelength shifted imaging
US9661996B2 (en) 2009-10-01 2017-05-30 Sarcos Lc Needle delivered imaging device

Also Published As

Publication number Publication date
JP2826319B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
JPS6177819A (en) Image transmitting optical system
JPS6146807B2 (en)
US4394071A (en) Lens system with fill-in lens
JPH09113799A (en) Retrofocus type photographic lens
JPS5862608A (en) Wide angle lens having short-overall length
JPH01282514A (en) Endoscope objective optical system
JPH08179226A (en) Objective optical system for endoscope
JPS62138809A (en) Gaussian type lens with large aperture ratio
JPH1048514A (en) Objective lens of endoscope
JP4337314B2 (en) Fisheye lens
US4033675A (en) Wide angle lens
JP2787457B2 (en) Front aperture telecentric projection lens
JPS5965820A (en) Telephoto lens system
US4170403A (en) Retro focus type wide angle lens
JP2858639B2 (en) Wide-angle lens for UV
JP3038974B2 (en) Small wide-angle lens
JPH05157962A (en) Photographic lens
JP3655689B2 (en) Endoscopic eyepiece system
JPS63261213A (en) Objective lens for endoscope
US3545845A (en) Compact wide angle objective lens system with long back focal length
US3958865A (en) Retrofocus type lens system
JP3741790B2 (en) Projection lens
JPH0431088B2 (en)
US2983191A (en) High-speed wide-angle photographic objective
JPS631561B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees