JPH01280242A - Instrument and method of measuring concentration of oxygen - Google Patents

Instrument and method of measuring concentration of oxygen

Info

Publication number
JPH01280242A
JPH01280242A JP63109977A JP10997788A JPH01280242A JP H01280242 A JPH01280242 A JP H01280242A JP 63109977 A JP63109977 A JP 63109977A JP 10997788 A JP10997788 A JP 10997788A JP H01280242 A JPH01280242 A JP H01280242A
Authority
JP
Japan
Prior art keywords
oxygen concentration
light
measuring device
concentration measuring
silk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63109977A
Other languages
Japanese (ja)
Inventor
Masao Kaneko
正夫 金子
Tetsuo Asakura
哲郎 朝倉
Takeshi Shimomura
猛 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
RIKEN Institute of Physical and Chemical Research
Original Assignee
Terumo Corp
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp, RIKEN Institute of Physical and Chemical Research filed Critical Terumo Corp
Priority to JP63109977A priority Critical patent/JPH01280242A/en
Publication of JPH01280242A publication Critical patent/JPH01280242A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To enhance the affinity to the fluid of a vital system and to enable exact measurement by coating a high-polymer film contg. a specific light emitting material with a silk film. CONSTITUTION:The high-polymer film 3 contg. the light emitting material is coated by the silk film 4, by which the measuring instrument 1 is constituted. The light emitting material is at least one kind selected from the group consisting of tris(2,2'-bipyridine)ruthenium (II) complex, tris(o-phenanthroline) ruthenin (II) complex, pyrene, and pyrene deriv. The optical excitation wavelength may be UV light or visible light and the visible light is more preferable. The silk film 4 is obtd. by spreading an aq. soln. of silk fibroin on, for example, a glass or plastic plate and air drying the same. The high-polymer film is a high-polymer film excluding silk. The concn. of oxygen is obtd. by fixing the measuring instrument 1 to the front end of a conductor of light and measuring the emission intensity of the light emitting material after the instrument is irradiated by light.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発光物質の光励起状態から生じる発光(光ル
ミネセンス)が酸素によって消光される現象を利用して
、水、血液、各種の溶液あるいは気体等の媒体中の酸素
濃度を光学的に測定するために使用される、酸素濃度測
定装置、並びにそれを使用した酸素濃度測定法に関する
Detailed Description of the Invention [Field of Industrial Application] The present invention utilizes the phenomenon in which light emission (photoluminescence) generated from the photoexcited state of a light-emitting substance is quenched by oxygen, and is applied to water, blood, and various solutions. Alternatively, the present invention relates to an oxygen concentration measuring device used for optically measuring the oxygen concentration in a medium such as a gas, and an oxygen concentration measuring method using the same.

〔従来の技術〕[Conventional technology]

従来、酸素濃度の測定には、酸素電極を用いたいわゆる
電気化学的手法が使用されてきた。しかしこのような電
気化学的手法は応答連関が遅く、外部からの電磁気的な
雑音に影響され易く、また微小化が困難である等、多く
の技術的障壁があった。そこで、ケイ光、リン光等のル
ミネセンスを酸素が消光する現象を利用した酸素濃度測
定法が考案された。
Conventionally, a so-called electrochemical method using an oxygen electrode has been used to measure oxygen concentration. However, such electrochemical methods have many technical hurdles, such as slow response coupling, being susceptible to external electromagnetic noise, and difficulty in miniaturization. Therefore, an oxygen concentration measurement method was devised that utilizes the phenomenon in which oxygen quenches luminescence such as fluorescence and phosphorescence.

例えばピレン酪酸が酸素濃度測定のための発光物質とし
て有効であることが示されて(W、 M、ボーガン(V
aughan) 、G、ウェーバ−(Weber) 、
バイオケミストリー(Biochem、)、9,464
(1970)  )以来、ピレンの誘導体を利用した発
光物質の研究が盛んになって来た。ただしこの方法は励
起光に紫外光を用いる必要があり、励起光の導光等の光
学系に紫外光透過性の材料を使用しなければならないと
言う制約を受ける。
For example, pyrenebutyric acid has been shown to be effective as a luminescent substance for oxygen concentration measurements (W, M, Bogan (V).
aughan), G. Weber,
Biochemistry (Biochem), 9,464
(1970)), research on luminescent materials using pyrene derivatives has been active. However, this method requires the use of ultraviolet light as the excitation light, and is subject to limitations such as the need to use a material that transmits ultraviolet light in the optical system for guiding the excitation light.

また、PCT/JP87100463号明細書は、固定
化したポリピリジン金属錯体からなる酸素濃度測定装置
を開示している。ここでは、ポリピリジン金R錯体が高
分子中に分散されたり、あるいは吸着体に吸着される形
で固定されており、またポリピリジン錯体を可視光の導
体に固定化して用いる技術も開示されている。
Further, PCT/JP87100463 discloses an oxygen concentration measuring device comprising an immobilized polypyridine metal complex. Here, a polypyridine gold R complex is dispersed in a polymer or fixed by being adsorbed on an adsorbent, and a technique for using a polypyridine complex by immobilizing it on a visible light conductor is also disclosed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように酸素の消光を利用した各種の酸素濃度測定装
置が開発されてきたが、被験液に血液等の生体試料を用
いた場合、発光体を固定する膜の材料と被験液との親和
性が低いために、正確な測定を行うことが困難であった
In this way, various oxygen concentration measuring devices that utilize oxygen quenching have been developed, but when a biological sample such as blood is used as the test liquid, the affinity between the material of the membrane that fixes the luminescent material and the test liquid is It was difficult to make accurate measurements because of the low

そこで本発明の目的は、生体系の液中の酸素濃度を測定
するのに特に好適な、生体系の液との親和性の高い酸素
濃度測定装置及びそれを使用した酸素濃度測定法を提供
することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an oxygen concentration measuring device that is particularly suitable for measuring oxygen concentration in biological fluids and has a high affinity with biological fluids, and an oxygen concentration measuring method using the same. There is a particular thing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、発光物質を含有する細膜からなる酸素濃度測
定装置に関する。
The present invention relates to an oxygen concentration measuring device comprising a thin film containing a luminescent substance.

また本発明は、発光物質を含有する高分子膜を、細膜で
被覆してなる酸素濃度測定装置に関する。
The present invention also relates to an oxygen concentration measuring device formed by covering a polymer film containing a luminescent substance with a thin film.

また本発明は、上記の発光物質が、トリス(2゜2″−
ビピリジン)ルテニウム(I[)錯体、トリス(o−フ
ェナントロリン)ルテニウム(II)1体、ピレン及び
ピレン透導体からなる群より選ばれる少なくとも1種で
あることを特徴とする、上記の酸素濃度測定装置に関す
る。
Further, the present invention provides that the above-mentioned luminescent substance is tris (2゜2''-
The above oxygen concentration measuring device is characterized in that the oxygen concentration measuring device is at least one selected from the group consisting of bipyridine) ruthenium (I[) complex, one tris(o-phenanthroline) ruthenium (II), pyrene, and a pyrene transparent conductor. Regarding.

また本発明は、上記の酸素濃度測定装置を光の導体の先
端に固定してなる光導体付酸素濃度測定装置に関する。
The present invention also relates to an oxygen concentration measuring device with a light guide, in which the above oxygen concentration measuring device is fixed to the tip of a light guide.

また本発明は、上記の酸素濃度測定又は光導体付酸素濃
度測定装置に光を照射して、発光物質の発光強度を測定
することを特徴とする酸素濃度測定法に関する。
The present invention also relates to an oxygen concentration measuring method characterized in that the above oxygen concentration measuring device or the oxygen concentration measuring device with a photoconductor is irradiated with light to measure the luminous intensity of a luminescent substance.

以下、本発明について更に詳細に説明する。The present invention will be explained in more detail below.

I〉発光物質 本発明に用いる発光物質としては、光照射によって光励
起状態からルミネセンスを発し、その光が酸素によって
消光されるあらゆる発光物質を、高分子膜中に物理的、
化学的に結合させたものを用いる。ここで、発光物質ま
たは高分子物質ペンダントに発光感応物を結合させるか
、あるいはゲル中に微粒子(発光物質)を抱接した形で
用いることができる。具体的には、PCT/JP871
00463号明細書に開示されたポリピリジン金属錯体
、例えばトリス(2,2’−ビピリジン)ルテニウム(
II)錯体、トリス(o−フェナントロリン)ルテニウ
ム(n ) 錯体、またピレン及びピレン誘導体等を例
示することができる。
I> Luminescent substance As the luminescent substance used in the present invention, any luminescent substance that emits luminescence from a photoexcited state upon irradiation with light and whose light is quenched by oxygen can be physically contained in a polymer film.
Chemically bonded substances are used. Here, a luminescent substance can be bonded to a luminescent substance or a polymeric substance pendant, or fine particles (luminescent substance) can be used in a gel. Specifically, PCT/JP871
Polypyridine metal complexes disclosed in No. 00463, such as tris(2,2'-bipyridine)ruthenium (
II) complexes, tris(o-phenanthroline)ruthenium(n) complexes, pyrene and pyrene derivatives, and the like.

光励起波長は、紫外光でも可視光でもよいが、可視光が
好ましい。例えばトリス(2,2°−ビピリジン)ルテ
ニウム(II)錯体は、励起波長く極大吸収波長λma
xは452nm)、ルミネセンスの発光波長(極大発光
波長Emaxは603nm)で、ともに可視領域にあり
、ルミネセンスは酸素で効率よく消光されるので、発光
物質として浸れている。またピレンやその誘導体は励起
波長は340nm近辺で紫外領域にあるが、ルミネセン
スは400nm近辺と可視領域に近く、酸素で効率よく
消光するので、やはり発光物質として優れている。
The optical excitation wavelength may be ultraviolet light or visible light, but visible light is preferred. For example, tris(2,2°-bipyridine)ruthenium(II) complex has a long excitation wavelength and a maximum absorption wavelength λma
x is 452 nm) and the emission wavelength of luminescence (maximum emission wavelength Emax is 603 nm), both of which are in the visible region, and since luminescence is efficiently quenched by oxygen, it is used as a luminescent substance. Furthermore, although pyrene and its derivatives have an excitation wavelength of around 340 nm, which is in the ultraviolet region, their luminescence is around 400 nm, which is close to the visible region, and is efficiently quenched by oxygen, so they are still excellent as luminescent substances.

11)絹膜 本発明の主要な特徴は、酸素濃度測定装置の被験液と接
触する外表面に、膜成分として生体親和性に優れた絹を
用いることにある。
11) Silk membrane The main feature of the present invention is that silk, which has excellent biocompatibility, is used as a membrane component on the outer surface of the oxygen concentration measuring device that comes into contact with the test liquid.

天然物である絹は、生体に馴染む優れた材料として知ら
れ、縫合糸、化粧品等に利用される他、コンタクトレン
ズ等への使用が考えられている。
Silk, a natural product, is known as an excellent material that is compatible with living organisms, and is used for sutures, cosmetics, etc., and is also being considered for use in contact lenses, etc.

本発明に用いる絹膜は、絹フィブロインの水溶液からキ
ャスト法によって調製することができ、例えば絹フイブ
ロイン水溶液をガラスやプラスチック板上に広げて風乾
することによりiMられる。
The silk membrane used in the present invention can be prepared from an aqueous solution of silk fibroin by a casting method, for example, by spreading the aqueous silk fibroin solution on a glass or plastic plate and air drying.

この際に用いる絹フイブロイン水溶液の濃度は0.1〜
30重量%であることが好ましく、絹膜の厚さは0.1
〜500μm1絹膜の密度は1〜1.5 g / cu
tであることが好ましい。
The concentration of the silk fibroin aqueous solution used at this time is 0.1~
It is preferably 30% by weight, and the thickness of the silk film is 0.1
The density of ~500 μm1 silk membrane is 1-1.5 g/cu
It is preferable that it is t.

発光物質を直接絹膜中に固定するには、絹フィブロイン
の水溶液中に発光物質を混合してから絹膜を調製するか
、調製した絹膜に発光物質を物理的に吸着させればよい
To directly immobilize a luminescent substance into a silk membrane, the luminescent substance may be mixed into an aqueous solution of silk fibroin and then the silk membrane prepared, or the luminescent substance may be physically adsorbed onto the prepared silk membrane.

iii )高分子膜 本発明において、「高分子膜」とは、絹以外の高分子化
合物からなる、従来酸素濃度測定装置において発光物質
を固定するために使用しうることが知られていたすべて
の高分子膜を含む。
iii) Polymer film In the present invention, the term "polymer film" refers to any polymer film made of a polymer compound other than silk, which is known to be usable for fixing a luminescent substance in an oxygen concentration measuring device. Contains polymer membranes.

本発明においては、発光物質を直接絹膜中に固定しても
よいが、その場合は酸素による発光物質の消光効率が低
い。そこで、発光物質を高分子膜中に分散して固定し、
その高分子膜を絹膜で被覆して酸素濃度測定装置として
もよい。
In the present invention, the luminescent substance may be directly immobilized in the silk film, but in that case, the quenching efficiency of the luminescent substance by oxygen is low. Therefore, a luminescent substance is dispersed and fixed in a polymer film, and
The polymer membrane may be covered with a silk membrane to form an oxygen concentration measuring device.

かかる酸素濃度測定装置を製造するには、発光物質を固
定した高分子膜を絹膜と貼り合わせたり、あるいは該高
分子膜の上に絹フイブロイン水溶液をキャストして膜化
したり、また該高分子膜を絹膜で挟む等の形で、被験液
に接触する面が絹膜となるようにすればよい。
In order to manufacture such an oxygen concentration measuring device, a polymer film on which a luminescent substance is immobilized is bonded to a silk film, or an aqueous solution of silk fibroin is cast onto the polymer film to form a film, or the polymer film is bonded to a silk film. The membrane may be sandwiched between silk membranes so that the surface that comes into contact with the test liquid is the silk membrane.

高分子は合成物、天然物のいずれでもよいが、親水性基
を有するものが好ましい。例えばメチルメタクリル酸、
N−ビニルピロリドン、アクリル酸、ビニルアルコール
、アクリルアミド、ビニルピリジン、ビニルビピリジン
、ヒドロキシエチルメタクリレート、スチレンスルホネ
ート等の単独又は他の単量体との共重合体を挙げること
ができる。他に、スルホネート基を持つカチオン変換膜
であるナフィオン、4級アンモニウム基やピリジニウム
基を持つアニオン変換膜等、またセルロース、ゼラチン
、コラーゲン等の天然物を用いることができる。
The polymer may be either a synthetic product or a natural product, but one having a hydrophilic group is preferred. For example, methyl methacrylic acid,
Examples include N-vinylpyrrolidone, acrylic acid, vinyl alcohol, acrylamide, vinylpyridine, vinylbipyridine, hydroxyethyl methacrylate, styrene sulfonate, etc. alone or in copolymers with other monomers. In addition, Nafion, which is a cation conversion membrane having a sulfonate group, an anion conversion membrane having a quaternary ammonium group or a pyridinium group, and natural products such as cellulose, gelatin, and collagen can be used.

発光物質の高分子膜への固定化には種々の方法が考えら
れる。固定化の条件としては、(1)固定化された発光
物質が被験液に溶出しないこと(溶出すると、発光の強
度が変化してしまい、安定な測定が困難となる。) 、
(2)被験液または気体との間で化学反応による非可逆
的変化を受けないこと、などが挙げられる。
Various methods can be considered for immobilizing a luminescent substance onto a polymer membrane. The conditions for immobilization are: (1) the immobilized luminescent substance should not elute into the test solution (if it elutes, the intensity of luminescence will change, making stable measurement difficult);
(2) It must not undergo irreversible changes due to chemical reactions with the test liquid or gas.

たとえ(士まず、第一の方法として、発光物質を高分子
に溶解または分散させることにより最も簡易に固定化す
ることができる。
First of all, as a first method, the luminescent substance can be most easily immobilized by dissolving or dispersing it in a polymer.

この場合高分子としては多くのものが使用できる。例え
ばごく−船釣に使われている多くの汎用プラスチック、
例えば低密度ポリエチレン、ポリプロピレン、ポリ塩化
ビニル、エチレン酢酸ビニル共重合体、ポリスチレン、
ポリメタクリル酸メチル、シリコーン樹脂、ポリウレタ
ンなどが特に使用に適する。発光物質をこれら高分子に
混合する具体的手段は使用される発光プローブ及び高分
子によって適宜選択される。例えば発光プローブにポリ
ピリジン金属錯体を用いた場合、低密度ポリエチレンな
どの耐溶剤性の高い熱可塑性プラスチックスでは加熱溶
融による混合などが、またポリスチレンなどでは溶液混
合(高分子の有機溶剤溶液中での混合)が使用できる。
In this case, many polymers can be used. For example, many general-purpose plastics used in boat fishing,
For example, low density polyethylene, polypropylene, polyvinyl chloride, ethylene vinyl acetate copolymer, polystyrene,
Polymethyl methacrylate, silicone resins, polyurethanes, and the like are particularly suitable for use. The specific means for mixing the luminescent substance with these polymers is appropriately selected depending on the luminescent probe and polymer used. For example, when polypyridine metal complexes are used in luminescent probes, thermoplastics with high solvent resistance such as low-density polyethylene may be mixed by heating and melting, and polystyrene may be mixed by solution mixing (polymer in an organic solvent solution). mixture) can be used.

ポリピリジン金属錯体の高分子との混合物中に占める濃
度はI X 10−”mo j1! /dm’乃至1 
mo j2 /dm’が適当である。I X 10−8
mo !!/dm”未満の濃度では十分な発光が得られ
ず、従って感度が不十分である。また1mo j! /
dm3をこえる高い濃度では、発光の強度が酸素濃度に
よって変化せず使用に適さない。
The concentration of the polypyridine metal complex in the mixture with the polymer is I x 10-"mo j1!/dm' to 1
mo j2 /dm' is suitable. IX 10-8
Mo! ! If the concentration is less than 1mo j!/dm, sufficient luminescence cannot be obtained and therefore the sensitivity is insufficient.
At a high concentration exceeding dm3, the intensity of emitted light does not change depending on the oxygen concentration and is not suitable for use.

次に、第二の方法として、発光物質を吸着体に化学的ま
たは物理的に吸着せしめる方法がある。吸着体としては
シリカゲルやガラスなどの無機物質、ポーラスポリマー
や各種イオン交換樹脂、多糖類、蛋白質等の天然物など
の有機物質が挙げられる。いずれの吸着体も使用が可能
である。特に、陽イオン交換樹脂やキレート型の吸着剤
を用いると、より安定な固定化を行うことができる。
Next, as a second method, there is a method in which a luminescent substance is chemically or physically adsorbed onto an adsorbent. Examples of the adsorbent include inorganic substances such as silica gel and glass, organic substances such as porous polymers, various ion exchange resins, natural products such as polysaccharides, and proteins. Any adsorbent can be used. In particular, more stable immobilization can be achieved by using a cation exchange resin or a chelate type adsorbent.

第三の方法として、発光物質を高分子の構成単位として
導入することにより物理的にも化学的にもより安定な固
定化錯体を形成せしめる方法がある。この方法は、既述
の2つの方法に比べやや複雑な操作を必要とするが、最
も安定性の高い固定化物を(尋る方法である。例えばポ
リピリジン金属錯体を用いる場合、重合性官能基を有す
るポリピリジンを重合させ、あるいはこれと共重合可能
な単量体とを共重合させ、重合体または共重合体を得た
のち、金属錯体を形成させる方法、たとえば、スチレン
、メタクリル酸、アクリル酸、アクリロニトリルなどの
ビニル化合物と4−メチル−4′−ビニル−2,2′−
ビピリジンのようなビニル基をもったポリピリジン(配
位子)を共重合させた後、金属錯体を形成させる方法、
ポリピリジン金属錯体の置換基と化学結合が可能な官能
基を持った単量体を予め重合し、その後該置換基と官能
基とを結合させる方法などを採りうる。ここで共重合体
とは、ランダム共重合体、ブロック共重合体、グラフト
共重合体、あるいは錯体で橋かけされた重合体なども含
む。
A third method is to form an immobilized complex that is physically and chemically more stable by introducing a luminescent substance as a constituent unit of a polymer. This method requires a slightly more complicated operation than the two methods described above, but it is a method in which the most stable immobilized product is selected. For example, when using a polypyridine metal complex, polymerizable functional groups are A method of polymerizing polypyridine or copolymerizing it with a copolymerizable monomer to obtain a polymer or copolymer, and then forming a metal complex, such as styrene, methacrylic acid, acrylic acid, Vinyl compounds such as acrylonitrile and 4-methyl-4'-vinyl-2,2'-
A method of forming a metal complex after copolymerizing polypyridine (ligand) having a vinyl group such as bipyridine,
A method may be adopted in which a monomer having a functional group capable of chemically bonding with a substituent of the polypyridine metal complex is prepolymerized, and then the substituent and the functional group are bonded. Here, the copolymer includes a random copolymer, a block copolymer, a graft copolymer, or a polymer crosslinked with a complex.

発光物質を化学的に共有結合した高分子としては、たと
えばトリス(2,2’−ビピリジンルテニウム(II)
錯体(以下Ru(bpy)s”+と略す)をペンダント
型置換基として持つ次の重合体が挙げられる。
An example of a polymer to which a luminescent substance is chemically covalently bonded is tris(2,2'-bipyridineruthenium(II)).
The following polymers have a complex (hereinafter abbreviated as Ru(bpy)s''+) as a pendant substituent.

葛 )   : 二 ギ −  髪 但しX−はCβ−1Cβ04−などのアニオン、Mは4
−メチル−4′−ビニル−2,2′−ビピリジン、メチ
ルメククリル酸、アクリル酸、N−ビニルピロリドン、
ヒドロキシエチルメタクリレート、スチレンなどの単量
体単位、XS7%2は繰り返し単位のモル分率で、x+
y+z=1であって、xSyは0〜0.99.2は0.
01〜1の範囲から選ばれる。
However, X- is an anion such as Cβ-1Cβ04-, M is 4
-Methyl-4'-vinyl-2,2'-bipyridine, methyl meccrylic acid, acrylic acid, N-vinylpyrrolidone,
Monomer units such as hydroxyethyl methacrylate and styrene, XS7%2 is the molar fraction of repeating units, x+
y+z=1, and xSy is 0 to 0.99.2.
Selected from the range 01-1.

以上の方法を複数組合せることも可能である。It is also possible to combine a plurality of the above methods.

例えば、高分子錯体を他の高分子と混合することなども
可能である。
For example, it is also possible to mix the polymer complex with other polymers.

iv )光の導体 光の導体としては、例えば可とう性のプラスチック光フ
ァイバーを用いることが好ましい。
iv) Light Guide As the light guide, it is preferable to use, for example, a flexible plastic optical fiber.

■)酸素濃度測定装置及び酸素濃度測定法本発明におい
ては、間膜は水等の媒体をよく透過するため、被験液に
溶解した酸素が間膜を透過して発光体に到達することに
より、酸素濃度に対応した発光を示すので、その発光強
度から酸素濃度を知ることができる。また、気体も間膜
を透過するので、気相中の酸素濃度を測定することもで
きる。
■) Oxygen Concentration Measuring Device and Oxygen Concentration Measuring Method In the present invention, since the interstitial membrane is highly permeable to media such as water, oxygen dissolved in the test liquid passes through the interstitial membrane and reaches the luminous body. Since it emits light corresponding to the oxygen concentration, the oxygen concentration can be determined from the luminescence intensity. Furthermore, since gas also permeates through the intermembrane, it is also possible to measure the oxygen concentration in the gas phase.

通常、吸収極大又はそれに近い波長の光を照射して発光
体の励起状態を作り、この励起状態からの発光の強度を
測定する。膜からの散乱光を遮断するために、発光モニ
ター側に、励起光波長域を遮断し、発光を透過するよう
なカットオフフィルターを用いるとよい。
Usually, light having a wavelength at or near the absorption maximum is irradiated to create an excited state of the light emitter, and the intensity of light emitted from this excited state is measured. In order to block the scattered light from the film, it is preferable to use a cutoff filter on the luminescence monitor side that blocks the excitation light wavelength range and transmits the luminescence.

次に第1図、第2図及び第3図の例を用いて、本発明の
酸素濃度測定装置及び酸素濃度測定法を説明する。
Next, the oxygen concentration measuring device and oxygen concentration measuring method of the present invention will be explained using examples shown in FIGS. 1, 2, and 3.

第1図は、石英板を基体として用いた酸素濃度測定装置
1とその使用法を示す概念図である。
FIG. 1 is a conceptual diagram showing an oxygen concentration measuring device 1 using a quartz plate as a base and its usage.

酸素濃度測定装置1は、石英板2、発光物質を固定した
高分子膜3及び間膜4の3層構造からなる。この酸素濃
度測定装置1を被験液又は被験気体中に浸漬し、外部よ
り照射光5を与えて、得られたルミネセンス6の強度を
モニター(例えばホトマル〉7で測定して、被験液又は
被験気体の酸素濃度を測定する。
The oxygen concentration measuring device 1 has a three-layer structure including a quartz plate 2, a polymer film 3 on which a luminescent substance is fixed, and an interlayer film 4. This oxygen concentration measuring device 1 is immersed in a test liquid or test gas, irradiation light 5 is applied from the outside, and the intensity of the obtained luminescence 6 is measured with a monitor (e.g., Photomaru) 7, and the test liquid or test gas is measured. Measures the oxygen concentration of gas.

第2図は、本発明の光導体付酸素濃度測定装置を示し、
第3図はその使用法を示す。
FIG. 2 shows an oxygen concentration measuring device with a photoguide of the present invention,
Figure 3 shows its usage.

光ファイバー8の先端には発光物質を固定した高分子膜
3及びそれを被覆している間膜4が固定されており、該
絹膜部分が被験液18又は被験気体中に浸漬される。キ
セノンランプ9を発した照射光は、干渉フィルター10
と二色性鏡11を透過して光ファイバー8により高分子
膜3に到達し、発光物質を光励起状態にする。発光物質
から発せられたルミネセンスは光ファイバー8を透過し
て光フアイバーカプラー12、二色性鏡11に到達し、
そこでモニター系へと導かれ、モノクロメータ13、光
電子増倍管14、プリアンプ15を通過し、レコーダ1
6に発光強度が記録される。
A polymer film 3 on which a luminescent substance is fixed and a membrane 4 covering it are fixed to the tip of the optical fiber 8, and the silk film portion is immersed in a test liquid 18 or a test gas. The irradiation light emitted from the xenon lamp 9 is passed through an interference filter 10.
The light passes through the dichroic mirror 11 and reaches the polymer film 3 via the optical fiber 8, bringing the luminescent substance into a photoexcited state. Luminescence emitted from the luminescent substance passes through the optical fiber 8 and reaches the optical fiber coupler 12 and the dichroic mirror 11.
There, it is guided to the monitor system, passes through a monochromator 13, a photomultiplier tube 14, a preamplifier 15, and a recorder 1.
6, the luminescence intensity is recorded.

〔発明の効果〕〔Effect of the invention〕

本発明の酸素濃度測定装置及び酸素濃度測定法を用いる
ことにより、特に従来測定の困難であった生体系の液中
の酸sa度を容易に測定することが出来る。また本発明
の酸sa度測定装置は、微小部位の酸素濃度を測定する
のに適しており、気体中の酸素濃度も測定することがで
きる。
By using the oxygen concentration measuring device and oxygen concentration measuring method of the present invention, it is possible to easily measure the acid sa level in liquids of biological systems, which has been difficult to measure in the past. Further, the acid sa level measuring device of the present invention is suitable for measuring oxygen concentration in a minute site, and can also measure oxygen concentration in gas.

〔実施例〕〔Example〕

以下、実施例をもって本発明を更に具体的に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例I Ru (bpy) s”CR2のlQmM水溶液にI 
X 3 cmのナフィオン膜(厚さ173μm)を30
分間浸漬して錯体を膜中に吸着させた後、水洗い、乾燥
し、テフロン板に固定した。この上に絹フイブロイン膜
(厚さ約100μm)を密着して二層膜型の酸素濃度測
定装置とした。これを溶存酸素濃度が種々異なる水中に
浸漬し、膜に対して45度の方向から4.50 n m
の光で励起し、励起光に対して90度の方向から発光を
モニター、0−56のカットオフフィルターを通して発
光スペクトルを測定し、発光極大(約600nm)の強
度を調べたところ、第4図に示すような、酸素濃度と発
光強度の関係が得られた。これから、発光強度を測定す
ることにより、酸素濃度を知ることができる。
Example I In a 1QmM aqueous solution of Ru (bpy) s”CR2
30 × 3 cm Nafion membrane (thickness 173 μm)
After soaking for a minute to adsorb the complex into the membrane, it was washed with water, dried, and fixed on a Teflon plate. A silk fibroin membrane (thickness: approximately 100 μm) was adhered thereon to form a two-layer membrane type oxygen concentration measuring device. This was immersed in water with various dissolved oxygen concentrations, and 4.50 nm was measured at a 45 degree angle to the membrane.
The emission spectrum was measured through a 0-56 cut-off filter, and the intensity of the emission maximum (about 600 nm) was investigated. The relationship between oxygen concentration and luminescence intensity was obtained as shown in . From this, the oxygen concentration can be determined by measuring the luminescence intensity.

実施例2 構造式1において、共重合体成分Mがメチルメタクリレ
ート、Xが0.943、yが0.020.2が0.03
7、X−がCI−である高分子ペンダント型の発光プロ
ーブのアセトン溶液を絹フイブロイン膜上にキャストし
て乾燥、膜化する。この高分子膜の上に絹フイブロイン
水溶液をキャストして3番目の膜とし、絹フイブロイン
膜で高分子膜をサンドイッチした構造の酸素濃度測定装
置とした。
Example 2 In structural formula 1, copolymer component M is methyl methacrylate, X is 0.943, y is 0.020.2 is 0.03
7. An acetone solution of a polymer pendant type luminescent probe in which X- is CI- is cast onto a silk fibroin film and dried to form a film. A silk fibroin aqueous solution was cast onto this polymer membrane to form a third membrane, thereby creating an oxygen concentration measuring device having a structure in which the polymer membrane was sandwiched between the silk fibroin membranes.

これを枠に固定し、実施例1と同様な方法で水中の酸素
濃度と発光強度の関係を測定すると第5図のようになり
、これから発光強度により酸素濃度を知ることができる
When this is fixed to a frame and the relationship between the oxygen concentration in water and the luminescence intensity is measured in the same manner as in Example 1, the result is as shown in FIG. 5, and from this, the oxygen concentration can be determined from the luminescence intensity.

実施例3 実施例2に右いて、高分子ペンダント型の発光プローブ
としてMがN−ビニルピロリドン、Xが0、828、y
が0.150.2が0.022の化合物を用いたほかは
実施例2と同様にして水中の酸素濃度と発光強度の関係
を測定し、直線関係を得た。
Example 3 Same as Example 2, M is N-vinylpyrrolidone, X is 0, 828, y as a polymer pendant type luminescent probe.
The relationship between the oxygen concentration in water and the luminescence intensity was measured in the same manner as in Example 2, except that a compound with 0.150.2 and 0.022 was used, and a linear relationship was obtained.

実施例4 実施例1において、酸素分圧の異なる酸素/アルゴン混
合気体中で酸素分圧と相対発光強度の関係を求めたとこ
ろ、直線関係を得た。
Example 4 In Example 1, when the relationship between oxygen partial pressure and relative luminescence intensity was determined in oxygen/argon mixed gases having different oxygen partial pressures, a linear relationship was obtained.

実施例5 実施例11とおいて、Ru(bpy) 3”Cβ2の代
りニヒレン酪酸を用いたほかは同様にして二層膜型の酸
素濃度測定装置を作製し、水中の酸素濃度と相対発光強
度の関係を求めるに当り、励起光として338nm光を
、カットオフフィルターとしてL−39を、モニター波
長として400nmを用いて行なったところ、同様な直
線関係をi等だ。
Example 5 A double-layer membrane type oxygen concentration measuring device was manufactured in the same manner as in Example 11 except that nihilene butyric acid was used instead of Ru(bpy) 3''Cβ2, and the oxygen concentration in water and the relative luminescence intensity were measured. When finding the relationship, we used 338 nm light as the excitation light, L-39 as the cutoff filter, and 400 nm as the monitor wavelength, and a similar linear relationship was obtained with i, etc.

実力亀例6 実施例2において、生理食塩水(o,9%塩化ナトリウ
ム水溶液)を用い、この水溶液中における酸素濃度と発
光強度の関係を測定し、はソ′同様な結果を得た。
Performance Example 6 In Example 2, a physiological saline solution (9% sodium chloride aqueous solution) was used to measure the relationship between the oxygen concentration and luminescence intensity in this aqueous solution, and results similar to those obtained in Example 2 were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の酸素濃度測定装置の1例とその使用
法の概念図である。 第2図は、本発明の光導体付酸素濃度測定装置の1例の
概念図である。 第3図は、第2図に示された本発明の光導体付酸素濃度
測定装置の使用法の概念図である。 第4図及び第5図は、本発明の種々の酸素濃度測定装置
を用いて測定した発光強度と酸素濃度との相関を示す。 1・・・・・・酸素濃度測定装置 2・・・・・・石英板 3・・・・・・高分子膜 4・・・・・・絹膜 5・・・・・・照射光 6・・・・・・ルミネセンス 7・・・・・・モニター 8・・・・・・光ファイバー 9・・・・・・キセノンランプ 10・・・・・・干渉フィルター 11・・・・・・二色性鏡 12・・・・・・光フアイバーカプラー13・・・・・
・モノクロメータ 14・・・・・・光電子増倍管 15・・・・・・プリアンプ 16・・・・・・レコーダ 17・・・・・・高圧電源 18・・・・・・被験液 第1図 第2図 第6図
FIG. 1 is a conceptual diagram of an example of the oxygen concentration measuring device of the present invention and its usage. FIG. 2 is a conceptual diagram of an example of the oxygen concentration measuring device with a photoguide according to the present invention. FIG. 3 is a conceptual diagram of how to use the oxygen concentration measuring device with a photoguide of the present invention shown in FIG. 2. FIG. 4 and FIG. 5 show the correlation between luminescence intensity and oxygen concentration measured using various oxygen concentration measuring devices of the present invention. 1... Oxygen concentration measuring device 2... Quartz plate 3... Polymer membrane 4... Silk film 5... Irradiation light 6. ...Luminescence 7 ...Monitor 8 ...Optical fiber 9 ...Xenon lamp 10 ...Interference filter 11 ...Two colors Mirror 12... Optical fiber coupler 13...
- Monochromator 14...Photomultiplier tube 15...Preamplifier 16...Recorder 17...High voltage power supply 18...Test liquid 1st Figure 2 Figure 6

Claims (5)

【特許請求の範囲】[Claims] (1)発光物質を含有する絹膜からなる酸素濃度測定装
置。
(1) An oxygen concentration measuring device consisting of a silk film containing a luminescent substance.
(2)発光物質を含有する高分子膜を、絹膜で被覆して
なる酸素濃度測定装置。
(2) An oxygen concentration measuring device formed by covering a polymer film containing a luminescent substance with a silk film.
(3)発光物質が、トリス(2,2’−ビピリジンルテ
ニウム(II)錯体、トリス(o−フェナントロリン)ル
テニウム(II)錯体、ピレン及びピレン誘導体からなる
群より選ばれる少なくとも1種である、請求項(1)又
は(2)記載の酸素濃度測定装置。
(3) A claim in which the luminescent substance is at least one member selected from the group consisting of tris(2,2'-bipyridineruthenium(II) complex, tris(o-phenanthroline)ruthenium(II) complex, pyrene, and pyrene derivatives) The oxygen concentration measuring device according to item (1) or (2).
(4)請求項(1)〜(3)のいずれか1項記載の酸素
濃度測定装置を光の導体の先端に固定してなる光導体付
酸素濃度測定装置。
(4) An oxygen concentration measuring device with a light guide, comprising the oxygen concentration measuring device according to any one of claims (1) to (3) fixed to the tip of a light conductor.
(5)請求項(1)〜(4)のいずれか1項記載の酸素
濃度測定装置又は光導体付酸素濃度測定装置に光を照射
して、発光物質の発光強度を測定することを特徴とする
酸素濃度測定法。
(5) The oxygen concentration measuring device or the oxygen concentration measuring device with a photoconductor according to any one of claims (1) to (4) is irradiated with light to measure the luminescence intensity of the luminescent substance. Oxygen concentration measurement method.
JP63109977A 1988-05-06 1988-05-06 Instrument and method of measuring concentration of oxygen Pending JPH01280242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63109977A JPH01280242A (en) 1988-05-06 1988-05-06 Instrument and method of measuring concentration of oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63109977A JPH01280242A (en) 1988-05-06 1988-05-06 Instrument and method of measuring concentration of oxygen

Publications (1)

Publication Number Publication Date
JPH01280242A true JPH01280242A (en) 1989-11-10

Family

ID=14523951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63109977A Pending JPH01280242A (en) 1988-05-06 1988-05-06 Instrument and method of measuring concentration of oxygen

Country Status (1)

Country Link
JP (1) JPH01280242A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580527A (en) * 1992-05-18 1996-12-03 Moltech Corporation Polymeric luminophores for sensing of oxygen
WO1999058960A1 (en) * 1998-05-12 1999-11-18 Hunan University High-sensitivity luminescence quenching oxygen sensitive material
WO2008127401A2 (en) * 2006-11-03 2008-10-23 Trustees Of Tufts College Biopolymer optical waveguide and method of manufacturing the same
US8529835B2 (en) 2006-11-03 2013-09-10 Tufts University Biopolymer sensor and method of manufacturing the same
US8747886B2 (en) 2009-02-12 2014-06-10 Tufts University Nanoimprinting of silk fibroin structures for biomedical and biophotonic applications
JP2015061761A (en) * 2007-09-21 2015-04-02 サン ケミカル ビー.ブイ. Printable oxygen detecting composition
US9016875B2 (en) 2009-07-20 2015-04-28 Tufts University/Trustees Of Tufts College All-protein implantable, resorbable reflectors
US9142787B2 (en) 2009-08-31 2015-09-22 Tufts University Silk transistor devices
US9513405B2 (en) 2006-11-03 2016-12-06 Tufts University Biopolymer photonic crystals and method of manufacturing the same
US9599891B2 (en) 2007-11-05 2017-03-21 Trustees Of Tufts College Fabrication of silk fibroin photonic structures by nanocontact imprinting
US9969134B2 (en) 2006-11-03 2018-05-15 Trustees Of Tufts College Nanopatterned biopolymer optical device and method of manufacturing the same
JP2021533388A (en) * 2018-08-03 2021-12-02 オディンウェル エービーOdinwell Ab A device for measuring the characteristics of an object to be measured by luminescence.

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580527A (en) * 1992-05-18 1996-12-03 Moltech Corporation Polymeric luminophores for sensing of oxygen
WO1999058960A1 (en) * 1998-05-12 1999-11-18 Hunan University High-sensitivity luminescence quenching oxygen sensitive material
US9802374B2 (en) 2006-11-03 2017-10-31 Tufts University Biopolymer sensor and method of manufacturing the same
US9513405B2 (en) 2006-11-03 2016-12-06 Tufts University Biopolymer photonic crystals and method of manufacturing the same
US8195021B2 (en) 2006-11-03 2012-06-05 Tufts University/Trustees Of Tufts College Biopolymer optical waveguide and method of manufacturing the same
US8529835B2 (en) 2006-11-03 2013-09-10 Tufts University Biopolymer sensor and method of manufacturing the same
US8574461B2 (en) 2006-11-03 2013-11-05 Tufts University Electroactive biopolymer optical and electro-optical devices and method of manufacturing the same
US10280204B2 (en) 2006-11-03 2019-05-07 Tufts University Electroactive biopolymer optical and electro-optical devices and method of manufacturing the same
US10040834B2 (en) 2006-11-03 2018-08-07 Tufts University Biopolymer optofluidic device and method of manufacturing the same
US9969134B2 (en) 2006-11-03 2018-05-15 Trustees Of Tufts College Nanopatterned biopolymer optical device and method of manufacturing the same
WO2008127401A2 (en) * 2006-11-03 2008-10-23 Trustees Of Tufts College Biopolymer optical waveguide and method of manufacturing the same
WO2008127401A3 (en) * 2006-11-03 2009-03-05 Tufts College Biopolymer optical waveguide and method of manufacturing the same
US9459241B2 (en) 2007-09-21 2016-10-04 Sun Chemical B.V. Printable oxygen sensing composition
JP2015061761A (en) * 2007-09-21 2015-04-02 サン ケミカル ビー.ブイ. Printable oxygen detecting composition
US10247712B2 (en) 2007-09-21 2019-04-02 Sun Chemical B.V. Printable oxygen sensing composition
US9599891B2 (en) 2007-11-05 2017-03-21 Trustees Of Tufts College Fabrication of silk fibroin photonic structures by nanocontact imprinting
US9603810B2 (en) 2009-02-12 2017-03-28 Tufts University Nanoimprinting of silk fibroin structures for biomedical and biophotonic applications
US8747886B2 (en) 2009-02-12 2014-06-10 Tufts University Nanoimprinting of silk fibroin structures for biomedical and biophotonic applications
US9016875B2 (en) 2009-07-20 2015-04-28 Tufts University/Trustees Of Tufts College All-protein implantable, resorbable reflectors
US9142787B2 (en) 2009-08-31 2015-09-22 Tufts University Silk transistor devices
JP2021533388A (en) * 2018-08-03 2021-12-02 オディンウェル エービーOdinwell Ab A device for measuring the characteristics of an object to be measured by luminescence.

Similar Documents

Publication Publication Date Title
US5882936A (en) Method of making a sensor with improved drift stability
AU633498B2 (en) Fiber-optic physiological probes
Munkholm et al. A fiber-optic sensor for CO2 measurement
Lin Recent development and applications of optical and fiber-optic pH sensors
Kulp et al. Polymer immobilized enzyme optrodes for the detection of penicillin
US5000901A (en) Fiber-optic physiological probes
US5127077A (en) Fiber-optic physiological probes
Lobnik et al. Optical chemical sensors: design and applications
US4842783A (en) Method of producing fiber optic chemical sensors incorporating photocrosslinked polymer gels
García-Fresnadillo et al. Luminescent Nafion membranes dyed with ruthenium (II) complexes as sensing materials for dissolved oxygen
US4892640A (en) Sensor for the determination of electrolyte concentrations
EP0313655B1 (en) Oxygen concentration probe
JP2002523733A (en) Optical sensor based on oxidase
JPH01280242A (en) Instrument and method of measuring concentration of oxygen
JPH04305143A (en) Continuous monitoring apparatus for analyzed material and manufacture thereof
Singer et al. Fiber optic sensor for oxygen determination in liquids
US20030068827A1 (en) Enhanced scattering membranes for improved sensitivity and signal-to-noise of optical chemical sensors, fiber optic oxygen sensor for real time respiration monitoring utilizing same, and method of using sensor
JPH0658880A (en) Microsensor copolymer and manufacture thereof
EP0344313A1 (en) Probe for measuring concentration of dissolved gas
Tan et al. Miniaturized fiber-optic chemical sensors with fluorescent dye-doped polymers
Del Bianco et al. A new kind of oxygen-sensitive transducer based on an immobilized metallo-organic compound
JP4666766B2 (en) Optical-chemical sensor for detecting chloride
Wróblewski et al. Cellulose based bulk pH optomembranes
Opitz et al. Electrochromic dyes, enzyme reactions and hormone—protein interactions in fluorescence optic sensor (optode) technology
US5196347A (en) Method for measuring oxygen concentration