JPH01276043A - Waveguide type liquid detector - Google Patents

Waveguide type liquid detector

Info

Publication number
JPH01276043A
JPH01276043A JP63105884A JP10588488A JPH01276043A JP H01276043 A JPH01276043 A JP H01276043A JP 63105884 A JP63105884 A JP 63105884A JP 10588488 A JP10588488 A JP 10588488A JP H01276043 A JPH01276043 A JP H01276043A
Authority
JP
Japan
Prior art keywords
waveguide
film
liquid
organic polymer
type liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63105884A
Other languages
Japanese (ja)
Inventor
Masaaki Morisawa
森澤 正明
Moriyuki Fujita
盛行 藤田
Hideaki Ito
秀明 伊藤
Masao Katsuyama
勝山 正男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP63105884A priority Critical patent/JPH01276043A/en
Publication of JPH01276043A publication Critical patent/JPH01276043A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2852Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using tapping light guides arranged sidewardly, e.g. in a non-parallel relationship with respect to the bus light guides (light extraction or launching through cladding, with or without surface discontinuities, bent structures)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/264Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4287Optical modules with tapping or launching means through the surface of the waveguide
    • G02B6/429Optical modules with tapping or launching means through the surface of the waveguide by surface irregularities on the light guide, e.g. by mechanical modification of the surface of the light guide on its exterior

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To facilitate the generation and to improve the profitability by connecting a flexible waveguide film which has been bent to a U-shape to input/output optical fibers and using it. CONSTITUTION:A waveguide type liquid detector is formed by connecting input/ output optical fibers 3, 4, respectively to each end of a waveguide 2 obtained by bending to a U-shape a flexible organic substance film which has formed a waveguide by irradiating with a light beam and polymerizing a monomer of an exposing part in a state that masking has been performed to a sheet of a mixture of, for instance, a base organic high polymer and the monomer for varying its refractive index. In this state, by a liquid 5 which has adhered to the top part of the U-shaped bend part of this detector, an incident light is radiated into the air, a total reflectivity of the waveguide 2 is varied substantially and the liquid 5 is detected. By this cutting working, etc., the waveguide type liquid detector which can be generated easily and whose profitability is high is obtained by the constitution by which it is unnecessary to generate a flat part in the waveguide.

Description

【発明の詳細な説明】 崖if(Mす1氷J 本発明は、液漏れセンサ、液面計などとして有用な液体
検知器に関し、詳しくは可撓性の導波路フィルムを使用
した導波路型液体検知器に関する。
[Detailed Description of the Invention] The present invention relates to a liquid detector useful as a liquid leak sensor, a liquid level gauge, etc., and more specifically, a waveguide-type liquid detector using a flexible waveguide film. Regarding liquid detectors.

l來葛茨班 電カケープルや変圧器などからの絶縁油の漏れが火災あ
るいはその他の種々の事故につながる可能性があるので
、電力供給の総合的品質向上を目的として電力系統の保
守システムの自動化が進められている。一方、石油備蓄
基地や石油化学プラントなどでの油漏れを早期に発見す
ることも重要課題となっており、このために油漏れや液
面を容易に検知し得る安価な液体検知器の開発が要望さ
れている。
Leakage of insulating oil from power cables, transformers, etc. can lead to fires or other various accidents, so automation of power system maintenance systems is needed to improve the overall quality of power supply. is in progress. On the other hand, early detection of oil leaks at oil storage bases, petrochemical plants, etc. is also an important issue, and for this purpose, it is necessary to develop inexpensive liquid detectors that can easily detect oil leaks and liquid levels. It is requested.

従来使用の磁性体を備えたフロートとリードスイッチと
からなる液面計や一対の電極からなる検出器は、検出液
体の導電率の違いにより検出感度が大きく変化して信頼
性に乏しい理由から、最近光ファイバや先導波路ブロッ
クなどの先導波体を利用して光学的に液体の存在を検知
して液漏れや液面を調べる堤案がなされている。光導波
体を利用した液体検知器は、光導波体中に存するV字状
乃至U字状に曲げられた導波路の曲げ部を平坦に削除し
て導波路の一部を大気中に露出させておき、この露出さ
せた部分に液体が付着した状態と液体が付着していない
状態での前記平坦面での反射光量の差から液体の存在を
検出しようとするものである。
Conventionally used liquid level gauges consisting of a float equipped with a magnetic material and a reed switch, and detectors consisting of a pair of electrodes, are unreliable because their detection sensitivity varies greatly depending on the conductivity of the detected liquid. Recently, an embankment scheme has been proposed that uses a waveguide body such as an optical fiber or a waveguide block to optically detect the presence of liquid to check for liquid leakage or the liquid level. A liquid detector using an optical waveguide is designed by flattening out the V-shaped or U-shaped bent portion of the waveguide in the optical waveguide and exposing a part of the waveguide to the atmosphere. Then, the presence of liquid is detected from the difference in the amount of light reflected from the flat surface when liquid is attached to the exposed portion and when no liquid is attached.

・ ベニ占 ところで前記した通り、従来から提案されている光導波
体型液体検知器は、いずれも先導波体を削除して入力光
を全反射させるための平坦面を生成する作業が必要であ
って、このために液体検知器自体が高価格となっている
問題がある。長尺の電カケープルや多数個の各変圧器か
らの油漏れを検知するには多数個の検知器が必要であっ
て、従来品では設置費用が高額となり、実用性に問題が
ある。
・As mentioned above, the optical waveguide type liquid detectors that have been proposed to date all require work to remove the guiding wave body and create a flat surface for total reflection of the input light. Therefore, there is a problem in that the liquid detector itself is expensive. Detecting oil leaks from long power cables or from multiple transformers requires multiple detectors, and conventional products are expensive to install and have problems in practicality.

μ 占  ゛ るための 上記の問題点を解決するための手段として、本発明は、
可撓性の導波路フィルム、たとえばベース有機高分子の
屈折率を変化させるモノマーと該ベース有機高分子との
混合物のシートにマスクを施した状態で光照射して露光
部に存在する該七ツマ−を重合して導波路を形成してな
る可撓性有機高分子フィルムなど、をU字状に曲げ、そ
の結果U字状に曲げられた該フィルム中の導波路の各端
にそれぞれ入力用光ファイバおよび出力用光ファイバを
接続してなることを特徴とする導波路型液体検知器を提
供しようとするものである。
As a means for solving the above-mentioned problems for occupying μ
A flexible waveguide film, for example, a sheet of a mixture of a monomer that changes the refractive index of the base organic polymer and the base organic polymer, is irradiated with light while a mask is applied to remove the seven particles present in the exposed area. A flexible organic polymer film formed by polymerizing - to form a waveguide is bent into a U-shape, and each end of the waveguide in the U-shaped film is used for input. It is an object of the present invention to provide a waveguide type liquid detector characterized by connecting an optical fiber and an output optical fiber.

の   びに 本発明においては、前記した先導波体として、ベース有
機高分子の屈折率を変化させるモノマーと該ベース有機
高分子との混合物のシートにマスクを施した状態で光照
射して露光部に存在する該モノマーを重合して導波路を
形成してなる可視性有機高分子フィルムなどの可撓性導
波路フィルムからなり、かつそれをU字状に曲げたもの
を使用する。導波路を有する前記の可撓性フィルム自体
の製造は容易であり、しかも該フィルム中に存する導波
路は、フィルム製造直後において既にその少なくとも一
面が大気中に露出しているので、先導波体を削除する作
業が不要であって単にU字状に曲げるのみでU字状曲げ
の頂上部は従来品の削除して形成した平坦面と同様の機
能を示て反射光量の差から液体の存在を検出することが
できる。
Furthermore, in the present invention, as the leading wave body, a sheet of a mixture of a monomer that changes the refractive index of the base organic polymer and the base organic polymer is irradiated with light while being masked, and the exposed area is exposed to light. A flexible waveguide film such as a visible organic polymer film formed by polymerizing the existing monomer to form a waveguide, and bent into a U-shape, is used. It is easy to manufacture the flexible film itself having a waveguide, and since at least one side of the waveguide existing in the film is already exposed to the atmosphere immediately after the film is manufactured, it is easy to manufacture the waveguide body. There is no need to remove it, just bend it into a U-shape, and the top of the U-shaped bend has the same function as the flat surface formed by removing it in conventional products, detecting the presence of liquid from the difference in the amount of reflected light. can be detected.

又里皇l生負星区呪 以下、図面によって本発明を一層詳細に説明する。第1
図は本発明実施例の斜視図、第2図および第3図は第1
図のX−X線に沿った断面図であって、第2図は先導波
路のU字状曲げ頂上部に液体が付着していない状態を、
−力筒3図は液体が付着した状態をそれぞれ示す。
Hereinafter, the present invention will be explained in more detail with reference to the drawings. 1st
The figure is a perspective view of an embodiment of the present invention, and Figures 2 and 3 are a perspective view of an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along the line XX in the figure, and FIG. 2 shows a state where no liquid is attached to the top of the U-shaped bend of the leading waveguide.
- Figure 3 of the cylinder shows the state in which liquid is attached.

第1図〜第3図において、lはU字状に曲げられた可撓
性有機高分子フィルム、2は該フィルムl中に形成され
た先導波路である。可撓性有機高分子フィルムlがU字
状に曲げられることによって、先導波路2もU字状に曲
げられている。3は入力用光ファイバ、4は出力用光フ
ァイバ、5は先導波路2のU字状曲げ頂上部21に付着
した液体である。入力用光ファイバ3および出力用光フ
ァイバ4は、光透過性の良好な接着剤、たとえばエポキ
シ樹脂系接着剤など、を用いて可視性有機高分子フィル
ム1の端面に露出した先導波路2の端面と接着結合され
ている。
In FIGS. 1 to 3, l is a flexible organic polymer film bent into a U-shape, and 2 is a leading waveguide formed in the film l. By bending the flexible organic polymer film l into a U-shape, the leading waveguide 2 is also bent into a U-shape. 3 is an input optical fiber, 4 is an output optical fiber, and 5 is a liquid attached to the U-shaped bent top portion 21 of the leading waveguide 2. The input optical fiber 3 and the output optical fiber 4 are connected to the end face of the guiding waveguide 2 exposed to the end face of the visible organic polymer film 1 using an adhesive with good light transparency, such as an epoxy resin adhesive. is bonded with adhesive.

可撓性有機高分子フィルム1は、低屈折率の有機高分子
部分11と有機高分子部分11より高屈折率の前記した
先導波路2とからなっている。該フィルムの厚さは、2
0〜200μ−程度が適当であり、先導波路2の幅並び
に有機高分子部分11との屈折率差は、それぞれ20〜
200μ−10,003〜0.020程度が適当である
The flexible organic polymer film 1 is composed of an organic polymer portion 11 having a low refractive index and the aforementioned leading waveguide 2 having a higher refractive index than the organic polymer portion 11. The thickness of the film is 2
Approximately 0 to 200 μ- is appropriate, and the width of the leading waveguide 2 and the refractive index difference with the organic polymer portion 11 are each 20 to 200 μ-.
Approximately 200μ-10,003 to 0.020 is appropriate.

第2図の状態においては、大気の低屈折率がクラッド層
の作用をなすので、入力用光ファイバ3からの入力光の
多くの部分が先導波路2のU字状曲げ頂上部21におい
ても大気界面で反射して出力用光ファイバ4に伝播され
るが、第3図の状態においては、大気よりも高屈折率の
付着液体のために頂上部21での入力光の多くが大気中
に放射して反射エネルギー量が低下する。したがって第
2図および第3図の各状態(即ち付着液体の有無)での
出力光の差から液体の付着の有無を検知することができ
る。なお、付着液体の有無に基づく出力先の差が大きい
程、付着液体の検出悪魔が向上。
In the state shown in FIG. 2, the low refractive index of the atmosphere acts as a cladding layer, so that a large portion of the input light from the input optical fiber 3 is transmitted to the atmosphere even at the U-shaped bent top portion 21 of the leading waveguide 2. It is reflected at the interface and propagated to the output optical fiber 4, but in the state shown in Fig. 3, most of the input light at the top portion 21 is radiated into the atmosphere due to the attached liquid having a higher refractive index than the atmosphere. The amount of reflected energy decreases. Therefore, the presence or absence of adhesion of liquid can be detected from the difference in output light between the states shown in FIGS. 2 and 3 (that is, the presence or absence of adhering liquid). Furthermore, the greater the difference in the output destination based on the presence or absence of attached liquid, the better the ability to detect attached liquid.

することは言うまでもない、出力光差量は、被検液体の
屈折率、先導波路2の屈折率並びに可撓性有機高分子フ
ィルム1の第1図に示す曲げ半径Rの大きさなどによっ
て異なり、屈折率が1.2〜1.6程度の液体を対象と
する場合においては、先導波路2の屈折率が0.003
〜0.020において、フィルム1の曲げ半径Rは、1
〜50w程度とするのが好ましい。
Needless to say, the amount of output light difference varies depending on the refractive index of the test liquid, the refractive index of the guiding waveguide 2, and the size of the bending radius R shown in FIG. 1 of the flexible organic polymer film 1. When the target is a liquid with a refractive index of about 1.2 to 1.6, the refractive index of the leading waveguide 2 is 0.003.
~0.020, the bending radius R of the film 1 is 1
It is preferable to set it to about 50 W.

可撓性有機高分子フィルム1は、たとえばまず該フィル
ムの形成材料となる有機高分子、感光性モノマーおよび
その他の薬剤とを溶解した有機溶媒溶液から半乾燥状態
の有機高分子フィルムを形成し、該半乾燥有機高分子フ
ィルムの上にフォトマスクをセットし、ついで紫外線照
射して紫外線受光部分に存在する感光性モノマーを重合
せしめ、最後に該有機高分子フィルムを充分に乾燥して
残存せる有機溶媒、未反応の感光性七ツマ−およびその
他の薬剤とを除去することにより製造することができる
。フィルムの主形成材料となる有機高分子としては光導
波路の伝送波長に対して良好な透過性を有するものであ
ればその化学種を問うことなく種々のものが用いられる
が、特にポリカーボネートが好ましい。
The flexible organic polymer film 1 is produced, for example, by first forming a semi-dry organic polymer film from an organic solvent solution in which organic polymers, photosensitive monomers, and other drugs, which are the materials for forming the film, are dissolved. A photomask is set on the semi-dry organic polymer film, and then UV irradiation is applied to polymerize the photosensitive monomer present in the UV-receiving area.Finally, the organic polymer film is sufficiently dried to remove the remaining organic polymer. It can be produced by removing the solvent, unreacted photosensitive chloride and other drugs. As the organic polymer which is the main forming material of the film, various chemical species can be used as long as it has good transparency to the transmission wavelength of the optical waveguide, but polycarbonate is particularly preferred.

感光性モノマーとしては、その重合体が光導波路の主形
成材料となる有機高分子の屈折率を増加または減少させ
得る有機物が用いられる。その例を挙げると、メチルア
クリレート、エチルアクリレート、メチルメタクリレー
ト、スチレン、メタクリル酸ベンジルなどであり、フィ
ルムの主形成材料となるを機高分子がポリカーボネート
の場合好ましくはメチルアクリレート、エチルアクリレ
ートなどである。
As the photosensitive monomer, an organic substance whose polymer can increase or decrease the refractive index of the organic polymer that is the main forming material of the optical waveguide is used. Examples thereof include methyl acrylate, ethyl acrylate, methyl methacrylate, styrene, benzyl methacrylate, etc. When the main polymer forming the film is polycarbonate, methyl acrylate, ethyl acrylate, etc. are preferable.

その他の薬剤としては、感光性モノマーの重合開始剤、
重合促進剤、重合禁止剤、着色剤、老化防止剤などが必
要に応じて必要量使用される。下記は、上記フィルム1
の一製造例である。
Other drugs include polymerization initiators for photosensitive monomers,
Polymerization accelerators, polymerization inhibitors, colorants, anti-aging agents, etc. are used in required amounts as necessary. The following is the above film 1
This is an example of manufacturing.

〔製造例〕[Manufacturing example]

2塩化メタン100重量部あたりポリカーボネート5.
26重量部、感光性七ツマ−としてのメチルアクリレー
ト2.14重量部、重合開始剤としてのベンゾインエチ
ルエーテルを0.19重量部、および重合禁止剤として
のハイドロキノンを0.005重量部を溶解した2塩化
メタン溶液を用い、これを平底のガラス製キャスティン
グ容器に流し込み、アルゴンガスを100〜200cc
Z分の流量で流して脱溶媒してキャスティング容器底に
厚さ0.04mmの爪がたが付く程度に半乾燥した有機
高分子フィルムを得た。直ちにその上に95%エチルア
ルコールをたらして平均厚さ約50μ−のエチルアルコ
ール薄層を形成し、その上にフォトマスクをセットして
温度20℃、照射時間10分、照射線量2.7mW/c
m”の条件で紫外線照射し、このあとフォトマスクをは
ずして90℃で10時間真空乾燥した。かくして−本の
先導波路を有する厚さ40μ−のポリカーボネートフィ
ルムを得た。光導波路の屈折率は1.578 (注:ポ
リカーボネートフィルム部分の屈折率は1.59)であ
り、その幅は40μ彌であった。
5. Polycarbonate per 100 parts by weight of methane dichloride.
26 parts by weight of methyl acrylate as a photosensitive polymer, 0.19 parts by weight of benzoin ethyl ether as a polymerization initiator, and 0.005 parts by weight of hydroquinone as a polymerization inhibitor were dissolved. Using a dichloride methane solution, pour it into a flat-bottomed glass casting container and add 100-200 cc of argon gas.
The solvent was removed by flowing at a flow rate of Z to obtain a semi-dry organic polymer film with a thickness of 0.04 mm to the extent that it rattled on the bottom of the casting container. Immediately, 95% ethyl alcohol was poured onto it to form a thin layer of ethyl alcohol with an average thickness of about 50μ, and a photomask was set on top of it, and the temperature was 20°C, the irradiation time was 10 minutes, and the irradiation dose was 2.7mW. /c
After that, the photomask was removed and the photomask was vacuum-dried at 90°C for 10 hours. In this way, a polycarbonate film with a thickness of 40μ and having a book leading waveguide was obtained.The refractive index of the optical waveguide was 1.578 (Note: The refractive index of the polycarbonate film portion is 1.59), and its width was 40 μm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の斜視図、第2図および第3図は
第1図のX−X線に沿った断面図であって、第2図は先
導波路のU字状曲げ頂上部に液体が付着していない状態
を、−力筒3図は液体が付着した状態をそれぞれ示す。 ■  U字状に曲げられた可撓性有機高分子フィルム、 2  フィルム1中に形成された先導波路、21 光導
波路2のU字状曲げ頂上部、3  入力用光ファイバ、 4  出力用光ファイバ、 5  光導波路2のU字状曲げ頂上部21に付着した液
体。 特許出願人  三菱電線工業株式会社
FIG. 1 is a perspective view of an embodiment of the present invention, FIGS. 2 and 3 are cross-sectional views taken along the line X-X in FIG. Figure 3 shows a state in which no liquid is attached to the cylinder, and a state in which liquid is attached to the cylinder. ■ A flexible organic polymer film bent into a U-shape, 2 a leading waveguide formed in the film 1, 21 a top portion of the U-shape bend of the optical waveguide 2, 3 an input optical fiber, 4 an output optical fiber , 5 Liquid attached to the U-shaped bent top portion 21 of the optical waveguide 2. Patent applicant Mitsubishi Cable Industries, Ltd.

Claims (1)

【特許請求の範囲】 1、可撓性の導波路フィルムをU字状に曲げ、その結果
U字状に曲げられた該フィルム中の導波路の各端にそれ
ぞれ入力用光ファイバおよび出力用光ファイバを接続し
てなることを特徴とする導波路型液体検知器。 2、可撓性の導波路フィルムとして、ベース有機高分子
の屈折率を変化させるモノマーと該ベース有機高分子と
の混合物のシートにマスクを施した状態で光照射して露
光部に存在する該モノマーを重合して導波路を形成して
なる可撓性有機高分子フィルムを使用する第1請求項に
記載の導波路型液体検知器。
[Claims] 1. A flexible waveguide film is bent into a U-shape, and an input optical fiber and an output optical fiber are connected to each end of the waveguide in the U-shaped film. A waveguide type liquid detector characterized by connecting fibers. 2. As a flexible waveguide film, a sheet of a mixture of a monomer that changes the refractive index of the base organic polymer and the base organic polymer is irradiated with light while a mask is applied to remove the light that exists in the exposed area. The waveguide type liquid sensor according to claim 1, which uses a flexible organic polymer film formed by polymerizing monomers to form a waveguide.
JP63105884A 1988-04-28 1988-04-28 Waveguide type liquid detector Pending JPH01276043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63105884A JPH01276043A (en) 1988-04-28 1988-04-28 Waveguide type liquid detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63105884A JPH01276043A (en) 1988-04-28 1988-04-28 Waveguide type liquid detector

Publications (1)

Publication Number Publication Date
JPH01276043A true JPH01276043A (en) 1989-11-06

Family

ID=14419359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63105884A Pending JPH01276043A (en) 1988-04-28 1988-04-28 Waveguide type liquid detector

Country Status (1)

Country Link
JP (1) JPH01276043A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115832U (en) * 1990-03-14 1991-12-02
JP2012154854A (en) * 2011-01-27 2012-08-16 Nippon Signal Co Ltd:The Liquid leakage detection method and liquid leakage detector
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9250537B2 (en) 2004-07-12 2016-02-02 Nikon Corporation Immersion exposure apparatus and method with detection of liquid on members of the apparatus
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
CN106872847A (en) * 2017-02-16 2017-06-20 马玉荣 A kind of U-shaped light fixture grafting detection means
CN106932364A (en) * 2017-03-10 2017-07-07 吉林大学 Tapered fiber liquid refractive index sensor is drawn in macrobending dislocation
US9760026B2 (en) 2003-07-28 2017-09-12 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115832U (en) * 1990-03-14 1991-12-02
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US10185232B2 (en) 2003-07-28 2019-01-22 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US9760026B2 (en) 2003-07-28 2017-09-12 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9250537B2 (en) 2004-07-12 2016-02-02 Nikon Corporation Immersion exposure apparatus and method with detection of liquid on members of the apparatus
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2012154854A (en) * 2011-01-27 2012-08-16 Nippon Signal Co Ltd:The Liquid leakage detection method and liquid leakage detector
CN106872847A (en) * 2017-02-16 2017-06-20 马玉荣 A kind of U-shaped light fixture grafting detection means
CN106872847B (en) * 2017-02-16 2019-05-10 朱德仲 A kind of U-shaped lamps and lanterns grafting detection device
CN106932364A (en) * 2017-03-10 2017-07-07 吉林大学 Tapered fiber liquid refractive index sensor is drawn in macrobending dislocation

Similar Documents

Publication Publication Date Title
JPH01276043A (en) Waveguide type liquid detector
US10190970B2 (en) Tilted grating sensor
JP3375995B2 (en) Medical temperature sensor
US5864641A (en) Optical fiber long period sensor having a reactive coating
US6343168B1 (en) Optical sensor arrangement
US4142774A (en) Flexible optical transducer
US6356675B1 (en) Fiber optic refractive index monitor
NO995281L (en) Enhanced fluorescence meter II
KR880003218A (en) This stairs
CN105842147B (en) A kind of single-ended coated reflection formula long-period fiber grating sensor and its manufacture craft and monitoring steel bar corrosion method
Kovačević et al. Monte Carlo simulation of curvature gauges by ray tracing
JPS61221629A (en) Pressure sensitive element
Esposito et al. Fiber optic biosensor for inflammatory markers based on long period grating
DE69903002D1 (en) DETERMINATION OF POLYMERIZATION OR COAGULATION IN A LIQUID BY SURFACE PLASMON RESONANCE
Chesnokov et al. General conditions and experimental design of sustained frontal photopolymerization in photopolymerizable liquid compositions
JPH02181707A (en) Optical fiber for detecting liquid, gas or the like
US20020192601A1 (en) Process for the production of film having refractive index distribution
Dahne et al. Detection of antibody-antigen reactions at a glass-liquid interface: A novel fibre-optic sensor concept
EP1058099A3 (en) Fluid detector
JPH01302210A (en) Optical branching/coupling device
Hammarling et al. Blood pH optrode based on evanescent waves and refractive index change
Kovacević et al. An analytical approach and optimization of curvature gauge
SU845111A1 (en) Method of measuring phase wave velocity in fiber waveguide
JP2022152368A (en) Optical strain sensor and strain measurement system
JPH0632530B2 (en) Optical fiber hydrophone