JPH01272951A - Method and device for continuous measurement of calorific value of organic gas - Google Patents

Method and device for continuous measurement of calorific value of organic gas

Info

Publication number
JPH01272951A
JPH01272951A JP63103394A JP10339488A JPH01272951A JP H01272951 A JPH01272951 A JP H01272951A JP 63103394 A JP63103394 A JP 63103394A JP 10339488 A JP10339488 A JP 10339488A JP H01272951 A JPH01272951 A JP H01272951A
Authority
JP
Japan
Prior art keywords
gas
calorific value
flow
value
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63103394A
Other languages
Japanese (ja)
Other versions
JP2600077B2 (en
Inventor
Masakatsu Miura
三浦 正勝
Kazuhiko Shinkawa
新川 一彦
Akira Deguchi
明 出口
Satoshi Suzuki
智 鈴木
Shigenobu Tanaka
田中 重信
Yuji Yokota
祐司 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63103394A priority Critical patent/JP2600077B2/en
Publication of JPH01272951A publication Critical patent/JPH01272951A/en
Application granted granted Critical
Publication of JP2600077B2 publication Critical patent/JP2600077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PURPOSE:To enable the continuous measurement of the calorific values of various gaseous fuel by diluting an org. gas at a slight flow rate directly or diluting the gas with an inorg. gas and measuring the generated ion current by hydrogen ionization detectors. CONSTITUTION:Gaseous hydrogen 4 and air 5 are allowed to flow in the hydrogen ionization detectors 10A, 10B and are ignited. Gaseous hydrogen 2 is allowed to flow as a zero gas and the zero adjustment of a recorder 13 is carried out after the hydrogen flame stabilizes. A valve 21 is then closed and the gas 2 is stopped. A standard gas 1 is allowed to flow to the detector 10A and the current is adjusted by a volume control for span adjustment of an amplifier 11 so that the calorific value of the gas 1 and the value registered on the recorder 13 are made to coincide. The gases 2, 1 are again changed over and after confirmation is made that the registered value is correct, the gas is switched to the gas 3 to be measured by a flow passage selector valve 18 and the refined gas passed through a gas cleaner is allowed to flow to the detector 10A. The values registered on a flow meter 33 and a pressure gage 9 are finely adjusted in comparison with the values obtd. at the time of the gas 1. The calorific value of the gas 3 is recorded 13. The gas 3 is diluted by the gas 2 and the measurement is made in case of over-scale.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、有機ガスの発熱量を簡便かつ連続的に測定す
る方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method and apparatus for simply and continuously measuring the calorific value of organic gas.

〔従来技術及びその問題点〕[Prior art and its problems]

気体燃料の発熱量測定方法としては、流水型熱量計、炎
型熱量計、ポンプ熱り上針等による方法がある。この中
で流水型熱量計による方法が精度が高く各国で、!!準
方法として採用されている。この方法は、基体的には、
一定状態でガスを燃焼させて得た燃焼熱を一定流量の流
水しこ与えて、それによる流水の温度上昇から発熱量を
求める方法である。この方法は、経時変化のあるガス組
成の発熱量測定には不適であり、さらに、低カロリーの
ガスでは燃焼状態が悪く、炎が立ち消えたり、不完全燃
焼を起こして測定できない。また、この熱量計による測
定は分析所要時間が多くかかるとともに操作は単純でな
く熟練を必要とするなどの欠点がある。
Methods for measuring the calorific value of gaseous fuel include methods using a running water calorimeter, a flame calorimeter, a pump heating needle, and the like. Among these methods, the method using a flowing water calorimeter is highly accurate and is used in many countries! ! It has been adopted as a semi-standard method. This method is basically
This is a method in which the combustion heat obtained by burning gas in a constant state is applied to a constant flow of flowing water, and the calorific value is determined from the temperature rise of the flowing water. This method is unsuitable for measuring the calorific value of gas compositions that change over time, and furthermore, low-calorie gases have poor combustion conditions and cannot be measured because the flame goes out or incomplete combustion occurs. Furthermore, measurement using this calorimeter has drawbacks such as the time required for analysis and the operation is not simple and requires skill.

炎型熱量計による方法は、一定ガス圧で燃焼させたとき
の炎内部の円錐の高さを測って発熱量を決定するもので
あり、もっとも簡易な方法であるが、流水型熱量計と同
様に低カロリーのガスでは炎が不安定となり測定できな
い。また、発熱M al!1定力θ(として最も良く知
られているポンプ熱基711による方法は、固体や液体
燃料の発熱1’l定に優れた方法であるが、気体燃料に
は誤差か太き(て不適である。
The method using a flame calorimeter determines the calorific value by measuring the height of the cone inside the flame when burning at a constant gas pressure, and is the simplest method, but it is similar to the flowing water calorimeter. However, low calorie gas makes the flame unstable and cannot be measured. Also, fever M al! The method using the pump thermal base 711, which is best known as 1 constant force θ, is an excellent method for constant heat generation 1'l for solid and liquid fuels, but it is unsuitable for gaseous fuels due to errors or large be.

以」−1これらの熱景H1による発熱J?: al!l
定は、何れの方法も基本的に気体燃料を完全燃焼させる
ことが必要であり、それに基づく燃焼炎の状況や燃焼熱
によって発熱基を求める方法である。従って、今伜、供
給や需要の見込まれる低カロリーガスの発熱量を測定す
るには、従来のこれらの熱示計では燃焼状態が不安定と
なり適応できない。現在、化石資源節約のため低品位炭
、都市ゴミおよび廃プラスチック等をツノ;(料として
、これらを部分燃焼しながら熱分解やガス化して低カロ
リーのガス燃料を製造することが各企業で検討されてい
る。これまで、これらの低カロリーガスの発熱量を測定
するには、ガスクロマ1〜クラフイーによりガス中に含
まれる各構成成分を分離分析してその各成分の組成比か
らdl算して求めている。これは発熱量81す定め7ム
として精度が高く信頼性の高いものであるか、回分式で
測定するため、工程から連続的に生産されるガスの発熱
量を連続的に監視して遅滞なく熱」l!、管理する操作
が6帰な場合に使用する方法としては適当でない。
-1 Heat generation J due to these heat scenes H1? : Al! l
Basically, all methods require complete combustion of the gaseous fuel, and the exothermic radicals are determined based on the combustion flame conditions and combustion heat based on this. Therefore, these conventional heat indicators cannot be used to measure the calorific value of low-calorie gases that are expected to be supplied or demanded these days because the combustion state is unstable. Currently, in order to conserve fossil resources, various companies are considering producing low-calorie gas fuel by pyrolyzing or gasifying low-grade coal, municipal waste, and waste plastics, etc., while partially burning them. Until now, in order to measure the calorific value of these low-calorie gases, each component contained in the gas was separated and analyzed using Gas Chroma 1 to Claffie, and dl was calculated from the composition ratio of each component. We are looking for whether this is a highly accurate and reliable calorific value with a calorific value of 81 mm and 7 mm, or because it is measured in batches, the calorific value of the gas that is continuously produced from the process can be continuously monitored. It is not suitable as a method to be used when the number of operations to be managed is 6 times.

また、低カロリーの気体燃料の発熱+、七を連続して直
接測定する装置は実用化されていない。
Furthermore, no device has been put into practical use that can directly and continuously measure the heat generation of low-calorie gaseous fuels.

〔目  的〕〔the purpose〕

本発明は、高カロリーのL P G等の他、中カロリー
の都市ガス、さらに、有機廃棄物の部分燃焼による熱分
解やガス化で発生する低カロリーのガスなと各種の気体
燃料の発熱にを連続的にdlす定する方法と安価な装f
i”+:を提供することをt1的とする。。
The present invention can be used to generate heat from various gaseous fuels, such as high-calorie LPG, medium-calorie city gas, and low-calorie gas generated by thermal decomposition and gasification through partial combustion of organic waste. A method of continuously determining dl and an inexpensive equipment
Let it be t1 to provide i''+:.

〔構  成〕〔composition〕

本発明によれば、有機ガスを微小流敏で直接または無機
ガスで希釈して、水素炎イオン化検出器に導入し、ここ
で発生するイオン電流又はその増幅電流をa+q定し、
この41す定値に↓(づいて該有機ガスの発熱量を求め
ることを特徴とする有機ガスの発熱量連続測定方法が提
供される。
According to the present invention, an organic gas is introduced into a hydrogen flame ionization detector directly or diluted with an inorganic gas in a microfluidic state, and the ion current generated here or its amplified current is determined by a+q,
A method for continuously measuring the calorific value of an organic gas is provided, which is characterized in that the calorific value of the organic gas is determined based on this fixed value.

また、本発明によれば、前記方法を実施するための装置
iとして、有機ガスまたは無機ガスで希釈された有機ガ
スの微量流量調整装置と、該微量流量調整装置に接続す
る水素炎イオン化検出器と、該水素炎イオン化検出器で
発生するイオン電流を発熱1値に変換表示する変換表示
器を備えたことを特徴とする有機ガスの発熱量連続測定
装置が提供されろ。
Further, according to the present invention, the apparatus i for carrying out the method includes a micro flow rate adjustment device for an organic gas diluted with an organic gas or an inorganic gas, and a hydrogen flame ionization detector connected to the micro flow rate adjustment device. There is also provided an apparatus for continuously measuring the calorific value of an organic gas, characterized in that it is equipped with a conversion display that converts and displays the ion current generated by the hydrogen flame ionization detector into a single value of heat generation.

次に1本発明の原理について説明する。先ず、気体燃料
を形成している成分はほぼ決っている。
Next, the principle of the present invention will be explained. First, the components that make up gaseous fuel are almost determined.

つまり、炭素数1〜4の飽和炭化水素であるメタン、エ
タン、プロパン、ブタンとこれらの不飽和炭化水素であ
るエチレン、プロピレン及びアセチレン、−酸化炭素、
水素等の可燃物が気体燃料の主成分であり、さらに炭酸
ガス、窒素、酸素等が不燃物として混入している。これ
らの中で炭化水素類の水素炎イオン化検出器における検
出感度、つまり発生するイオン電流値は、炭化水素の炭
素数と濃度に比例し、炭酸ガスや窒素ガス等の不燃ガス
が共存してもその影響を受けない。一方、これら炭化水
素のそれぞれの発熱)11:はほぼその炭素数とその濃
度に比例していることから、水素炎イオン化検出器にお
けるガス燃料からの発生イオン電流は発熱量にほぼ比例
することになる。本発明は、このような事実をその測定
原理として利用するものである。
In other words, methane, ethane, propane, and butane, which are saturated hydrocarbons having 1 to 4 carbon atoms, and their unsaturated hydrocarbons, ethylene, propylene, and acetylene, -carbon oxide,
Combustible substances such as hydrogen are the main components of gaseous fuel, and carbon dioxide, nitrogen, oxygen, etc. are also mixed in as non-combustible substances. Among these, the detection sensitivity of a flame ionization detector for hydrocarbons, that is, the generated ion current value, is proportional to the carbon number and concentration of the hydrocarbon, and even if nonflammable gases such as carbon dioxide and nitrogen gas coexist. Not affected by it. On the other hand, since the heat generation (11) of each of these hydrocarbons is approximately proportional to the number of carbon atoms and its concentration, the ion current generated from the gas fuel in the hydrogen flame ionization detector is approximately proportional to the amount of heat generated. Become. The present invention utilizes this fact as its measurement principle.

本発明による発熱量測定の対象は、気体燃料をはしめ各
種の有機ガスであり、その種類は限定されるものではな
いが、以下においてはその代表例として有機物等の熱分
解やガス化に於て発生する炭化水素系低カロリーガスを
燃料として評価する□ための発熱量11111定につい
て詳述する。
The objects of the calorific value measurement according to the present invention are gaseous fuels and various organic gases, and the types thereof are not limited. The calorific value 11111 constant for evaluating the generated hydrocarbon-based low-calorie gas as a fuel will be described in detail.

次に本発明を図面により、さらに詳細に説明する。Next, the present invention will be explained in more detail with reference to the drawings.

図面は、本発明の方法を実施する装置系統図を示すが、
本発明を限定するものではない。即ち、流量d1や微量
調整バルブはガスを一定の流−h::や圧力にするため
のものであり、被測定ガスの濃度範囲が狭いものやそれ
ほど正確な41す定値を必要としないことなど使用目的
によっては、抵抗管等で代用して簡略化することも可能
である。検出器に流れるガス流量は一定であれば任意の
斌で選択可能である。また、ここではゼロガスや希釈ガ
スとして窒素、標準ガスとしてメタンを使用しているが
、これらも限定されるものではない。尚、標準ガスや被
11111定ガスの希釈用無機ガスや希釈装置は限られ
た癩度範囲で使用するならば必ずしも設置する必要はな
いが、これらの設置しこより精度は高くなり、また、幅
広いぺS度範囲にも適応できるようになる。
The drawing shows a system diagram of an apparatus for carrying out the method of the invention,
This is not intended to limit the invention. In other words, the flow rate d1 and micro-adjustment valve are for keeping the gas at a constant flow rate or pressure, and the concentration range of the gas to be measured is narrow or a very accurate fixed value is not required. Depending on the purpose of use, it is also possible to use a resistance tube or the like instead for simplification. The gas flow rate flowing into the detector can be selected at any rate as long as it is constant. Further, although nitrogen is used here as the zero gas and diluent gas, and methane is used as the standard gas, these are not limited to these. Note that it is not necessary to install an inorganic gas or a diluter for diluting the standard gas or 11111 constant gas if it is used within a limited range of oxidation, but the accuracy will be higher than these installations, and it can be used over a wide range of It will also be able to adapt to the PeS degree range.

図中の1は標準ガス(メタンガス)、2はゼロガスおよ
、び希釈ガスとして使用する窒素ガス、3は発熱量未知
の被測定ガス、4は水素ガス、5は助燃剤としての空気
である。20〜29は微量の流量調整が可能なニードル
バルブ、;30〜34はガス流):;計、8゜18は流
路の切り替バルブ、9は圧力計、1.OA及び10Bは
水素炎イオン化検出器、】1は水素イオン化検出器に接
続された増幅器であり、標準ガスの発熱量イ1〆tにあ
オ〕せてスパン校11:ができ発熱量値に変換して12
の表示器に発熱量値を表示できる。13は記録シ1.1
4は被d(す定ガス中の水分や腐食性ガスを除くための
ガス清浄器である。ガス流通経路は内径が約0.1〜3
mmのパイプで配管されている。
In the figure, 1 is standard gas (methane gas), 2 is nitrogen gas used as zero gas and diluent gas, 3 is gas to be measured with unknown calorific value, 4 is hydrogen gas, and 5 is air as combustion improver. . 20 to 29 are needle valves that can adjust minute flow rates; 30 to 34 are gas flow meters; 8° and 18 are flow path switching valves; 9 is a pressure gauge; 1. OA and 10B are hydrogen flame ionization detectors, and ]1 is an amplifier connected to the hydrogen ionization detector. Convert to 12
The calorific value can be displayed on the display. 13 is the recording sheet 1.1
4 is a gas purifier for removing moisture and corrosive gas from the target gas.The gas flow path has an inner diameter of about 0.1 to 3
It is connected with mm pipe.

なお、図面において、水素炎イオン化検出器としては、
試料側(IOA)と比較側(loll)の両者を設置し
ているが、助燃ガスやヤロガスレこイイ機ガスか混入す
る恐れが全くない場合には試料側の検出器(]OA)の
みてよく、比較側の検出器(1011)とその関水素を
ライン46.47を通して及び空気をライン49゜50
を通してそれぞれ適正量流し、着火する。水素炎が安定
してからゼロガスとして窒素ガス2をライン40,42
,44.45を通して検出器10Aに流し、またライン
51.52を通して検出器1.0[lに流し、記録Wl
’13のゼロ調整を行う。次に、バルブ2]を閉にし、
検出器10Aに流れるゼロガスを止め、標べQガス1を
ライン42,44.45を通して、流11!: ’n1
’ 3 :(と圧力119を監視しながら検出器10Δ
へdtシ、検出装置10に接続する増幅器11に内71
1されたスパン調整用ボリウムで電流調整して、標準ガ
スの発熱量(kcaQ/Nrn’)と記録計の表示値と
を一致させる。再度、検出器+OAに対するゼロガスと
標ベロガスとを切換えて表示値が正しいことを確認した
後、流路切換バルブ18を被測定ガス3側に切換える。
In addition, in the drawing, the hydrogen flame ionization detector is
Both the sample side (IOA) and the comparison side (roll) are installed, but if there is no risk of contamination with auxiliary gas or gas, it is sufficient to use only the sample side detector (IOA). , the comparison side detector (1011) and its associated hydrogen are passed through lines 46, 47, and air is passed through lines 49.50.
Pour the appropriate amount of each through the tube and ignite. After the hydrogen flame stabilizes, nitrogen gas 2 is introduced into lines 40 and 42 as zero gas.
, 44.45 to detector 10A, and through line 51.52 to detector 1.0[l, recording Wl
Perform the zero adjustment in '13. Next, close valve 2 and
Stop the zero gas flowing to the detector 10A and pass the marked Q gas 1 through lines 42, 44.45, flow 11! : 'n1
'3: (While monitoring the pressure 119, the detector 10Δ
71 to the amplifier 11 connected to the detection device 10.
The current is adjusted using the span adjustment volume set at 1 to match the calorific value of the standard gas (kcaQ/Nrn') with the value displayed on the recorder. After confirming that the displayed value is correct by switching again between the zero gas and the reference gas for the detector + OA, the flow path switching valve 18 is switched to the gas to be measured 3 side.

被測定ガスにタールや腐食性ガス等が含まれている場合
には、ガ抵抗管53から排出される。このようにして被
?l(!I定ガスの発熱量の値が表示され、記録計13
に記録される。
If the gas to be measured contains tar, corrosive gas, etc., the gas is discharged from the resistance tube 53. Covered in this way? l(!I The value of the calorific value of the constant gas is displayed, and the recorder 13
recorded in

前記のようにして測定を行う場合に、記録側13がオー
バースケールする時には、被測定ガスの発熱量が標準ガ
スより高いので、被測定ガスを窒素で希釈してから再び
測定し、記録計の表示値に希釈倍率を乗して発熱量を求
めることができる。逆に、記録計13の表示値が非常に
小さい時には、標準ガスを窒素ガスで希釈して被測定ガ
スの発熱−則に近くなるように再度スパン調整を行うか
、又は被測定ガスの流量を増す等して再調整を行い、そ
の後に、再i11’l定することによって分析精度を高
めることができる。
When measuring as described above, if the recording side 13 overscales, the calorific value of the gas to be measured is higher than the standard gas, so dilute the gas to be measured with nitrogen and measure again. The calorific value can be determined by multiplying the displayed value by the dilution factor. On the other hand, if the value displayed on the recorder 13 is very small, either dilute the standard gas with nitrogen gas and adjust the span again so that it approximates the heat generation law of the gas to be measured, or reduce the flow rate of the gas to be measured. The accuracy of analysis can be improved by readjusting by increasing the value, etc., and then re-determining i11'l.

また、応答速度を早くするため被測定ガス説示を高めた
場合や発熱量の非常に高い燃料を被lll’l定ガスと
して検出器に導入した場合には、検出器で発生するイオ
ン電流が飽和して正しい発熱量4(す定ができなくなる
ことがある。その時の状態は検出器への被測定ガス流量
を変化させても表示値がその流量に比例しないので、す
ぐ判断ができる。その場合には、表示値が被測定ガス流
量に比例するまでそのガス流速を小さくするか、又は被
測定ガスを無機ガスで希釈して、再度スパン調整を行っ
てから測定する。
In addition, when the measurement target gas indication is increased to increase the response speed, or when fuel with a very high calorific value is introduced into the detector as a constant gas, the ion current generated in the detector becomes saturated. It may become impossible to determine the correct calorific value (4). In that case, even if the flow rate of the gas to be measured to the detector is changed, the displayed value will not be proportional to the flow rate, so you can judge the situation immediately. In this case, reduce the gas flow rate until the displayed value is proportional to the flow rate of the gas to be measured, or dilute the gas to be measured with an inorganic gas, perform span adjustment again, and then measure.

本発明で用いる水素炎イオン化検出器は、−・般に、数
ppm〜数2の極めて低濃度の有機成分高感度検出器と
して、ガスクロマ1−クラフィーや全炭化水素濃度計に
利用されている。しかしながら、木発明におけるように
、直接発熱量測定装置に応用した例は知られていない。
The flame ionization detector used in the present invention is generally used in gas chromatography and total hydrocarbon concentration meters as a highly sensitive detector for extremely low concentrations of organic components ranging from several ppm to several ppm. However, there is no known example of its application to a direct calorific value measuring device as in the wood invention.

本発明において、発熱量を測定しようとする被71t1
1定ガス中の炭化水素が高純度又はt’6減度の場合、
例えばLPGの場合には、検出器に被71t11定ガス
を微小流量で直接流すか、又は使用する標準ガスの発熱
量値に近くなるよう窒素や空気等の無機ガスで希釈して
流す。一方、被i11!l定ガス中の炭化水素濃度が低
い場合1例えば低品位炭やイJ機B″6棄物の部被41
す定ガスのガス組成に近いガスが望ましいが、発熱量が
既知であわば住居、の濃度の標市ガスを用いることがで
きる。
In the present invention, the target 71t1 whose calorific value is to be measured
1 If the hydrocarbon in the constant gas is of high purity or t'6 reduction,
For example, in the case of LPG, the 71t11 constant gas is directly flowed through the detector at a minute flow rate, or it is diluted with an inorganic gas such as nitrogen or air so that the calorific value is close to that of the standard gas used. On the other hand, i11! If the concentration of hydrocarbons in the constant gas is low 1 For example, low-grade coal or I
Although a gas having a gas composition close to that of a standard gas is desirable, a standard gas having a known calorific value and having a concentration similar to that of a house can be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、入熱ガスや市販の気体燃料は勿論、廃
棄物の熱分解や石炭のガス化で発生する燃焼性の悪い低
カロリーの炭化水素系ガスの発熱量測定も容易である。
According to the present invention, it is easy to measure the calorific value of not only heat input gas and commercially available gaseous fuels, but also low-calorie hydrocarbon gases with poor combustibility generated by thermal decomposition of waste and gasification of coal.

しかし、本発明で用いる水素炎イオン化検出器は、気体
燃料の一部である水素や一酸化炭素を感知しないので、
これらのガスの含有率の高い高炉ガスや水性ガスの発熱
ms定に際しては、これらガスの持つ発熱足労を−1−
乗せして補正する必要がある。しかし、これらのガスは
炭化水素に比べ、発熱量が低く、純物質で各々発熱量が
ともに約3050kcaQ、/ rn’であるので、こ
れらが炭化水素ガスの濃度に比へて高濃度の場合を除き
、補正する発熱量値はそう大きくはならない。
However, the hydrogen flame ionization detector used in the present invention does not detect hydrogen or carbon monoxide, which are part of the gaseous fuel.
When determining the heat generation time of blast furnace gas or water gas that contains a high content of these gases, the heat generation force of these gases should be
You need to put it on and correct it. However, these gases have a lower calorific value than hydrocarbons, and each has a calorific value of approximately 3050 kcaQ/rn' as a pure substance. Except for this, the calorific value to be corrected will not be that large.

本発明によれば、有機ガスの発熱量を連続的かつ簡便に
測定することができ、その産業的、6.義は−T大であ
る。
According to the present invention, the calorific value of organic gas can be measured continuously and easily, and 6. The righteousness is -T.

〔実施例〕〔Example〕

次に本発明を図面に示した装置系を用いた実施例により
さらに詳細に説明する。
Next, the present invention will be explained in more detail with reference to embodiments using the apparatus system shown in the drawings.

実施例」 発熱量が既知のガスとして純度のIIGいメタン、プロ
パン、ブタンを用い、ゼロガスには窒素を用いて、それ
らの可燃性ガスの発熱量と水素炎イオン化検出器で発生
する電流表示値との関係を調べた。その結果、各々のガ
スの発熱量:と表示値の関係はほぼ直線で近似でき、検
出器へ入るガス売足と圧力を一定に保持すれば、その繰
り返し精度は非常に良いことが明らかとなった。次いで
、表示値が発熱量を示すよう電気的に表示変換の改造を
行い、ブタンを標準ガスとして使用して、その発熱量と
変換された表示値が一致するようスパン調整を行ってか
らメタンとプロパンの発熱量をt1g定した。その結果
、二つのガスの表示値はこれらの発熱量とほぼ一致する
ことを確認した。さらにこれらのガスを窒素と任意に混
合させた場合、その割合に応した発熱量を示し、ガスの
比率から計算した結果とほぼ一致し、発熱量の連続d1
す定装置として利用できることが明らかとなった。
Example" Purity IIG methane, propane, and butane are used as gases with known calorific values, and nitrogen is used as zero gas, and the calorific value of these combustible gases and the current display value generated by the hydrogen flame ionization detector are calculated. We investigated the relationship between As a result, it was found that the relationship between the calorific value of each gas and the displayed value can be approximated by a nearly straight line, and that if the gas supply and pressure entering the detector are kept constant, the repeatability is very good. Ta. Next, the display conversion is electrically modified so that the displayed value shows the calorific value, and using butane as the standard gas, the span is adjusted so that the calorific value matches the converted display value, and then methane and The calorific value of propane was determined in t1g. As a result, it was confirmed that the displayed values of the two gases almost matched their calorific values. Furthermore, when these gases are arbitrarily mixed with nitrogen, the calorific value corresponds to the ratio, which is almost the same as the result calculated from the gas ratio, and the calorific value continuity d1
It has become clear that it can be used as a fixed device.

実施例2 標準ガスにメタン、被測定ガスにプラスチック廃棄物の
熱分解ガスを適用させてこのガスの発熱量を実測した。
Example 2 Methane was used as the standard gas, and thermal decomposition gas of plastic waste was used as the gas to be measured, and the calorific value of the gas was actually measured.

この結果、表示された発熱量値はガスクロマトグラフィ
ーで分析した発熱量値とほぼ−・致し、その差は約−4
%であり、十分信頼性の−12〜 おけるものであった。その時の検出器に流した被d1り
定ガス流景は毎分3−3−4i0、圧力は+1.2−2
.+IkIX/a&の範囲であり、標僧ガスと被δ1り
定ガスの流量と圧力を正確に一致させることにより、精
度良くル1す定できることを確認した。
As a result, the displayed calorific value is almost the same as the calorific value analyzed by gas chromatography, and the difference is approximately -4.
%, which was sufficiently reliable at -12~. At that time, the flow rate of the constant gas flowing through the detector was 3-3-4i0 per minute, and the pressure was +1.2-2
.. +IkIX/a&, and it was confirmed that by accurately matching the flow rates and pressures of the standard gas and the δ1 constant gas, it was possible to accurately determine the δ1 value.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明な実施するための装置系統図を示す。 :” −1・・標博ガス、2・・・窒素ガス、3 被泪
り定ガス、4: ・・水素ガス、5・・・空気、IOA
、10B・水素炎イオン化検出器、11・・・増幅器、
12  表示器、1:3・−記録it。
The drawing shows a system diagram of an apparatus for implementing the present invention. :” -1: Standard gas, 2: Nitrogen gas, 3: Constant gas, 4: Hydrogen gas, 5: Air, IOA
, 10B・Hydrogen flame ionization detector, 11...Amplifier,
12 Display, 1:3--Record it.

Claims (2)

【特許請求の範囲】[Claims] (1)有機ガスを微小流量で直接または無機ガスで希釈
して水素炎イオン化検出器に導入し、ここで発生するイ
オン電流又はその増幅電流を測定し、この測定値に基づ
いて該有機ガスの発熱量を求めることを特徴とする有機
ガスの発熱量連続測定方法。
(1) Introduce organic gas directly or diluted with inorganic gas at a minute flow rate into a hydrogen flame ionization detector, measure the ion current generated here or its amplified current, and based on this measurement value, A method for continuously measuring the calorific value of organic gas, characterized by determining the calorific value.
(2)有機ガスまたは無機ガスで希釈された有機ガスの
微量流量調整装置と、該微量流量調整装置に接続する水
素炎イオン化検出器と、該水素炎イオン化検出器で発生
するイオン電流を該有機ガスの発熱量値に変換表示する
変換表示器を備えたことを特徴とする有機ガスの発熱量
連続測定装置。
(2) A microflow regulator for organic gas diluted with organic gas or inorganic gas, a flame ionization detector connected to the microflow regulator, and an ion current generated by the flame ionization detector for the organic gas. A device for continuously measuring the calorific value of an organic gas, characterized in that it is equipped with a conversion display that converts and displays the calorific value of the gas.
JP63103394A 1988-04-25 1988-04-25 Method and apparatus for continuous measurement of calorific value of organic gas Expired - Lifetime JP2600077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63103394A JP2600077B2 (en) 1988-04-25 1988-04-25 Method and apparatus for continuous measurement of calorific value of organic gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63103394A JP2600077B2 (en) 1988-04-25 1988-04-25 Method and apparatus for continuous measurement of calorific value of organic gas

Publications (2)

Publication Number Publication Date
JPH01272951A true JPH01272951A (en) 1989-10-31
JP2600077B2 JP2600077B2 (en) 1997-04-16

Family

ID=14352847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63103394A Expired - Lifetime JP2600077B2 (en) 1988-04-25 1988-04-25 Method and apparatus for continuous measurement of calorific value of organic gas

Country Status (1)

Country Link
JP (1) JP2600077B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212052A (en) * 1990-01-24 1992-08-03 Elsag Internatl Bv Apparatus and method for measuring on-line energy flow for natural gas
JP2013137932A (en) * 2011-12-28 2013-07-11 Osaka Gas Co Ltd Fuel cell system
JP2013196911A (en) * 2012-03-21 2013-09-30 Osaka Gas Co Ltd Fuel cell system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134480A (en) * 1978-04-10 1979-10-18 Osaka Gas Co Ltd Device for measuring calorific value

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134480A (en) * 1978-04-10 1979-10-18 Osaka Gas Co Ltd Device for measuring calorific value

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212052A (en) * 1990-01-24 1992-08-03 Elsag Internatl Bv Apparatus and method for measuring on-line energy flow for natural gas
JP2013137932A (en) * 2011-12-28 2013-07-11 Osaka Gas Co Ltd Fuel cell system
JP2013196911A (en) * 2012-03-21 2013-09-30 Osaka Gas Co Ltd Fuel cell system

Also Published As

Publication number Publication date
JP2600077B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
US6490908B2 (en) Method and device for determining the gas properties of a combustible gas
US4659306A (en) Method of and system for determining the ratio between the oxygen-carrying gas content and the fuel content of a mixture
US3777562A (en) Methods of and means for determining the calorific value of combustible gases
US11474092B2 (en) Method for determining properties of a hydrocarbon-containing gas mixture and device for the same
EP0498809A1 (en) Microbridge-based combustion control.
WO2007001384A9 (en) Flammability tester
Bourguignon et al. The use of a closed-loop wind tunnel for measuring the combustion efficiency of flames in a cross flow
US4380400A (en) Combustible gas analyzer
US5224776A (en) Instrument and method for heating value measurement by stoichiometric combustion
US4382698A (en) Combustible gas analyzer
EP0665953B1 (en) Method for determining the calorific value of a gas and/or the wobbe index of natural gas
GB2099589A (en) A meter for monitoring the heating value of fuel gases
JPH01272951A (en) Method and device for continuous measurement of calorific value of organic gas
WO2023155934A1 (en) Fuel component analysis and calorific value measurement system for igcc power generation
Taplin Combustion efficiency tables
US3480397A (en) Gas analysis method for determining the oxygen content of a gas containing carbon dioxide
US4761744A (en) Method and device for determining heats of combustion of gaseous hydrocarbons
US3865707A (en) Combustible mixture analyzer
CN217484237U (en) Measuring system for water content of IGCC (integrated gasification combined cycle) gas synthesis gas
US3447908A (en) Detection systems for gas chromatography
Kostúr et al. Indirect measurement of syngas calorific value
US3533745A (en) Method for analyzing hydrocarbon compositions
GB2575283A (en) Pipeline monitoring system, method, and apparatus
CN217359696U (en) Heat transfer power detection device applied to measurement of mixed gas heat conductivity coefficient
US11579103B2 (en) Generating and determining the products of premixed combustion of solid materials in a microscale fire calorimeter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term